مراجعة عامة لوحدة التكامل للفروع المشتركة

_ؤال الأول

الأستاذ: أحمد موسى مقدادي مانف ٢٢٦٦ ٥٧٨٠

جد التكاملات الآتية:

vrs (TV+π) { ~-	۲	ves or rej	1
v=s(v=0+ v=)v=]	٤	Ves (170 + 2 - C) 2 -	٣
v= s v= \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٦	~s (\$\frac{1}{12} + \sigma \tau) \sigma \cdot \]	٥
V25 V2 + V2 V - V - 7 - 7	٨	~ 5 - Gr V + Red J	٧
vrs (50 " + 1)]	١.	200 - 100 J	٩
ves (vrotip - verte)]	١٢	Ves (2 + m) Serv	11
ups (uprtipi E - 2 + vipr))	1 £	[(3 slov - 7 aler)) son	
V25 7+00-0- [17	ves <u>nshtr-</u> J	10
		الاستاد الاستاد ماند	
ا مقداره	ا احمد موس	الاستال	

مانف ۲۲۲۹ م

has (c-ma)=+ + 1+mc	۲.	13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	١٩
~ (N+~ 0) L J	77	Jan a son	۲١
ves (4+2) ves	7 £	V75 0 + 5- 7"]	44
Ves	*1	ر میر (۵- یمر) کر گر	40
1-02 - 1-02 [47	105-105 105-105 105-105-105-105-105-105-105-105-105-105-	**
v=s ((+v=)v=)	٣.	ر (۲- ۱۵-۳) کر ا	۲۹
V25 _ 4+ v- }	٣٢	vs 1+ 0 /	۳۱
vos so volias ?	٣٤	(+ m) (+ m)	44
ves velà ?		v25 (betip+ velã) velã [
vis vite vite?	٣٨	vrs (~~+ 5~) [i.e. (1+ 5~)]	**
v=s 1+v=]		Vrs("+ ~) to vr 0)	
	1 100	W	

الأستاذ : أحمد موسى مقدلي

وال الثاني

(1) I
$$= \frac{0 + \sqrt{0}}{\sqrt{0}} = 0$$
 $= 0$

$$(7)$$
 اذا کان قَ $(m) = 7$ m + 3 m ، وکان ق $(1) = 7$ ، جد ق (7)

$$(7)$$
اذا کان $\int \tilde{b}(m)$ د $m=3$ س $+1$ ، وکان ق $(1)=7$ ، جد قَرا-1) ، ق (7)

$$(w)$$
 د (w) د (w)

$$(0)$$
 اذا کان ق $(7) = -1$ ، ق $(3) = -3$ جد $\int_{\gamma}^{2} \tilde{g}(w)$ دس

(w)
$$= w^{7} + \int \frac{\sqrt{-1}}{\sqrt{1+1}} e^{-x} + \int \frac{1+\sqrt{-1}}{\sqrt{1+1}} e^{-x} + \int \frac{1+\sqrt{-1}}{\sqrt{1+1}} e^{-x} = e^{-x} = e^{-x}$$

$$\P$$
 اذا کان $\int \tilde{g}(w)$ دس = لور $(w - \pi) + 0$ وکان $\tilde{g}(\tilde{q}) = \pi$ جد قیم الثابت

$$P_{1}$$
 جد هـ P_{1} اذا کان ق P_{1} اذا کان ق P_{2} ، ق P_{3} ، ق P_{4} ، ق P_{5} ، ق P_{5} ، قر P_{5}

الأستاذ: الحمل موسى مقالاي مانف ٢٠٦٢م٥٨٠.

(۱) اذا کان
$$\int_{-\infty}^{\infty} (w) cw = 7$$
 ، $\int_{-\infty}^{\infty} (w) cw = -8$ جد ما یلي :

$$(1)^{\frac{1}{2}} \int_{-1}^{2} (1 + 1) \int_{-1}^{2} (1 +$$

ع
$$\frac{7}{7}$$
 اذا کان $\int_{-7}^{7} (w) cw = 10$ ، $\int_{-7}^{7} (7 - \frac{e_{c}(w)}{7} + 7 ك w) cw = 10$ جد ك

$$1 \ge m \ge 7$$
 ، $2 + m$ \Rightarrow 0 إذا كان ق $(m) = \{m \le 1 \ m \ge 1 \ m \ge 1 \ m \ge 1 \}$

الاستاذ: احمله موسى مقلدي. ماتف ٢٦٦ - ٥٥ ، ١٨٥ ، ١٨٥

فاحسب ۱)
$$\int_{-\infty}^{\infty} \tilde{g}(w)$$
 . دس فاحسب ۱) $\int_{-\infty}^{\infty} \tilde{g}(w)$. دس $\int_{-\infty}^{\infty} \tilde{g}(w)$ دس $\int_{-\infty}^{\infty} \tilde{g}(w)$ دس $\int_{-\infty}^{\infty} \tilde{g}(w)$ دس

$$7 - \int_{1}^{P} (7w + V) cw = 70$$

$$3 - \int_{V}^{P} a cw = 0$$

$$7 - \int_{V}^{P} (7w - 3) cw = 0$$

$$(3)$$
 جد قیمهٔ الثابت (4) فی کل مما یلی:

 (7) جد قیمهٔ الثابت (7) فی کل مما یلی:

 (7) $($

الأستاذ الحمد موسى مقدادي مانف ۲۲۲۶ ۲۵۵۸۷،

السيوال الرابع

- (س) = $\gamma_{m} + \gamma_{m}$ ، جد قاعدة الاقتران ق γ_{m} علما بأن الاقتران يمر بالنقطة (١،٨)
- ٢) اذا كان ميل المماس عند اي نقطة على منحنى ق(س) يعطى بالعلاقة ٣س + ٥ جد قاعدة الاقتران ق(س) اذا كان الاقتران يمر بالنقطة (١٠ ، ٢)
- ٣) اذا كان ميل المماس عند اي نقطة على منحنى ق(س) يعطى بالعلاقة هـ الاستاذ: الحمد موسى مقدادي جد قاعدة الاقتران ق(س) اذا كان الاقتران يمر بالنقطة (١٠٠) NOOF 7777 VIA
 - ٤) اذا كان ميل المماس يعطى بالعلاقة (٢س ١٠)، جد قاعدة الاقتران ق(س) اذا كان الاقتران يمر بالنقطة (١ ، ٣)
 - ٥) اذا كان ميل المماس عند اي نقطة على منحنى ق(س) يعطى بالعلاقة (س+٢) (٢س-١) وكان ق $(\cdot) = \pi$ ، جد قاعدة الاقتران ق(m)
 - ٦) يتحرك جسم على خط مستقيم بحيث تعطى سرعته ع(ن) = %(i+1) جد المسافة التي يقطعها الجسم بعد مرور ثانيتين من بدء الحركة علما بأن موقعه الابتدائي ف(٠) = ١
 - (3) يتحرك جسيم في خط مستقيم بتسارع ثابت مقداره ت(3) عراث ، جد المسافة التي يقطعها الجسيم بعد مرور ن ثانية ، علما بأن سرعته الابتدائية ع(٠)= ٢ ، و مو ضعه الابتدائية ف(٠)=٨
 - (3) يتحرك جسيم في خط مستقيم بحيث ان تسارعه (3) = (3) ن + (4) ، جد سرعة الجسم بعد ٥ ثواني اذا كانت سرعته الابتدائية ع(٠) = ٢
 - ۹) يتحرك جسيم في خط مستقيم بحيث ان تسارعه ت(ن) = 9 ن + 7 ، اذا علمت أن سرعة الجسم P الابتدائية ع $(\cdot) = 3$ وسرعته بعد ثانية ١٠ م/ث ، جد قيمة الثابت

(۱) جد المساحة المحصورة بين منحنى ق $(m) = m^3 + 7$ ومحور السينات والمستقيمين m = 1 ، m = 3

۲) جد المساحة المحصورة بين منحنى ق $(m) = m^2 - 1$ ومحور السينات والمستقيمين m = 7 ، m = 8

(""") جد المساحة المحصورة بين منحنى ق(""") = """ - 3 ومحور السينات في الفترة ["""]

(3) جد المساحة المحصورة بين منحنى ق(m) = 7 س - (3) ومحور السينات في الفترة (3)

م) جد المساحة المحصورة بين منحنى ق $(m) = m - m^{7}$ ومحور السينات

٦) جد المساحة المحصورة بين منحنى ق(س) = س ٤ - ٤ س ومحور السينات

(v) جد المساحة المحصورة بين منحنى ق(w) = 9 - w ومحور السينات

 $^{(4)}$ جد المساحة المحصورة بين منحنى ق $^{(4)}$ = س $^{(4)}$ - ص $^{(4)}$ ومحور السينات

9) جد المساحة المحصورة بين منحنى ق(m) = m - m ومحور السينات

۱۰) جد المساحة المحصورة بين منحنى ق(m) = m و هر $(m) = \Lambda - m$

۱۱) جد المساحة المحصورة بين منحنى ق(m) = 1 - m و ه $(m) = m^2 - 1$

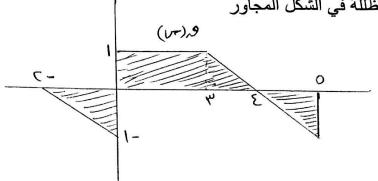
۱۲) جد المساحة المحصورة بين منحنى ق(m) = 7 و هر(m) = 7 س

7 + m = m + 7 و هرس) = m + 7 و هرس) = m + 7

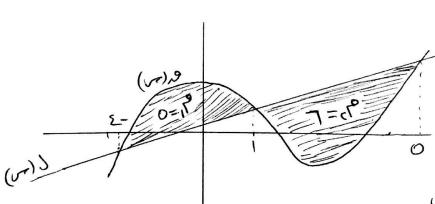
الأستاذ: الجماع بيسي مقالم المستور الم

____ السادس

 $V = 1^0$ (س) مستعینا بالشکل المجاور الذي یمثل منحنی ق $V = 1^0$


المعرف على [-٢ ، ٦]، جد كلا مما يلي :

١- ﴿ قَ (س) دس ٢- ﴿ ٣ قَ (س) دس


٣- ﴿ ق (س) دس ٤- ﴿ ق (س) دس

٥- المساحة الكلية بين ق(س) ومحور السينات في [٢ ، ٦]

ثانيا: جد مساحة المنطقة المظللة في الشكل المجاور

ثالثا: مستعينا بالشكل المجاور:

ر ل(س) - ق(س)) دس (۱) \int_{0}^{1}

٢) كَ (ق(س) – ل(س)) دس

٣) [(٣ق(س) - ٣هـ(س)) دس

٤) (ور (مر) - ه (مر) دس

الاستاذ: الحقيد عبيسي حقيلين مانف 7777، ٥٥٠٠،

CHICA CAMPART I HEAVE

WAOTTYTT EIL

______ وال السابع

- ١) اذا كان الاير اد الحدي لبيع س من العاب الاطفال درس) = ٢٠سل ٣٠ س + ٦ جد الايراد الكلي عند بيع (٤) قطع من الالعاب
 - ٢) اذا كان الايراد الحدي لبيع عدد من منتج معين درس) = ٦س ٤س + ٢ جد الايراد الكلي عند بيع ١٠ قطع
 - ٣) اذا كان اقتران (السعر الطلب) يعطى بالعلاقة ع = ق(س) = ٦٠ ٢س وكان السعر ثابتا حيث ع = ١٠ ، جد فانض المستهلك
 - ٤) اذا كان اقتران (السعر الطلب) يعطى بالعلاقة ع = ق(س) = ٤٠ ٣س جد فائض المستهلك عندما يكون السعر ١٣
 - ٥) اذا كان اقتران (السعر العرض) يعطى بالعلاقة ع = هـ (س) = ٢٠ +٢س وكانت كمية التوازن ١٠ ، جد فانض المنتج عند سعر التوازن
- 7) إذا كان اقتران (السعر الطلب) لمنتج معين معطى بالعلاقة ع = ق(m) = 0.0 3١- كمية التوازن ٢- سعر التوازن
 - ٣- فائض المستهلك عند سعر التوازن ٤- فائض المنتج عند سعر التوازن

١- كمية التوازن ٢- سعر التوازن فأو جد :

٣- فائض المستهلك عند سعر التوازن ٤- فائض المنتج عند سعر التوازن

كل الامنيات بالتوفيق للجميع الاستاذ أحمد موسى مقدادي . ٧٨٥٥٣٦٢٦٦

الاستاذ ؛ احمد موسى مقدادي .VA0077777 .ida

الاستاذ: المعلومية معلوني

19 [(Aly on - silon) 2 en

6+ 20pi - 22/26- =

ではしているかしてはらりとい

マナいにややけいはをこ

UPS (VEW 1 - 3 92/48)) (18)

1 - [(4 + Ep) 2 - 4 Para) 2 -P+ 444 8- 00 + EP ==

CHIEN CHAPLET! HEAT! 12 (4+104) no (=

5+ ==

ms 7+00-50-] []

VIS (4- 1-) (C) =

5+ mr - 5 =

(Etva) (0-v-) [W

ms -1 = UP = 0- U 695 = WS

ups = = ==

= (000 + 0-

= (e(m-0) + A

us mote mole) [IV = [alon x exper sen 6+ nopte ==

vis 0 0 1 19

9+ = 0 =

v75 (c-mo)te + 1+m() [] 5+ (c-20)16 + 1+2c L=

UP = 50 00 5 [[]

ves = ves

<u>ves</u> x se ve E]= ups up 25 = P+ 405=

9+ JON =

V15 (1, (N+NO)) [[]

6=1+100

CHIEN CHARLESTIFICATION P+ 11-

p+ "(v+vro) 5=

UPS = VIS

CHIEN LONG TYTT JOB

bp= vr Ci+ &

CHIEN ON TYTT

(4+40) 00 (EE

υρς = νης υρς ωρ Δρ [=

V25 (0- 2-) E- 2 (00)

いり=0-5-

0-=ve ,=v-

 $\left(\frac{\xi}{\xi}(0-) - \xi(\zeta\zeta)\right) \frac{1}{1} = \frac{\zeta\zeta}{\zeta} \left(\frac{\xi\zeta}{\zeta} + \frac{1}{\zeta}\right) = \frac{\zeta}{\zeta} \left(\frac{\zeta}{\zeta} + \frac{1}$

$$\frac{\sqrt{25}}{\sqrt{20}} = \frac{\sqrt{25}}{\sqrt{25}} = \frac{\sqrt{25}}{\sqrt$$

0=6

vas (4+ 5~) 10 000) [49] 6P= 4+8~ ves = ves =) 0 x 0 قام رعن タナ いりしゃ == = = d (47+2) + i

ves (1- br) br [= 12 (1+12) (1-12) re (= vis (1+vr)vr)= NS (N7 + W)] = 0+ 1/2+ 1/2 =

VS 1 - 2- [E.]

السيؤال الماني

1+vro =(vr) & [] W= 1+0 = (1) A

回の(い)=「な(い)とい =) (1 en +3 en) sen 2+ 5m7 + 2m7 = en(1)= 7+7+ a=V [2=4] の(マリ)=アでナアマイナ NO = 4+1+ 08 = (M) 2

7, (whie + volã) volã? (40) 22 (m/26 m/6 + m/6) (= wite = rela = } (el = + 1) c = マナペナルは=

ENTER MANUELLINE SE SE COLO ? = 25 <u>10 10</u> 1 (10) P+ 12 12 ==

vas (vart br) / [(1+ br)] [170] いや= いずけで - CP5 = C+S (1+cr) = crs (1+500) x valto (1+50) (= や十分は == = + (~~+ ~~) F= =

My (show allow say = [(apo)] = up = vala 1= 1= 075 Ace 60]= 9+ by = 5 + mile =

DE(N) 200= B +30

E(m)=-7=0 @ +90g بالإشتقاق ez (9) = -79 de = -79

St-= (P-1) · = = = = = ا- ا - ه

1=9" = 'P-1

0+(m-50) = cos(co) 5 1 9 بالإشتقاق

ec(20)= 25-4

 $e_{x}(9) = \frac{79}{9^{2}-4}$

PT = PT

W-28 = 1

7-4=1

9=±7

الاستاذ: احمد موسى مقدادي

1+6-8=00000 ما مشقاق العلم فين

> ex(~) = 1 m N- = (1-) B

GALER OOFTTTT LINE قر(م)= (قر(ما) دم ms mx \ =

P+ W= = E(1)= 3+9=7 (P=-7

e(ex)=3 ex2-2

er(4) = 3xP-2 = [34]

3 ge(es) ser = 2 + 4 /3 = 1-3+9/ (P+1) - P+1 =

(0) 3 ex(8x) 2 ex = ex(8x) | 3

 $= e_{\zeta}(y) - e_{\zeta}(y)$

P= -3 - -1 =

NS(8-02) 2 0 1 ₩-v=10 VPS = 575

E-= up 1-= u-

1-= up == v=

[(wp) = wps (wp) =] =

= e((-1) - e((-3))

$$\int_{1}^{2} |c_{n}(\alpha)| < \alpha = \frac{1}{4}$$

 $\frac{3}{3}e(\alpha) \approx -7$ $\frac{3}{3}e(\alpha) \approx +\frac{1}{3}o \approx \alpha = 7$ $\frac{3}{3}e(\alpha) \approx +0(7-3)=7$ $\frac{3}{3}e(\alpha) \approx -3$ $\frac{3}{3}e(\alpha) \approx -3$ $= 7\left(3e(\alpha) \approx -1\right) \approx 2$ $= 7\left(\frac{3}{3}e(\alpha) \approx +\frac{1}{3}e(\alpha) \approx -1\right)$ $= 7\left(\frac{3}{3}e(\alpha) \approx +\frac{1}{3}e(\alpha) \approx -1\right)$ $= 7\left(\frac{3}{3}e(\alpha) \approx +\frac{1}{3}e(\alpha) \approx -1\right)$ $= 7\left(\frac{3}{3}e(\alpha) \approx -\frac{1}{3}e(\alpha) \approx +\frac{1}{3}e(\alpha) \approx -1$ $= 7\left(\frac{3}{3}e(\alpha) \approx -\frac{1}{3}e(\alpha) \approx -1\right)$

アニットリートリー (アー1-) 「 「アニーリー (アー1-) 「 「アニーリー (アー1-) ー 「アニー (アー1) ー 「フニー」

اً ٢٠٠١ قد (١٠٠٠) ومر ~ = op 1-=~ 1=08 r = v E = UP (00) /2 De 10 = = ک کے فکر (عما) دعم = = 6(90)/3 $=\frac{4}{2}\left(e(3)-e(1)\right)=\frac{1}{2}$ · = ~ s (D - (m) 2) }

 $\int_{0}^{1} (e^{2}(N) - Q^{2}) = 0$ $e^{2}(N) - Q^{2}(N) = 0$ $e^{2}(N) - Q^{2}(N) + Q^{2}(N) = 0$ $e^{2}(N) - Q^{2}(N) + Q^{2}(N) = 0$ $e^{2}(N) - Q^{2}(N) + Q^{2}(N) = 0$ $e^{2}(N) - Q^$

$\frac{1}{1-z} = \frac{1}{1-z} = \frac{1}$

$$|0=|r| = (E-|r|)^{p} = 0$$
 $|0=|r| = (E-|r|)^{p} = 0$
 $|0=|r| = (P-|r|)^{p} = 0$
 $|0=|r| = (1+|r|)^{p} = 0$
 $|0=|r| = (1+|r|)^{p} = 0$
 $|0=|r| = (1+|r|)^{p} = 0$

(a) ser 1) ser 1 (2) ser 2) = -1 (2) ser 2) ser 3 (2) ser 4) ser 4 (2) ser 4 (2) ser 4) ser 4 (2) ser 4 (2) ser 4) ser 4 (2) ser 4 (2)

77 = P 17 = 7P

17 = P 17 = 7P

 $0 = \sqrt{1000}$ $0 = \sqrt{1000}$ 0 =

الاستاذ الحمل موسى مقدادي

in
$$\nabla = \mathcal{C}(\omega)$$

in $\nabla = \mathcal{C}(\omega)$

in $\nabla = \mathcal{C$

$$v_{s}(v_{0}) \stackrel{?}{>} = (v_{0}) \stackrel{?}{>} = (v_{0$$

$$S(1)=3$$
 $S=3$
 $S=(1)=3+7+3=1$

قال الفامس

B(CN)= -W + 4

いーページー いー(い)

- 3 = - 7 X Kiegu

[4]= --- NS (M+CM) = 6

:= 1-8~=(m)~ @

9,167

(1- (m)) = --- = P

i= 8-5~= (m) = 8

cr + 1/0 = 10

17- |= 10 P

[= 1P

[= 69 --- PS (E- 200) = 66

1 = 12 €

(3) ex(~1)= 7- v-1= 1

cp + 10 = 0

5=18 --- 12 (1- NO) = 16

1=06-1000 (1-100) =06

0=10

1=(17-1) 1

1= v / 1=v=

1= = p = -- ws (5, -w) 2 = p

(c)= ~2~ = (c)= 0

.>=(E- v=) b->

4 = b (- 5 - 5 - 6 - 5 - 6) 2 = 6

(V) ex(~)= P-~~ = 1:

[47=18] NS (50-9) 2=1

(A) exter)= -2-0-V-=(V=1)

)=(T-v=)(+v-)

7=100 (1-=10

1 = 1 (m - 0 m - 1) ser - - 6

(e,(~)= ~~ ~~ = (~)

1=(5--1)

S=(v+1) (v=-1)v-

CP+1P=P

[= 10 - ~ >>> (= 10)] = 10

== (P ... vss (5- vs) 5 = 6

[= = P]

$$\frac{1}{2}e(\alpha) = \frac{1}{2}e(\alpha) =$$

(m) ex(m)= (m),0 (1) シーハーシー Λ = ω- ς = - ω- ς 2 = 6 (er(cr) - (er(cr)) ser アミート--- ws (n-いつ) == (I) ex(~)= (e(~) 1-6-= 6-1 1 = 00 C = 500 C [N=P---- NS (C-N-D) 2=P (7) ex(m) = (e(m)) ٢-٠٠ = ٣-٦ コーショーしゃん 7=(1- va) va4 C=v=11=v= [=P] -- POS (127- (127)) = P (m) er(er)= (e(er)) ~= 7+v ハニスーワーシャ ~= (c+~)(~~~) C-("= ~-- - vrs (7-10-50) 2"- 2

(a) By ex(ex) ser = 2x x = [7]

P= - CV = 6-4

ف. ل = كر(ع - ٣٠٤) د م - ١٠٥

الاستاذ: احمد موسى مقدادي = (١٥٥

ms (m) = 7.81~ = 2.0

~>>(~)5, - 1.×5'=

(B)= e(w)= e(w)

T.= ~7 ~ (+C. = ~ E - 0.

M= 8 0= m

0xx-ms(m2-0.)2=0.6

ns(ns+5.)2 - 0xx = 2.00

(v) = e(v) = & (V)

(にして) レアドニレアーフ,

(3 = x)

ヤ、x1. - いs(いで-7,)2"= d, ら

VIS V7 7 - 1. x1. = 2.0

7577400 AV,

White Care Mary 1. Jin 18

(c) ((n)) - (m) 2) (Q سالب المسامة (لارم) فوق فرام))

(m) 2 (tren(cr) - 7 a(cr)) 2 cm

= 4 [(حررم) - هرم) حم

= 7 (e((1))-Q((1)) 2c1 + [(e((1))-Q((1))]

(-P-+ 1P) P=

[W-] = (7-0) W =

22 (N) D - (N) D J E

[4-] = cb-x ==

السية ال السابع 8

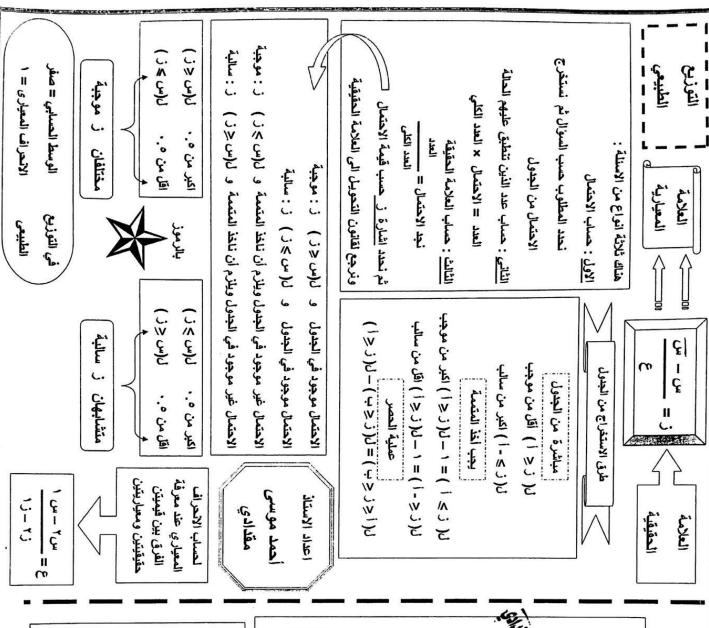
ns(n)5 { =(m)> ()

67+5~10-5-C=

 $(C(3) = \Lambda \Gamma_{i})$

ns(c+v=2-v=1) =(v=)> (

v= C+ 5~ =


[16, =(1,)]

(= 100) = 0.

12 1m - ws (m) no (= 0.0

1.x(0-vs(vg-7.)2 =

[](o)

ملخص وحدة الاحصاء والاحتمالات

مبدأ الْعد = العدد في المحاولة الاولى × العدد في المحاولة الثانية × العدد في المحاولة ... 1 × 1 × (ブー ウ) × (ブー ウ) × ()-ン) × (ご - じ) المضروب

نستطيع الايقاف متى ما اردنا من اجل الاختصار

WOOTHIT LES

!(ט-ט)

C·

لتباديل ل(ن، ر) =

ل (ن،ر)

1(0-0)! c. ._ التوافيق

ن(ن ، ،) = ١ ن(ن،١)=ن

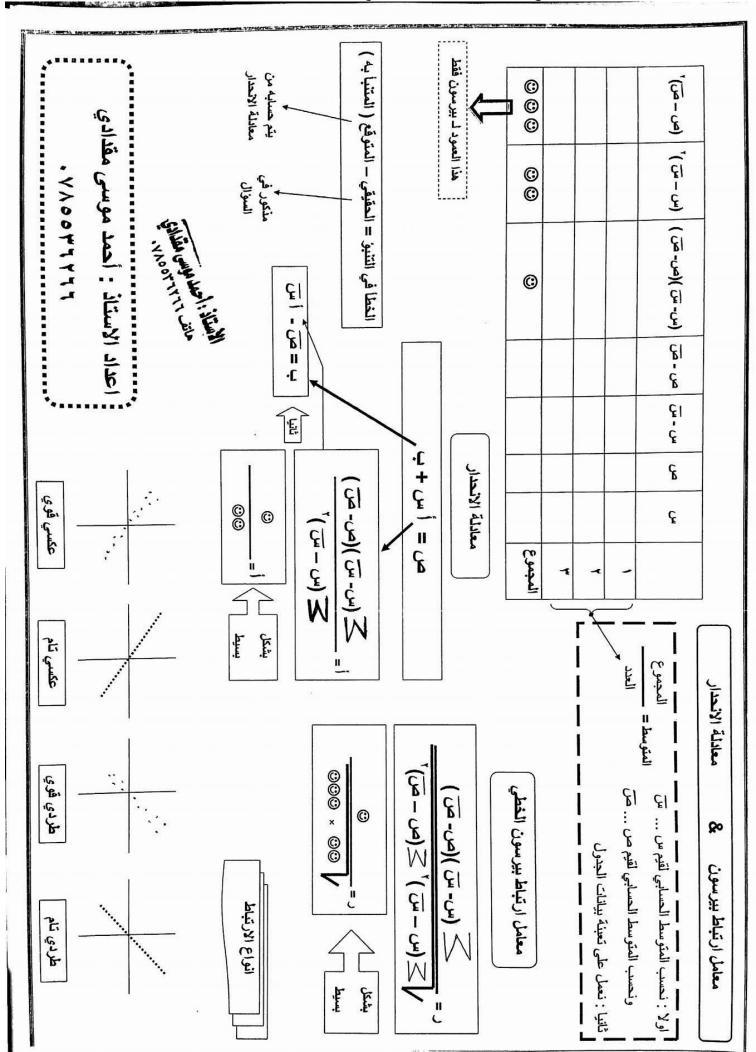
ل(ن،ن) = ن

تذكر:

C. C.

ن-ن

11


المتغير العشواني (س): قيم يمكن مشاهدتها عند اجراء تجربة معينة

عدد عناصر التجرية كاملة (الفضاء العيني) عدد مرات تكرار القيمة الاحتمال ل(س) = -

تنکر أن : ∑ل(س) = ١

 $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}
\end{array}$ $\begin{array}{c}
\dot{0} - \dot{0} \\
\dot{0} - \dot{0}$

الأستاذ : أحمد موسى مقدادي

مراجعة عامة لوحدة الاحصاء والاحتمالات للفروع المشتركة

الاستاذ ، احمار موسی مقدادی مانف ۲۲۲۶ ۲۰۰۰، ۷۸۰۰

أ) اذا كان لديك الارقام { ٥، ٣، ٨، ٦، ٤، ٩

كم عددا مكونا من ثلاثة منازل يمكن تكوينه باستخدام هذه الارقام إذا:

٢- لم يسمح بتكرار الأرقام

١- سمح بتكرار الأرقام

ب) اذا كان لديك الاحرف { أ ، ب ، ج ، د ، هـ } والارقام { ١ ، ٢ ، ٣ ، ٤ ، ٥ } وأردنا تكوين لوحات ، لكل لوحة تحتوي على حرفين ورقمين

ما عدد اللوحات التي يمكن تكوينها:

١- اذا سمح بتكرار الاحرف والارقام

٢- اذا لم يسمح بتكرار الاحرف والارقام

٣- اذا سمح بتكرار الاحرف ولم يسمح بتكرار الارقام

ج) ما عدد طرق جلوس ٥ اشخاص على خمسة مقاعد مرقمة في صف واحد ؟

د) ما عدد تباديل مجموعة مكونة من ٦ عناصر مأخوذة أربعة في كل مرة ؟

هـ) جد ناتج ما يلي:

! " + ! - - " 1/V -L

!" x ! Y -1

1-1m -1 !(1 - 17) -0

!T - !0 - E

المنستاذ: المعلم معلم معلم المعلم المعلم

·/ ((+9)

!(!\tau - !\tau) -\tau

الاستاذ: احمد عوس مقدادي مانف ۲۲۲۲ مرم،۷۸۰

أ) اكتب ما يلي بأبسط صورة:

$$\frac{\int (c+c) \int (1-c)}{\int (1+c)} -r$$

$$\frac{1(\zeta-\dot{\omega})}{1\dot{\omega}} - \zeta \qquad \frac{1(\zeta+\dot{\omega})}{1\dot{\omega}} - 1$$

ب) جد قيمة (ر) في كل مما يلي:

ج) جد قيمة (ن) في كل مما يلي:

٣- ٣ ل(ن، ٢) = ٢

 $! \circ = \frac{(1-i)}{1(s-i)} - \circ$

Y1 = (5) -Y

۲- ل(۱۰، ر) = ۲۷

$$! T = \frac{1(1+i)}{1i} - 1$$

$$\Upsilon = ! \left(\frac{\dot{c}}{\zeta} \right) - 7$$

$$\forall \lambda = \begin{pmatrix} \dot{\omega} \\ 2 \end{pmatrix} - \lambda$$

$$(7) + (7, 0) = 0$$

$$1 - U(0, C) = 0$$

ه) جد قيمة (س) في كل مما يلي:

$$\left(\begin{array}{c} \zeta \\ \gamma + \omega \tau \zeta \end{array} \right) = \left(\begin{array}{c} \zeta \\ \zeta \end{array} \right) - \tau \qquad \left(\begin{array}{c} \omega \\ \gamma \end{array} \right) = \left(\begin{array}{c} \omega \\ \gamma \end{array} \right) - 1$$

ENLER SUMMER TO TELLE STA

السطوال الثالث

أ) مجلس إدارة مكون من ٨ رجال و ٥ سيدات ، نريد تشكيل لجنة رباعية منهم ،

ما عدد الطرق في الحالات الآتية:

١- اذا كان باللجنة رجلين وسيدتين

٢- اذا كان باللجنة ٣ رجال و سيدة

٣- اذا كان باللجنة رجل واحد فقط

٤- اذا كان باللجنة رجل واحد على الاكثر

٥- اذا كان باللجنة رجل واحد على الاقل

٦- اذا كان باللجنة سيدتين على الاقل

٧- اذا كانت اللجنة من الرجال فقط

٨- اذا كان باللجنة ٣ رجال على الاقل

٩- اذا كان رئيس اللجنة من الرجال والباقي من السيدات

• ١ - اذا كان رئيس اللجنة ونائبه من الرجال والباقي من السيدات

١١- اذا كان رئيس اللجنة من الرجال

ب) يتكون الامتحان التنافسي من (١٠) اسئلة ، (٥) منها باللغة العربية و(٥) منها باللغة الانجليزية ، وعلى من يتقدم للامتحان اختيار (٦) اسئلة فقط للاجابة عليها

١- كم طريقة يمكن للمتقدم للامتحان الاجابة على (٤) اسئلة باللغة العربية والباقي باللغة الانجليزية ؟

٢- كم طريقة ممكنة اذا كان هناك (٣) اسئلة باللغة العربية على الاقل والباقي باللغة الانجليزية ؟

ج) مجلس تربوي يجمع مجموعة مكونة من ٧ معلمين و ٣ مشرفين ، ويراد تكوين لجنة رباعية منهم جد عدد طرق تشكيل اللجنة بحيث تتكون من :

۳- (۳) معلمین علی الاکثر

٢- مشرف واحد على الاكثر

١- كلهم معلمين

٥- رئيس اللجنة مشرف

٤- رئيس اللجنة من المشرفين والباقى من المعلمين

الأستاذ: أحمد موسى مقدادي

الاستاذ: أحمد موسى مقدادي

WAOOTTYTT WIS

- أ) اذا دل المتغير العشوائي (س) على عدد الاطفال الذكور من بين ٣ اطفال .
- ٢- اكتب جدول التوزيع الاحتمالي للمتغير س
- ١- اكتب قيم س الممكنة
- ب) اذا كان التوزيع الاحتمالي للمتغير س في تجربة معينة هو (٥٠ ١٠، ١)، (١٥ ٣٠٠) (٢ ١٠) جد قيمة الثابت ب
 - ج) اذا دل المتغير العشوائي س على ظهور الصورة في تجربة القاء ٤ قطع نقد . اكتب جدول التوزيع الاحتمالي للمتغير س
 - جد ١- قيم س الممكنة ٢- جدول التوزيع الاحتمالي للمتغير العشوائي س
 - هـ) اذا كان احتمال أن يصيب شخص هدفا ما في كل طلقة يساوي ٢٠٠ ، فإذا أطلق ٤ طلقات على الهدف فما احتمال:
 - ١- اصابة الهدف ٣ مرات
 - ٢- عدم اصابة الهدف
 - ٣- اصابة الهدف ٣ مرات على الاكثر
 - ٤- اصابة الهدف مرتين على الأكثر
 - و) اذا کان س متغیرا عشائیا ذا حدین بحیث ن = π ، ل $(m \leq 7) = \frac{9}{150}$ ۲) ل (س= ۲) جد قيمة ١) أ
 - ز) يحتوي صندوق على ٦ كرات بيضاء و٤ كرات حمراء ، سحبت من الصندوق ٣ كرات على التوالي مع الارجاع ، اذا دل المتغير العشوائي س على عدد الكرات البيضاء المسحوبة . كون جدول التوزيع الاحتمالي
- ح) اذا كان احتمال ولادة طفل اشقر الشعر في عائلة هو $\frac{1}{5}$ وكان في الاسرة 7 اطفال ، فما احتمال ان نصفهم ذو شعر اشقر

الاستاذ الحمد موسى مقدادي ماتف ٢٢٦٦ ٢٥٥٨٠.

_ؤال الخامس

- أ) اذا كان الوسط الحسابي لعلامات صف هو ٧٠ والانحراف المعياري هو ٦
 - ١- جد العلامة المعيارية للعلامات الاصلية ١) ٧٢ (١
 - ٢- جد العلامات الاصلية للعلامات المعيارية ١،٥ (١ ٢) -٢
 - ب) اذا كان الوسط الحسابي لعلامات طلبة ٦٠ ، والانحراف المعياري هو ٦
 - جد ١) العلامة التي تنحرف انحر افين معيارين فوق الوسط الحسابي .
- ٢) اذا كان الفرق بين علامتي طالبين من الصف نفسه ٩ ، فما الفرق بين العلامتين المعياريتين المناظرتين للعلامتين الاصليتين.
 - ج) جد قيمة (أ) في كل مما يلى:
 - ١- ل(ز ﴿ أ) = ٣٢٩٩.٠ ۲- ل(ز≥أ) = ۳.۰
 - ٤- ل(ز < أ) = ١٧٥٠. ٣- ل(ز≥١) = ٨٨٨٨.٠
- د) تقدم (٥٠٠٠) طالب المتحان ما ، وكان توزيع نتائجهم يتخذ شكل التوزيع الطبيعي المعياري بوسط حسابي (٧٠) وانحراف معياري (٥) ، وكانت علامة النجاح (٦٠)

اختير طالب عشوائيا: ما احتمال ان يكون الطالب من بين الناجمين ؟

٢	1.0	١	٠.٥	صفر	ز
•.9٧٧٢	. 9887	. 1818	.,7910	٠.٥	ل(ز ≤ أ)

هـ) تتخذ أعمار ٣٠٠٠ شخص التوزيع الطبيعي بوسط حسابي ٦٠ وانحراف معياري ١٠ ، اذا اختير شخص عشوائيا فما احتمال أن يكون ممن تتراوح اعمار هم بين ٥٣ و ٦٥

۲)	٠.٧	•.•	صفر	ز
9777	٠.٨٤١٣	٠.٧٥٨٠	7910	٠.٥	ل(ز ≤ أ)

و) اذا كانت علامات ١٠٠٠ طالب تتخذ شكل التوزيع الطبيعي وكان الوسط الحسابي ٦٥ والانحراف المعياري ١٠ ، وكان عدد الناجمين ٩٧٧ ، فما علامة النجاح

۲	1.0	١	٠.٥	صفر	ز
٠.٩٧٧٢	٠.٩٣٣٢	٠.٨٤١٣	.7910	•.0	ل(ز ≤ ا)

الاستاذ: احمد عوسى مقدادي

ز) إذا كانت أطوال ١٠٠٠٠ طالب تتخذ شكل التوزيع الطبيعي بوسط حسابي ٣٠٠ وانحراف معياري ١٠ ، فما عدد الأشخاص الذين أطوالهم بين (٢٨٥ ، ٣١٠)

۲	1.0)	٠.٥	صفر	ز
•.9٧٧٢	٠.٩٣٣٢	٠.٨٤١٣	٠.٦٩١٥	•.0	ل(ز ≼ أ)

ح) اذا كانت اوزان طلبة احدى المدارس تتبع التوزيع الطبيعي بوسط حسابي (٤٥) كغم وانحراف معياري (٤) ، اختير احد الطلبة عشوائيا ، ما احتمال أن يكون من الطلبة الذين تنحصر اوزانهم بين (٤٣) كغم و (٤٩) كغم ؟

۲	1.0	1	٠.٥	صفر	ز
•.9٧٧٢	٠.٩٣٣٢	٠.٨٤١٣	1910	٠.٥	ل(ز ≤ أ)

الاستاذ الحمد موسى مقدادي ______ وال السادس NAO 077777 VIII.

أ) اكمل الجدول الاتي: ثم جد معامل ارتباط بيرسون بين س ، ص

(15-10)	((=, 4)	(س- سَ)(ص – صَ)	ص - ص	<u>_</u> _ w	ص	س
(0=-0=)	(0-0)	(0 0)(0 0)				
					11	١٨
					١٣	14
					14	10
					10	۲.
					19	١.
					موع	المج

ب) احسب معامل ارتباط بيرسون الخطي بين قيم س ، ص

٤	٥	٧	٧	٨	٥	س
٦	٨	٨	٩	1.	٧	ص

ج) جد معامل ارتباط بيرسون بين المتغيرين س ، ص

٨	11	٩	١.	17	w
٩	10	١٤	٩	١٣	ص

د) اذا كان س ، ص متغيرين عدد قيم كل منهما (٦) وكان

$$A = (\varpi - \varpi)' = \cdot \cdot \cdot \times (\varpi - \varpi)' = \cdot \cdot \times \times (\varpi - \varpi) = A$$

فاحسب معامل ارتباط بيرسون الخطي

ه) اذا كان معامل ارتباط بيرسون بين س ، ص (- ٠.٨) ، جد معامل الارتباط الجديد بين

سُ ، صُ في كل مما يلي:

$$1 - w = *$$
 , $w - w = *$ -1

و) يبين الجدول علامات الطلاب الشهرية في مادتي الحاسوب والرياضيات

جد معادلة خط الانحدار للتنبؤ بقيم س اذا علمت قيم ص

٨	11	٩	١.	17	<u>س</u>
٩	10	١٤	٩	١٣	ص

ز) يبين الجدول معدلات (٥) طلاب في احدى الصفوف (ص) وعدد ساعات الدراسة اليومية (س)

V	٨	0	7	h	س
95	97	7,4	ママ	17	ص

١- جد معادلة الانحدار

٢ - قدر معدل طالب درس ٤ ساعات

٣- درس طالب (٧) ساعات وحصل على معدل (٩٠) ، احسب الخطأ في التنبؤ

ح) اذا کان $\overline{w} = \gamma$ ، $\overline{w} = \rho$ ، \overline{z} ($w - \overline{w}$) = $-\infty$) ($w - \overline{w}$) ($w - \overline{w}$) = $-\infty$)

١- جد معادلة خط الانحدار للتنبؤ بقيم ص اذا علمت قيم س

۲ ـ قدر قیمة ص اذا كانت س = ٦

Galas guya Le 1: ilimili VNoor Triticile

ط) في دراسة للعلاقة بين عدد ساعات الدراسة (س) والمعدل التحصيلي (ص)

اذا كانت معادلة الانحدار ص = ٥٣ + ٥س

الاستاذ: إحمد موسى مقدادي هانف ۲۲۲۳مه،

اجب عما يلى:

١- جد أ ، ب

٢- قدر معدل طالب اذا كانت ساعات الدراسة ٥ ساعات

٣- جد الخطأ في التنبؤ لطالب حصل على معدل ٩٥ ودرس ٨ ساعات

نظمتر : المعلم المع المعلم المعلم

كل الامنيات بالتوفيق للجميع الاستاذ أحمد موسى مقدادي . ٧٨٥٥٣٦٢٦٦

المسؤال الثاني:

$$\frac{100}{100} = \frac{100}{100} =$$

$$\frac{\frac{!(c-i)}{!(c-i)(i-i)(i)} = \frac{!(c-i)[c]}{!(i-i)(i)}}{\frac{!}{(i-i)(i)}} = \frac{!(c-i)[c]}{!(c-i)[c]}$$

ب) ۱۵۸۰ = (۲۰۸۱) ا VXVXLXO = VLV

E=1

10、こいかり回

15 = V X d X /

[m=1]

CE=(1,E)J [W]

CE=1XCX4XE

[=] of [=]

9, =(1,7)1 7 [] b(5,0)=,7 [x0=,7]

السؤال الأول:

$$\frac{1}{9} = \frac{1}{1} \times \frac{1}$$

 \triangle ($\stackrel{\circ}{\circ}$) = \wedge 2

CN = (010)0

b(01) = 10

Λ=i) ο7= (1-i)i

 $\frac{1}{1}(\frac{1}{2}) = \frac{\frac{1}{2}(\frac{1}{2})}{\frac{1}{2}(\frac{1}{2})}$

1(s-t) 15

CA= (1-6)6 :

[N=0] 07=(1-00

i=(i) (ξ)+(rro)d= 10 [9]

1/2 + 8 x0 =

E+C, =

(= U) (= ! U

(<(b)) = = (m, u)) [.]

(1-6) yx &=(0-0)(1-6)

T=0 2= C-0

(c(0)) 7 = (400) JII

(1-15)がフ=(1-10)(1-10)が

N=0 7=5-0

 $\frac{(c \cdot \dot{c})b}{\sqrt{c}} = (\dot{c}) = (c \cdot \dot{c}) = (c \cdot \dot{c})$

(1-6)x = x

W=0-1-0= C

(2. VC = ((1)) [] V5= (1-0)0 PX 1 = 2V = 10 = P

C1. = (4,0)) [7] \(\tau \) = \((7 - \cdot) \) (1 - \(\cdot) \) V=U & C1, = 0 x 7 x V

> フ= (では)かくで) 5=(0,0)0 C=(1-010

7 = 1 x c

14 = 1(1+0) [7 = 10 (1+0) 10=0 7=1+0

10= (1-4)

1xcxxxxxx0 = !(5-05(1-0) 1600 151 = i = 17i

cs= /(=)]

15 = 1(E)

N=0 = 2= 0

(i) V

6(0,7)=23 91= (9,0)J N=3 EC=(1-6)6

ا عدد العرق = رحلي
$$\times$$
 سيرتي = $(\frac{4}{2}) \times (\frac{9}{2})$

$$(\hat{\gamma}) \times (\hat{\gamma}) = (\hat{\gamma}) \times (\hat{\gamma})$$

$$= \sqrt{2} \times \sqrt{2} \times \sqrt{2}$$

$$= \sqrt{2} \times \sqrt{2} \times \sqrt{2}$$

$$= \Lambda \times i / + \Lambda \Im \times i / + \Lambda \Im \times 0 + \Lambda \Im \times 0 + \Lambda \Im \times 0 = 0$$

$$= \begin{pmatrix} \Lambda \\ \Psi \end{pmatrix} \times \begin{pmatrix} \Phi \\ \Psi \end{pmatrix} + \begin{pmatrix} \Lambda \\ \Psi \end{pmatrix} \times \begin{pmatrix} \Phi \\ \Psi \end{pmatrix}$$

$$\varphi_0 = (0)$$

$$r_0 = \frac{c_1}{1}$$

$$r_1 = \frac{c_1}{r_0} = \frac{c_1}{1}$$

العف الرابع.

(P) قيم س هي . ، ا ، ب س (ف= ٣) اجتمال (الذكر) = الح الح الدكر) = الح し(・)=(*)(き)(トき)^・・= ナ

$$U(1) = \binom{7}{7} \binom{1}{7} \binom{1}{7} = \frac{7}{7}$$

$$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \times \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} =$$

$$\frac{1}{\sqrt{2}} = \frac{1}{2} \left(\frac{1}{2} \right) \times \frac{1}{4} \left(\frac{1}{2} \right) \left(\frac{1}{4} \right) = \frac{1}{4} \left(\frac{1}{4} \right) \times \frac{1}{4} \left(\frac{1}{4} \right) = \frac{1}{4} \left(\frac{1}{4} \right) \times \frac$$

4	7	1	•	0-
1	<u>V</u>	7	<u>\</u>	(00)

الاستاذ: احمد موسى مقدادي مانف ۲۲۲۳م۸۷۰

(العدد = رجل × ٣ سيرات الاستان احمد موسى مقدادي $= \zeta(\lambda) \times (\lambda) =$ V/00/7777 00/N, V/100/V/17 1 = 1 x 1 =

$$= \frac{((x))}{((x))} + \frac{((x))}{((x)} + \frac{((x))}{((x))} + \frac{((x))}{((x)} + \frac{((x))}{((x))} + \frac{((x))}{((x))} + \frac{((x))}{((x))} + \frac{((x))}{($$

$$0 = \frac{1}{2} \times 0 = \frac{0}{2} = 0 \times 1 = 0$$

$$= (3)(3) + (3)(3) + (3)(3)$$

$$= (1 \times 1) + (3 \times 1) + (3 \times 1)$$

$$= (3 \times 1) + (3 \times 1) + (3 \times 1) + (3 \times 1)$$

$$= (3 \times 1) + (3 \times 1) +$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (-1)^{2} \int$$

$$\frac{1697}{1000} = \frac{1997}{1000} = \frac{1997}{10000} = \frac{1997}{1000} = \frac{1997}{1000} = \frac{1997}{1000} = \frac{1997}{100$$

$$U(1) = \binom{3}{7} \binom{5}{7} \binom{5}{7} = \frac{7034}{11}$$

$$(7)J+(1)J+(4)$$
 = $(7 \ge 10)$

$$\frac{U(4)}{2} = \frac{1 - U(4) \leq 3}{2}$$

$$= 1 - \frac{\Lambda P}{\Lambda P} = \frac{\sqrt{2}}{\sqrt{2}}$$

1=(12)13 (4 1= リャッペナット ハーウ

== P E= U (2 51416111=0

$$\frac{17}{l} = \frac{(4)}{l} \left(\frac{2}{l}\right) \left(\frac{2}{l}\right) = (1)$$

$$\frac{\xi}{17} = \binom{5}{5} \binom{1}{5} \binom{5}{7} = \binom{1}{5}$$

$$\zeta(2) = (\frac{1}{2})^2 (\frac{1}{2})^2 (\frac{1}{2})^2 = (\frac{1}{2})^2$$

(3) = (3) (3) = (8)

٤	4	<	١	•	1
17	<u>لا</u>	7 5	يالى	4	(h-)

= P 7=0 (s

Wc (11 · ◆ いて rio □

$$U(1) = {\binom{3}{1}} {\binom{5}{1}} {\binom{5}{1}} = \frac{3A\psi}{3A\psi}$$

$$U(7) = \binom{7}{3} \binom{7}{7}^3 \times \binom{7}{1}^3 = \binom{7}{1}^3$$

$$U(4) = \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) = (4)$$

40	, <	1	•	0
^	97	4 45	210	11.3
١	1	١	1	(00)

10	سالغا	عجال ا	i
$\gamma = 2$	V B	س = .	(8
	<u>w</u> w	= /	

V9=₩ € V.-₩=9

$$\frac{1}{\sqrt{1-n}} = c - \bigcirc$$

7 = 8 7, = 000 (4

10 KI = 1 x C + 7 x E = 7V س + انعرافن

5 10 9 = WD @

$$\frac{\varphi}{\zeta} = \frac{q}{7} = 10$$
 $\frac{q}{10} = 7$

ر افل من من ., W (99 = (P≥;)) [] نبعث في الجرول عن ١- ٩٩٦٩٠. (.. VF.,) · 28 €

الاجتمال اقل من ٥٠. The PE Ober Prino

(= P) = P = P =

(で)(で)(で)(で)(で)(で))(で)

 $= {}^{4} \times \frac{9}{2} \times \frac{2}{9}$

 $=\frac{30}{20}$

ان 2 الله الله

س: عدد الكرات البيضاء [9=]

Merele. 100 per

 $U(1) = \binom{9}{7} \binom{7}{7} \binom{9}{7} = \binom{37}{7}$

 $b(1) = {\binom{5}{7}} {\binom{7}{2}} {\binom{5}{7}} = \frac{7}{12}$

 $\mathcal{U}(3) = \frac{1}{2} \left(\frac{2}{2} \right)^2 \left(\frac{2}{2} \right) = \frac{1}{2} \frac{2}{2}$

 $l(w) = \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} = \frac{1}{2}$

۴	7)	•	0-
<17	546	SAA	35	100
1	lies	1	1	(00)

= P 7=0 (2

 $\frac{1}{(S_{1})} \left(\frac{1}{E}\right) \left(\frac{1}{E}\right) \left(\frac{1}{E}\right) = (E_{2} - 1) = (E_{2} - 1) = (E_{2} - 1)$ $\frac{CV}{CV} \times \frac{1}{15} \times C' =$

الاست ، - - الاست المعلقة الم

(2 = 1 = 1)0

10-= 71-70= 0-m=70)

(10-5 / 5 · 10-)

= P(15-01) - P(15-N1) =

=1-b(isov)-(1-b(isun)

., NON. + 1- ,7910 -X=

.,770 =

و) عدر الناجدين = ٧٧١

اجتمال الناجعين = العدد = <u>العدد اللي</u>

Josephio I gov =

ناجع أي ل (زيم) = 7

الاهقال أكبر من ٥٠٠ Syl- P # 0 le la To

c-=b

<u>√0-m</u> = c-

ノロールニアー

EO = W

D ((1≥9)=サ、一色(1000)

,N = , 9-1 is ani

704 E

ز ١٤ ١ الاعتمال أقل من مر ENROP & Cládiso

アーションのい。アーランので

willaref # 22/1 ر≥ع الاجتمال أكرمن 0ر. ENL-P # 0 la line

3 b(i≤9) = ryVr. ...

من الجدول ٥٤٠٠

ر ج م الاجتمال عمر من ه. مجنتلفان ع م موجية

(9 = 03V)

7.= w 3=0 w=. r

b(1 ≥ m) > (= m-m = 1-1/2)

L(1≥-7) = L(1≤7) orlage = 7VVP ..

الاستاذ: احمد موسى مقدادي

55362	.66	قدادي	موسی ه	تاد احمد	الاسنا	ابع	لرا
			زجی ۱	الساد	عةال		1
	T	- 1	1	-e, i			10
كربيح	نزبيع	جرب ج	10-08	17-0-	ve	i	18
17	3	^-	£-	7		w	
٤	1	C-	<u> </u>	<u> </u>	11	11	
٤	1	C -		'	140	1/1	
-	17		7	1-	11	10	
17	47	· c { -	•	٤	10	c.	
٤.			٤	7-	19	<i>j.</i>	
	οΛ	۳٦-				1//	
١٦-	- ^-	= 1.+0.	+10.	+17 +	14	-	-
	0	<u> </u>	0	•		= (5	μ
10	= 7	8=194	-10+1	N + 16-	+11	۔ ئ =	ē
				0			
		61-	=	5.XO	_ :	= ,	
		Ch L.	\	E.X0			
				رول	ن الج	انکو	(د
	Λ =	= = =	ÚP.	7 =	7	= \	<u>ش</u>
			١, =	(vē_ve)	- تتن) (· '#') =	3
				16=0			
			1	· = °(c			
							>
				10.	- =	ノ	
				10.1	<i>(</i>		
				مرول	ી/હ™	ا نکو	2
	١, -	1+1	149 4	rl, +	19 _) نڌ، د	
			C)			
	14	= 9+	10+18	+9+	-14	<u> </u>	è
		9	-(G-	o -up)(v	7-17	-) <	>
		14.71		= (/2			
	اه. 🖊	177 Zilo	₩ C -	- (ve	- 1.0	/ S	
W.	ON CHIEF	1111					
1 30	.4K02			9	=)	

=/

نعد الاعتمال (4, 2 > > >) 1 = 4"-41" = 100-100 = 61"> GALER 1-17-17-15-16 (1 2 / 21/0-) J (1,0-2/)J- (12/)J= = ((1-6(1501)) = 413Ne - 1+ 244 P. = OBVVe. العدد = الاجتمال x العدد الكلى = 03V Ve, X / = 03VV

(43 = 43-03 = -01. 1 = \frac{63-63}{1} = \frac{63-63}{1} = 1 (1 ≥ i ≥ vo-) J (10-21)0- (121)0= ((103)) - (12)) = = 713Ne. - 1+ 01PT. - NOYO e.

0x0-15= 57-0x0 OV =

CHIEF OV + UP 0 = UP (1

5= W (c

VV = 0V+ EX 0 = 60

٣) الفطأ = الحقيمي _ للتوقع

V= س عند عق ما الم

QU= 0XV +V0 = 7P

Ned = .9- 79 = -7

(= 1: = ((E-10) ((E-10)) = P []

FP - F = 4 = P- 7XV =-0

ひナグアーカ

0-4-1=4

V=0-7×1-0=V

VO+04=40 (b

04=0 0= BU

VN = 0x0+08= UP 0= Vr loxie [5]

اللهطأ = الحقيقي - الموقع

التوقع عنر س= ۸ من= ۲۵+۵۲ عند علام علام علام علام علام علام عند ساء م

16d = 09-79=7

NN0047577

الاستاذ الحمد موسى مقدادي

(ve-ve)(ve-ve)3 =, (s (Q-ve) 3 (n-v)3/ $\frac{1}{6} = \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$

المتشابهان في الإعارة ر= -٨٠٠ الله معتملان في الاعارة ر= ٨ر، ·/ > = 0 0, 12 y 1 & 0 (4) har (4)

> 1= 1+11+9+1.+15 = v (9 15 = 9+10+18+9+14 = 00 9=(0-4)(0-10)3 1,= (15-17)3

enter ly ight of the 9 = (ve-ve)(vs-ve) 3 = P

> FP-F= U 4 = 1.x 4-16=

0= 1+V+0+C+ 4 = 12 (

VL = d C+dr + VL + 1/1+/L = 00

14, = (ie-ve)(i-v-) >

77= (viz. vr) 3

0 = 1 = P