

# الإبداع فجه الرياضيات

الصف الثاني عشر الفرع العلمي الفصل الدراسي الأوّل الموحدة الأولحه الموحدة الم

التفاضل

" مكثف

إعداد

أ.زكي غنيور 0788557325

ً أ. ابرا هيم العقربا وي 0790082328



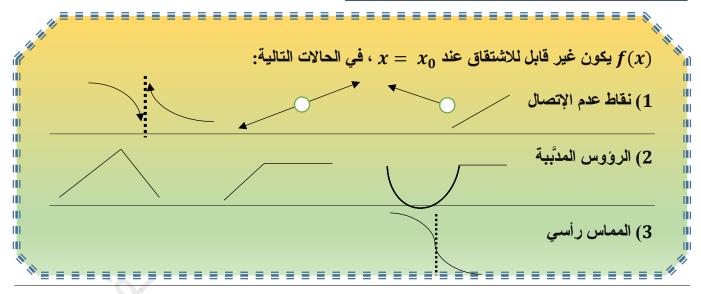
توجيعي علمي { منهاج جدير }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

Yol

### الإتصال و الإشتقاق

#### العلاقة بين الاتصال وقابلية الإشتقاق:


#### الإتصال شرط ضروري لكنه غير كاف لوجود المشتقة

| النتيجة                                 | الحالة                                  | رقم |
|-----------------------------------------|-----------------------------------------|-----|
| x=a متصلا عند $f(x)$                    | x=a اذا كان $f(x)$ قابلا للإشتقاق عندما | 1   |
| x=a غير قابل للإشتقاق عندما $f(x)$      | x=a اذا کان $f(x)$ غیر متصل عندما       | 2   |
| x=a قد يكون $f(x)$ قابلا للاشتقاق عندما | x=a اذا کان $f(x)$ متصل عندما           | 3   |
| x=a و قد يكون غير قابلا للاشتقاق عندما  |                                         |     |

#### تعريف المشتقة:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

#### العلاقة بين الاتصال وقابلية الإشتقاق من خلال الرسم:



#### قابلية الإشتقاق من خلال الجبر:

يكون غير قابل للاشتقاق عند 
$$x=x_0$$
 ، في الحالات التالية:  $f(x)$  غير متصل  $f'_+(x_0) 
eq f'_-(x_0)$  (1

..........

*(4)* 

توجيهي علمي { व्यंक्षीई संप्य }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

### قواعد الإشتماق

ثانیا ً

#### قواعد الإشتقاق:

| " almlu " ele ulinj                   |             | الإشتقاق                 | الإقتراه        | رق    |
|---------------------------------------|-------------|--------------------------|-----------------|-------|
| الإشتقاق                              | الإقتراه    | <i>y'</i> =              | y =             |       |
|                                       |             | 0                        | $a$ , $a \in R$ | 1     |
| $n \cdot f(x)^{n-1} \cdot f'(x)$      | $(f(x))^n$  | $n \cdot x^{n-1}$        | $x^n$           | ۲     |
| $e^{f(x)}.f'(x)$                      | $e^{f(x)}$  | $e^x$                    | $e^{x}$         | ٣     |
| $ln \ a \times a^{f(x)} \times f'(x)$ | $a^{f(x)}$  | $ln(a) \times a^x$       | $a^x$           | ٤     |
| f'(x)                                 | ln(f(x))    | 1                        | ln(x)           | ٥     |
| $\overline{f(x)}$                     |             | $\frac{\overline{x}}{1}$ |                 |       |
| (g'(x))                               | $log_ag(x)$ | 1                        | $log_a x$       | ٦     |
| $\overline{g(x)(\ln a)}$              |             | x (ln a)                 |                 |       |
| cos(f(x)).f'(x)                       | sin(f(x))   | cos(x)                   | sin x           | ٦     |
| -sin(f(x)).f'(x)                      | cos(f(x))   | sin(x)                   | cos(x)          | ٧     |
| $sec^{2}(f(x)) \times f'(x)$          | tan(f(x))   | sec <sup>2</sup> x       | tan(x)          | ٨     |
| $-csc^{2}(f(x)) \times f'(x)$         | cot(f(x))   | $-csc^2 x$               | cot(x)          | ٩     |
| $sec(f(x)) tan(f(x)) \times f'(x)$    | sec(f(x))   | $\sec x \tan x$          | sec x           | ١.    |
| $-csc(f(x))cot(f(x)) \times f'(x)$    | csc(f(x))   | $-\csc x \cot x$         | csc x           | 11    |
|                                       |             | اق:                      | القواعد الإشتق  | حالات |
| الاشتقاق                              |             | قت ان                    | N1              | ر قم  |

#### حالات لقواعد الإشتقاق:

| الإشتقاق                                     | الإقتران                     | رقم |
|----------------------------------------------|------------------------------|-----|
| y' =                                         | y =                          |     |
| $f'(x) \pm g'(x)$                            | $f(x) \pm g(x)$              | 1   |
| k * f'(x)                                    | $k * f(x)$ , $k \in R$       | ۲   |
| f(x)g'(x) + g(x)f'(x)                        | f(x) * g(x)                  | ٣   |
| g(x)f'(x) - f(x)g'(x)                        | f(x)                         | ٤   |
| $(g(x))^2$                                   | $\overline{g(x)}$            |     |
| $-\mathbf{k} \times \mathbf{f}'(\mathbf{x})$ | $\frac{k}{2}$ , $k \in R$    | ٥   |
| $\overline{(f(x))^2}$                        | $\frac{k}{f(x)}$ , $k \in R$ |     |
| $\frac{f'(x)}{k}$                            | $\frac{f(x)}{k} , k \in R$   | ٦   |
| f'(x)                                        | [F(x)]                       | ٧   |
| $\overline{2\sqrt{f(x)}}$                    | $\sqrt{f(x)}$                |     |

Eluyl في الرياضيات

### <u> الوحدة الأولى - التفاضل -</u>

توجيعي علمي 

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

#### المشتقّات العليا:

$$f'''(x)=rac{d^3y}{dx^3}$$
: المشتقة الأولى:  $f'(x)=rac{d^2y}{dx^2}$  ، المشتقة الثانثة:  $f'(x)=rac{dy}{dx}$  ، المشتقة الأولى:  $f^n(x)=rac{d^ny}{dx^n}$  : المشتقة الثانثة: المشتقة على النحو نفسه : المشتقة (n)

#### الإستعمال المتكرر لقاعدة السلسلة

أحيانا تستخدم قاعدة السلسلة لأكثر من مرَّة لإيجاد مشتقة بعض الإقترانات.

$$rac{dy}{dt} = rac{dy}{du} imes rac{du}{dt} = rac{dy}{du} imes rac{du}{dx} imes rac{dx}{dt}$$
 فإن  $y = f(u)$  ,  $u = g(x)$  ,  $x = h(t)$  الذا كان :

#### مشتقة المعادلات الوسيطية

#### مصطلحات مهمَّة:

- x = h(t), y = g(t): C معادلة وسيطية للمنحنى (١
- y المتغيّر الوسيط (t): لكل قيمة له تحدد قيمة المتغير  $\chi$  وقيمة أخرى للمتغيّر  $\chi$
- مجال الوسيط  $t \leq t \leq t$ : فترة تحدد قِيم المتغيّر t ، لأنّ النقاط على المنحنى قد تتكرر بعد هذه الفترة. ( $t_0 \leq t \leq t_1$ ) : فإنَّ ، x=h(t),y=g(t): اذا كان p=t ، فإن عند للإشتقاق عند t ، فإن t ، فإن t

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \frac{dx}{dt} \neq 0$$

#### اشتقاق ضمني

#### اشتقاق ضمنى مباشر

- خطوات الإشتقاق الضمني: ١) نشتق طرفي المعادلة بالنسبة إلى x ، مراعياً استعمال قاعدة السلسلة عند اشتقاق حدود تتضمَّن المتغيّر y.
  - ٢) ننقل جميع الحدود التي تحوي  $\frac{dy}{dx}$  إلى طرف المعادلة الأيسر، والحدود الأخرى إلى طرف المعادلة الأيمن.
    - ") نخرج  $\frac{dy}{dx}$  عاملاً مشتركاً من حدود طرف المعادلة الأيسر.
      - .  $\frac{dy}{dx}$  إنحل المعادلة بالنسبة إلى عادلة

#### الاشتقاق اللوغاريتمي

عند اشتقاق اقترانات معقّدة تتضمن ضرباً أو قسمة أو قوَّى ، عندها يفضّل استعمال اللو غاريتمات لتبسيط هذه الإقترانات أولا ثم إيجاد مشتقاتها.

#### خطوات الإشتقاق:

- y = f(x) نَاخَذُ اللَّو غاريتم لطرفي المعادلة: (١
- ٢) نستعمل قوانين اللوغاريتمات لكتابة المقادير بالصورة المطولة.
  - $\chi$ ) نشتق المعادلة ضمنيًا بالنسبة إلى  $\chi$
  - . y نحل المعادلة الناتجة لـ  $\frac{dy}{dx}$  ، ثم نضع f(x) بدلاً من

توجيھي علمي {منھاح جديد }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

ثانیا ً

### التطبيقات المندسية

|                                                                                                                                                                 | MA                                                                             | اأة                                                                                                                                                                                                                                      |                                                                                                                                                               | الجملة                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| y=ax+b معادلة المستقيم $m=a$                                                                                                                                    | الزاوية المحصورة بين $x^+$ المماس ومحور $m = tan(	heta)$ , $0 \le 	heta < 180$ | احداثیّات نقطتین $m = rac{\Delta y}{\Delta x} = rac{y_2 - y_1}{x_2 - x_1}$                                                                                                                                                             | $f(x)$ منحنى الإقتران $(x_1,y_1)$ عند النقطة $m=f'(x_1)$                                                                                                      | ميل المماس                       |
| у                                                                                                                                                               | $y - y_1 = m (x - x_1)$ $- y_1 = -\frac{1}{m} (x - x_1)$                       |                                                                                                                                                                                                                                          | المماس<br>العامودي على المماس                                                                                                                                 | معادلة                           |
| وزاویة میله = 0                                                                                                                                                 | $-y=y_1$ ، ومعادلته $y=y_1$                                                    | ىتقيم أفقي // المحور $\chi$ يساو                                                                                                                                                                                                         | ميل المحور $\chi$ يساوي $0$ وم بشكل عام ميل أي مسميل المحور $y$ = غير معروف                                                                                   | مي <u>ل</u><br>المستقيمات        |
| g(x)                                                                                                                                                            |                                                                                | $x_1 = 0 \ or f(0)$                                                                                                                                                                                                                      | 0  ightarrow a مع محور السينات $a$ $b$ $a$ مع محور الصادات $a$ $b$ $a$ $b$ مع اقتران $a$                                                                      | لإجهد نقطة تقاطع $f(x)$ اقتران   |
|                                                                                                                                                                 | $x_1$ ) = $eror \leftarrow: x = 1$<br>$f'(x_1) = a \leftarrow: "y$             | $y_1$ .حور السينات، ومعادلته: $x_1$ حور الصادات، ومعادلته: $y=ax+b$ ستقيم معلوم $y=ax+b$ ستقيم معلوم " $y=ax+b$                                                                                                                          | ا اذا كان المماس موازي لم $(c)$ اذا كان المماس موازي لم                                                                                                       | التوازي والتعامد:                |
| $g(x)$ مع $f(x)$ اذا تقاطع $f(x)$ مع $f(x)$ وكان مماس $f(x)$ عند النقطة $f(a) = g(a) = b$ $f'(a) \times g'(a) = -1$ عمل نقطة $g(a)$ نقطة $f(a)$ عمل نقطة $f(a)$ | اذا كان $f(x)$ يمس محور $x = a$ عند $f(a) = 0$ $f'(a) = 0$                     | اذا كان المماس المشترك $g(a) = g'(a) = 0$ المماس المشترك $g(a) = 0$ المماس مماس مماس $g(a)$ مماس مماس $g(a)$ مماس مماس مماترك $g(a)$ مماس مماس مماس $g(a)$ مماس مماس مماس $g(a)$ مماس مماس $g(a)$ مماس مماس مماس مماس مماس مماس مماس مما | f(a) = g(a) = b $f'(a) = g'(a)$ $g(a)$ $f(a)$ $g(a)$ $f(a)$ $g(a)$ $g(a)$ $f(a)$                                                                              | المماسات المشتركة والمتقاطعة:    |
| $f(x)$ $(x_1, y_1)$ $(a, b)$                                                                                                                                    | نى (f(x))<br>ة المنحنى الأصلية ".                                              | رسم منها مماس للمنحنى عند<br>قطة خارجية ( لاتقع على مند<br>ندها:<br>$(x_1, y_1)$ .                                                                                                                                                       | a) اذا كانت النقطة (a,b) فا ورسم منها مماس للمنحنى ع ورسم منها مماس للمنحنى ع 1) نفرض نقطة التماس هي 2) نجد ميل المماس بطريقتير (3) نحل المعادلة الناتجة لإيج | المماس مرسون من<br>تقطة خار جية: |

توجيعي علمي { منهاج جديد }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

### ثالثاً "

### التطبيقات الفيزيائية

#### أولاً:حركة الجسم في خط مستقيم:

| $v(t)=s^{\prime}(t)$ الجسم الجسم                                           | s(t) موقع الجسم $s(t)$                                                  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| السرعة المتجهة:                                                            | موقع الجسم : بالنسبة لنقطة الأصل ممكن أن تكون قيمة $(+,-,0)$            |
| هو معدل تغير $s(t)$ بالنسبة للزمن $v(t)>0$ : الجسم يتحرك في الاتجاه الموجب | بنتشبه تنعطه المصل ممدل المحدد مقدارا واتجاها "                         |
| الجسم يتحرك في الاتجاه السالب $v(t) < 0$                                   | المسافة :                                                               |
| الجسم يكون في حالة السكون $v(t)=0$ الجسم يكون أي حالة السكون $ v(t) $      | كمية قياسية تحدد بعد الجسم عن نقطة معينة وهي<br>كمية قياسية موجبة دائما |
| الْقُيمَة المُطلقة للسرعة المتجهة، وهي كمية قياسية لا                      | *** * *                                                                 |
| تحدد اتجاه الحركة                                                          |                                                                         |
| a(t) = v'(t) = s                                                           | s''(t) الجسم: $s''(t)$                                                  |
| جهة $v(t)$ بالنسبة للزمن                                                   | هو معدل تغير السرعة المت                                                |

#### ملاحظات:

- $v(t)=0 \leftarrow$ لإيجاد اللحظة ( الزمن ) في حال السكون اللحظي (1)
  - $s(0) \leftarrow$ لإيجاد الموقع الإبتدائي (2
- s(t)=s(0)لمعرفة متى يعود الجسيم إلى موقعه الإبتدائي
  - v(0) لإيجاد السرعة الإبتدائية + (4
- 5) لمعرفة في أي اتجاه تكون حركة الجسيم ← حسب اشارة السرعة المتجهة: ( + لليمين / لليسار )
  - ثانياً: الحركة التوافقية البسيطة:

تستعمل الإقترانات الجيبية لنمذجة الحركة التوافقية البسيطة:

 $(s(t) = a \sin \omega t \ or \ s(t) = a \cos \omega t)$ 

|                                                       | وصف حركة الجسم                                                                 |                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| وصف التساري                                           | وصف السرعة                                                                     | وصف الموقع                                                                                                                                                                                                                                      |
| a(t) = 0: عند موقع الإتزان                            | أقصى سرعة تكون :<br>الما — الراء (عادا                                         | s= <b>0</b> : عند موقع الإتزان                                                                                                                                                                                                                  |
| معتصد العوى للمدوي لعمرا عند أسفل موقع الإتزان: محصلة | u                                                                              | s=a: عند أسفل موقع الإتزان                                                                                                                                                                                                                      |
| القوى تسحب الجسم إلى الأعلي                           |                                                                                |                                                                                                                                                                                                                                                 |
| . •                                                   | C                                                                              | s=-a: عند أعلى موقع الإتزان                                                                                                                                                                                                                     |
|                                                       | a(t) = 0: عند موقع الإتزان محصلة القوى تساوي صفراً عند أسفل موقع الإتزان محصلة | وصف السرق $a(t) = 0$ عند موقع الإتزان $a(t) = 0$ عند موقع الإتزان $v(t) =  a $ وذلك عند موقع الإتزان $v(t) =  a $ القوى تسحب الجسم إلى الأعلى عند أعلى موقع الإتزان $v(t) =  a $ القوى تسحب الجسم إلى الأعلى عند أعلى موقع الإتزان $v(t) =  a $ |

Elyyl في الرياضيات

### الوحدة الأولى - التفاضل -

توجيعي علمي 

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

### امتحان درس الاشتقاق

#### أجب عن الأسئلة التالية جميعها وعددها (28):

f(x) إحدى العبارات التالية تمثّل الإشتقاق عند x=5 للإقتران (1



ا زکی غنیم 
$$a$$
  $\lim_{h\to 0} \frac{f'(5+h)-f'(5)}{h}$ 

b) 
$$\lim_{h\to 0} \frac{f(5+h)-f(5)}{h}$$

c) 
$$\lim_{h\to 0} \frac{f(5) - f(5+h)}{h}$$

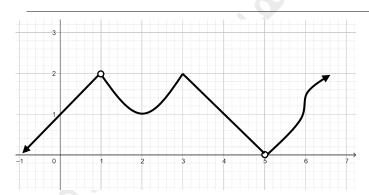
$$d) \lim_{h\to 0} \frac{f(5-h)-f(5)}{h}$$

 $\frac{1}{c} \lim_{h o 0} \frac{f(5) - f(5+h)}{h}$   $\frac{1}{c} \lim_{h o 0} \frac{f(5) - f(5+h)}{h}$   $\frac{1}{c} \lim_{h o 0} \frac{f(5-h) - f(5)}{h}$  نيكن:  $f(x) \begin{cases} x^2, x \leq 1 \\ 2x, x > 1 \end{cases}$  نيكن:  $f(x) \begin{cases} x^2 & 0 \end{cases}$ 

- *a*) 1
- **b**) 2



يكن: 
$$f'(3): f(x)$$
 فإن  $f(x)$  تساوي:  $f(x)$  تساوي: (3)


- **b**) 4
- c) 0
- $oldsymbol{d}$ غير موجودة (

بان عندها  $f(x)=\sqrt{x^2-4x}$  ؛ فإن قيم  $f(x)=\sqrt{x^2-4x}$  غير قابل للإثنتقاق:  $c) \{4\}$  d)

 $a)\{2\}$ 

a) 1

- (b) {0, 4}



من خلال رسم f(x)، أجب عن الأسئلة

- قیم x التي يكون عندها f(x) غير قابل (5  $f'_+(x) \neq f'_-(x)$  هي الإشتقاق لأن
- a) {1, 3, 5}

**b**) {3}

c) {6}

 $d)\{3,6\}$ 

نيم  $\chi$  التي يكون ندها f(x) غير قابل للإثنتقاق لأن يحوي مماساً رأسيا هي :

أ. زكى غنيم أ.ابراهيم العقرباوي

- $a) \{1,3,5\}$   $b) \{3\}$   $c) \{6\}$   $d) \{3,6\}$

a) 7

وي. g'(4) ، فإنَّ  $g(x)=x^2-3f(x)$  يساوي: g'(4)

b) 19

- c) 5
- d) 11

توجيعي علمي { ais | | { ais | | { ais | | { ais | { ais | { ais |

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

8) قيم x التي يكون عندها المماس أفقياً:

- $a) \{1, 5\}$
- **b**) {2}
- c) {3}
- **d**) {6}

a)  $3e^2$ 

- f'(3) نَانَ  $f(x) = e^x + e^3$  نَانَ  $f(x) = e^x + e^3$  نَسَاوِي: (9  $e^6$  c  $e^3$  d d  $e^3$

أ. زكى غنيم

ي: نان  $f'(rac{3\pi}{2})$  ، فإن  $f(x)=4 \ cos(x)-x$  تساوي:



a) - 5

- **b**) 3

 $rac{3\pi}{2} \qquad \qquad d)-2$  الذا كان  $x^e: f(x) = f'(e)$  ، فإن f'(e) تساوي:

- *a*)  $e^{e-1}$

 $x=rac{e}{e}$  عند f(x)=x-ln(x) أي المعادلات الآتية تمثّل معادلة المماس لمنحنى الإقتران  $x=rac{e}{x}$  عندم أ. زكي غنيم

a)  $y = x - \frac{x}{a}$ 

b) y = x e + x

c) y = x e

d) y = x - e

13) أي المعادلات الآتية تمثّل معادلة العمودي على المماس لمنحنى الإقتران:

 $: x = \frac{\pi}{2}$  عند  $f(x) = \sin(x) - \cos(x)$ 

a)  $y = x - \frac{\pi}{2} + 1$  b)  $y = \frac{\pi}{2} - x + 1$ 

 $(c) \ \ y = rac{\pi}{2} - x - 1$   $(c) \ \ y = -rac{2}{\pi}x + rac{2}{\pi} + 1$   $(d) \ \ y = -rac{2}{\pi}x + rac{2}{\pi} + 1$  عماساً أفقياً: (14) قيم  $(x) = 15x - 3 \ e^x$  عندها :

- a) x = 5
- **b**) x = ln(5)
- c) x = ln(15) d) x = ln(3)

x=0 اذا كان: x=0 وكان مماس المنحنى عند x=0 يمر بالنقطة (2,6) (15 جد قيمة الثابت k

أ. زكى غنيم

a) 3

**b**) 6

c) 1

**d**) 2

اذا كان:  $f(x) = \ln\left(rac{1}{x}
ight)$  ، فإنَّ مقطع العمودي على المماس لمنحنى الإقتران (16 عند e عند x عند x = e عند عند عند عند عند عند عند عند

أ. زكى غنيم

 $a)(\frac{1}{2}+e,0)$ 

b)  $\left(0,\frac{1}{a}+e\right)$ 

 $(-1-e^2,0)$ 

 $(0,-1-e^2)$ 

توجيعي علمي { ais | s + x y |

فرص اكتشاف ـ سرعة بديهة ـ انشاء علاقة ـ تغيير حياة

$$x=\pi$$
 هو يان مقطع المماس مع محور  $f(x)=4$  هو  $f(x)=1$ 

$$a) (0,4\pi)$$

$$b) (0,-4\pi)$$
  $c) (0,\pi)$ 

$$c)$$
  $(0,\pi)$ 

$$d) (0,\pi)$$

أ. زكى غنيم

أ.ابراهيم العقرباوي

a) 
$$y = 6x + 2$$

**b**) 
$$y = 2 - 6x$$

c) 
$$2x - 2$$

$$\vec{d}$$
)  $\vec{v} = 2 - 2x$ 

إذا كان 
$$x \leq 2$$
 على الترتيب اللتين  $f(x) = egin{cases} ax+b & x \leq 2 \ x^2 & x > 2 \end{cases}$  على الترتيب اللتين (19

اذا كان $x = e^x - 8$  ، فإنَّ معادلة المماس عند نقطة تقاطع المنحنى (18

: قابلاً للإشتقاق عند جميع قيم  $\chi$  الحقيقية

$$a) \{4, -4\}$$

$$(b) \{-4, 4\}$$

$$b) \{-4,4\}$$
  $c) \{4,8\}$   $d) \{-4,0\}$ 

مع محور y هو:

أ. زكى غنيم

#### 20) إحدى الإقترانات التالية لها مماساً أفقياً:



$$a) f(x) = \sin(x) + 5x$$

$$c) f(x) = 2 \cos(x) - x$$

$$\begin{array}{ccc} (a) & b) f(x) = e^{x} + x \\ (d) f(x) = x^{3} + x^{2} + 5x \end{array}$$

يمثّل الإقتران: $(t) = t^3 - 3t^2 + 5$  موقع جسم يتحرك في مسار مستقيم ، حيث s الموقع بالأمتار الزمن بالثواني ، أجب عن الأسئلة (21-23):

21) تسارع الجسم عندما تنعدم السرعة بعد الحركة:

a) 0 
$$m/s^2$$

b) 6 
$$m/s^2$$

c) 12 
$$m/s^2$$

أ. زكى غنيم

 $b) \ 6 \ m/s^2$   $c) \ 12 \ m/s^2$   $d) \ 1 \ m/s^2$  (22) في أي اتجاه يتحرك الجسم بعد ثانية وكم سرعته :



- لليسار 10 (a)
- لليمين 10 (b
- c) اليمين 3 (d لليمين 3 (d

23) متى يعود الجسم إلى موقعه الإبتدائي:

$$c)$$
 3 $s$ 

$$d$$
) لايعود

يتحرك جسم معلَق بزنبرك إلى أعلى و لإسفل ويمثّل الإقتران:  $s(t)=3 \sin{(t)}$  موقع الجسم عند أي زمن لاحق حيث t الزمن بالثواني وc الموقع بالأمتار ، أجب عن الأسئلة (26 - 24):

أ. زكى غنيم

a) 1s

24) اقتران التسارع عند أي لحظة هو:

ابراهیم العقرباوي 
$$a(t)=3 \ sin \ (t)$$

b) 
$$a(t) = 3\cos(t)$$

$$c) a(t) = -3sin(t)$$

$$d) a(t) = -3 \cos(t)$$

توجيھي علمي { منھاح جديد }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

25) موقع الجسم في حالة سكون أول مرّة بعد انطلاقه:

- a)-3
- **b**) 3
- c)1
- d)-1

أ. زكي غنيم

26) موقع الجسم عندما ينعدم التسارع:



a)-3

- **b**) 3
- c) 0
- d) 1

يمثّل الإقتران: 0 < cos(t) , t>0 ، موقع جسم يتحرّك في مسار مستقيم ، حيث s الموقع بالأمتار t الزمن بالثواني ، أجب عن الأسئلة (27-28):

27) موقع الجسم في حالة السكون اللحظي أول مرّة بعد انطلاقه:

*a*) 5

- b) 6
- c)7
- d) 0

28) موقع الجسم عندما تصل السرعة إلى قيمتها العظمى:



- *a*) {6}
- **b**) {5}
- $c) \{5, 7\}$
- d) {5, 6, 7}

الإبدا؟ في الرياضيات

### الوحدة الأولى – التفاضل -

توجيھي علمي {منھاح جديد }

فرص اكتشاف ـ سرعة بديهة ـ انشاء علاقة ـ تغيير حياة

### <u>إجابات أسئلة الإمتحان</u>

| 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | رقم<br>السوال            |
|----|----|----|----|----|----|----|----|----|--------------------------|
| С  | b  | d  | С  | b  | b  | а  | d  | b  | فرع<br>الإجابة<br>الصحيح |
|    |    |    |    |    |    |    |    |    |                          |
| 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | رقم<br>السؤال            |
| b  | а  | а  | d  | b  | b  | а  | b  | b  | فرع<br>الإجابة<br>الصحيح |
|    |    |    |    |    |    |    |    |    | <b>-</b>                 |

| 28 | 8 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | رقم<br>السؤال            |
|----|---|----|----|----|----|----|----|----|----|----|--------------------------|
| а  | ļ | с  | с  | b  | с  | с  | с  | b  | с  | а  | فرع<br>الإجابة<br>الصحيح |



توجيعي علمي 

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

#### امتحان درس مشتقة الضرب والقسمة والعليا

#### أجب عن الأسئلة التالية جميعها وعددها ( 20 ):



$$f'(\pi)$$
 فإن  $f(x)=rac{x+\pi}{cos(x)}$ : الذا كان  $f(x)=rac{x+\pi}{cos(x)}$  تساوي:

$$a)-2\pi$$

$$b) 2\pi$$

$$(d) - 1$$

$$b)$$
  $2\pi$   $c)$   $1$   $d)$   $-1$   $f''(rac{3\pi}{2})$  فإن  $f(x)=rac{cos(3\pi)}{sin(x)}$ : نساوي (2

$$(b) - 1$$

### أ. زكى غنيم

 $f^{(5)}(x)*f^{(6)}(x)$  فإنَّ  $f^{(4)}(x)=\sqrt{x}:$  تساوي: (3



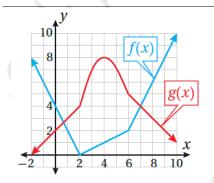
(a) 
$$-\frac{1}{8\sqrt{x}}$$
 (b)  $\frac{1}{8\sqrt{x}}$  (c)  $-\frac{1}{8x^2}$  (d)  $\frac{1}{8x^2}$ 

$$b)\frac{1}{8\sqrt{x}}$$

$$c)-\frac{1}{8x^2}$$

$$d) \frac{1}{8x^2}$$

- , يعطى عدد سكان مدينة بالإقتران  $rac{500\ t^2}{2t+1}$  ، حيث t الزمن بالسنوات (4
  - : عدد السكّان بالمئات ، فجد معدَّل تغير السكان بعد سنتين  $oldsymbol{p}$


- a)240
- **b**) 3200
- c) 5000
- d)6000



x=0 عند  $f(x)=e^x$ . sec(x): هو عند  $f(x)=e^x$ 



- a) 1
- **b**) 2
- c) 0
- **d**)1
- (0,1) المقطع العمودي على المماس للمنحنى:  $f(x)=rac{2-x}{1+e^x}$  ، عند النقطة ( $f(x)=rac{2-x}{1+e^x}$ مع محور x هي النقطة:
- a)(0,1)
- (1,0)
- c)(0,-1) d)(-1,0)



- من خلال الشكل المجاور ، أجب عن الأسئلة (7-7):
  - $(f.g)'(1): \hookrightarrow (7)$
- (a) 2 (b) 4
- c) 1
- **d**) 4

توجيعي علمي { ais | | { ais | | { ais | | { ais | { ais | { ais |

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

(b) - 1

أ. زكى غنيم

$$:q'(7)$$
 بيكن $q(x)=rac{f(x)}{g(x)}+rac{x}{4}:$  ليكن (8

- c) 2
- $d)\frac{3}{4}$

و) إذا كان:  $p(x) = \sqrt{f(x) + 2}$  تساوي:  $p(x) = \sqrt{f(x) + 2}$  تساوي:

 $a)\frac{1}{2}$ 

- $b)\frac{1}{4}$
- (c) 1
- d) 1

أ. زكى غنيم

التي يكون عندها g(x) غير قابل للإثنتقاق:  $\chi$ 



 $a){2,4}$ 

a)1

 $(b)\{2,6\}$ 

 $c){2}$ 

 $y'' - 2e^x$  ، فإن  $y = x e^x$  : ليكن  $y = x e^x$  نساوي:

**d**) {6}

a) 2y

**b**) 1

أ. زكى غنيم



*a*) {0}

 $b) \{0, 1\}$ 

*c*){1}

لا يوجد (**d** 

 $a)\frac{-(x-1)^2}{2}$ 

 $(x-1)^2$   $c)\frac{(x-1)^2}{(x-1)^2}$   $d)\frac{x-1}{x+1}$ 

أ. زكى غنيم أ ابر اهيم العقرباوي : وكان x=1 اقترانين قابلين للإشتقاق عندما f(x) , g(x) . ليكن  $g^{\,\prime}(1)=4$  ,  $f^{\,\prime}(1)=3$  , g(1)=-1 , f(1)=2فأجب عن الأسئلة (16 – 14):

x فإنّ  $\frac{dx}{dy}$  معدّ تغيّر x بالنسبة إلى  $y=rac{x+1}{x-1}$  نيكن ن $y=rac{x+1}{x-1}$ 

a) 12

**b**) 6

c)-4

=(f.g)'(1)(14)

 $=\left(\frac{g}{f}\right)'(1)$  (15)

a) - 5

**b**) 5

 $c)\frac{11}{4}$ 

 $d)\frac{4}{11}$ 

أ. زكى غنيم

=(3g-2xf)'(1)(16

a) 14 أ ابر اهيم العقرباوى

**b**) 2

(c) - 2

**d**)6

توجيعي علمي { बांछी इ स्राय }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

، يتحرَّك جسيم حسب العلاقة:  $rac{ln(t)}{t}$  ، حيث s(t) موقع الجسيم بالأمتار s(t) الزمن بالثواني أجب عن الأسئلة (18 – 17):

17) سرعة الجسيم بعد ثانية من بدء الحركة:

أ ابر اهيم العقرباو

- a) 1 m/s
- b) 0 m/s
- c)2 m/s
- d)-1 m/s

18 متى تنعدم سرعة الجسيم 1 d d

- a) 0 s
- **b**) 1 s
- c)es

باذا كان:  $f(x)=x \, sin(x)$ ، فإنَّ مجموع المقطع x والمقطع  $f(x)=x \, sin(x)$ أ. زكى غنيم  $x = \frac{\pi}{2}$  كندما للمنحنى المنحنى

- *a*) 0

- $b) \pi$
- $c)2\pi$
- $d)\pi-2$

ون از f'(0) تساوي:  $f(x) = x \cdot e^x \cdot cos(x)$  ياذا كان f'(0) تساوي:

a)2

**b**) 1

c)3

d)0

الإبدا؟ في الرياضيات

### الوحدة الأولى - التفاضل -

توجيھي علمي { منھاح جديد }

فرص اكتشاف ـ سرعة بديهة ـ انشاء علاقة ـ تغيير حياة

## <u>إجابات أسئلة الإمتحان</u>

| 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | ر <u>قم</u><br>السوال    |
|----|----|----|----|----|----|----|----|----|----|--------------------------|
| b  | С  | а  | b  | d  | d  | а  | С  | а  | d  | فرع<br>الإجابة<br>الصحيح |
|    |    |    |    |    |    |    |    |    |    |                          |
|    |    |    |    |    |    |    |    |    |    |                          |
| 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | رقم<br>السؤال            |



توجيعي علمي 

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

#### <u>امتحان درس</u> قاعدة السلسلة

أ. زكى غنيم

#### أجب عن الأسئلة التالية جميعها وعددها ( 20 ):

: نان f'(0) نساوي  $f'(x) = ln(3)(e^{2x} - x^2)$  نساوي (١)

a)ln(9)

a) 4

 $b) \ ln(3)$   $c) \ 0$  d) - ln(3)  $c) \ c)$ نان  $f'(\frac{3\pi}{4})$  نساوي: f(x) = ln(sec(x)) نساوي:  $f'(\frac{3\pi}{4})$ 

a) 1

 $b)\sqrt{2}$ 

 $(c) - \sqrt{2}$  (d) - 1

أ. زكى غنيم أ ابر اهيم العقرباوي يان  $f'(1) = f(x) = \left( \ln(x) 
ight)^4 + e^{4 \ln(x)}$  نبان f'(1) = f'(1) تساوي:

 $b)\frac{4}{3}$ 

c)1

d) 2e

ي: تساوي: x=1 عند x=1 تساوي: باذا كان x=1 نامماس عند x=1 تساوي: x=1

a) 2ln(3)

b)  $-\frac{1}{2ln(3)}$  c) - 2 ln(3)  $d) - \frac{1}{2ln(3) + 2e}$ 

أ. زكى غنيم أ ابر اهيم العقرباوي  $y=rac{t}{2}$  ,  $x=1-t^2$  : معادلة العمودي على المماس للمعادلة الوسيطية (5 : a t = 2

a) y = 8x + 25 b)  $y = -\frac{x}{9} - 1$ 

c) y = 8x - 22  $d)y = \frac{x}{9}$ 

 $x=rac{\pi}{2}$  غند ،  $y=e^{sin(x)}$ . cos(x) : إذا كان  $y=e^{sin(x)}$ 

a)1

c) - e

أ. زكى غنيم أ.ابراهيم العقرباوي

a) - 1

**b**)1

: نان  $\frac{f''(0)}{f(0)}$ : فإن  $y=e^{\cos(x)}$  تساوي (7

**d**) **e** 

توجيعي علمي { aisələ ə.u.u }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

 $s(t) = 0.1 \cos(1.2t)$ : يتحرك جسم معلَّق بزنبرك إلى أعلى وأسفل ويحدد موقعه حسب الإقتران أجب عن الأسئلة (10 - 8):



a) - 0.12

8) التسارع عندما تنعدم السرعة لأول مرَّة بعد الحركة:

b)0.144 c) - 0.144

9) موقع الجسم عندما يكون التسارع صفراً:

a)0

(b) - 0.12

a) 0.1 or - 0.1(c) - 0.12 or 0.12 c)0.12

d) 0.012

أ. زكى غنيم أ ابر اهيم العقرباو ي 10) موقع الجسم عندما يصل إلى أقصى سرعة :

(b) - 0.2 or 0.2

**d**) 0

x=2t-2sin(2t), يعطى منحنى بالمعادلة الوسيطية x=2t-2sin(2t) يعطى منحنى بالمعادلة الوسيطية x=2t-2sin(2t)ي ، فإنَّ مجموع الميلين المماس والعمودي على المماس عندما  $t=rac{\pi}{4}$  تساوي  $t\leq 2\pi$ 

$$a)\frac{\sqrt{2}}{2}$$

$$b) 2 - 2\sqrt{2}$$

$$c)2+2\sqrt{2}$$

$$(d)-\frac{\sqrt{2}}{2}$$

أ. زكى غنيم أ ابر اهيم العقرباو ي  $f(x)=e^{1-x}$  مساحة المثلث المحصور بين مماس منحنى (12

ومحوري الإحداثيين عندما x=1 تساوي:

a) 4

**b**) 1

c)2

**d**) 3

يساوي: f''(x) + 16f(x) فإنّ f(x) = sin(4x) + cos(4x) يساوي: a) 1 c)sin(4x)**b**) 0 d) cos(4x)

أ. زكى غنيم

( بالمتر لكل ثانية  $v(t)=15~t*e^{-0.05t^2}$  السرعة المتَّجهة ( بالمتر لكل ثانية ) يمثّل الإقتران لسيارة تتحرك في مسار مستقيم حيث:  $0 \leq t \leq 0$  ، أجد السرعة المتجهة للسيارة عندما يكون التسارع صفراً:

يابراهيم العقرباوي (a)

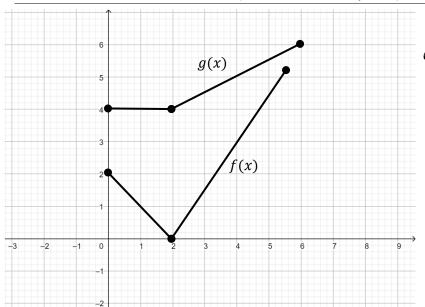
 $(b)\frac{-150}{c^5}$ 

 $c)\frac{15\sqrt{10}}{e^{-0.5}}$ 

 $d)\frac{15\sqrt{10}}{a^{0.5}}$ 

ين  $(f \ o \ g)'(0)$  ، فإنَّ f(x) = ln(x) ,  $g(x) = 2^{sin(x)}$  : الذا كان f(x) = ln(x) . تساوي:

a)ln(2)


b) - ln(2)

c)2

d)-2

توجيھي علمي { منھاح جديد }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة



من خلال الشكل المجاور الذي يمثّل منحنى الإقتران f(x),g(x) حيث r(x)=fig(g(x)ig)

$$s(x) = f(g(x))$$
  
 $s(x) = g(f(x))$ 

(16-18): أجب عن الأسئلةs'(4)

$$a)\frac{1}{4}$$

 $b)\frac{3}{4}$ 

$$c)\frac{1}{2}$$

 $d)\frac{5}{4}$ 

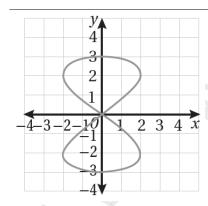
$$=\frac{d}{dx}\left(\frac{2}{x}-(f o g)\right)(1) (17$$



a)0

$$(b) - 2$$

*c*)3


*d*)2

$$\frac{1}{dx}\left(\sqrt{2x-f^2(x)}\right)_{|x=1}$$

$$a)\frac{3}{2}$$

$$(b) - \frac{3}{2}$$

$$d)-2$$



- $0 \leq t \leq 2\pi$  يبيِّن الشكل المجاور منحنى المعادلة الوسيطية  $x = 2 \sin(2t)$  ,  $y = 3 \cos(t)$  .
  - 19) ميل المماس لمنحنى المعادلة الوسيطية عند نقطة الأصل يساوي:
- a)0

 $b)-\frac{3}{4},\frac{3}{4}$ 

$$(c) - \frac{4}{3}, \frac{4}{3}$$

 $d)-\frac{1}{4},\frac{1}{4}$ 

20) قيم t التي يكون عندها مماساً أفقيًا:



 $a) \pi$ 

**b**) 0

*c*)1

 $(d)\frac{\pi}{2}$ ,  $(\frac{3\pi}{2})$ 

الإبدا؟ في الرياضيات

### الوحدة الأولى - التفاضل -

توجيھي علمي { منھاح جديد }

فرص اكتشاف ـ سرعة بديهة ـ انشاء علاقة ـ تغيير حياة

## <u>إجابات أسئلة الإمتحان</u>

| 10  | 9   | 8   | 7   | 6   | 5   | 4  | 3  | 2  | 1  | ر <u>قم</u><br>السوال    |
|-----|-----|-----|-----|-----|-----|----|----|----|----|--------------------------|
| d   | а   | b   | а   | с   | а   | b  | а  | d  | а  | فرع<br>الإجابة<br>الصحيح |
|     |     |     |     |     |     |    |    |    |    |                          |
| 2.0 | 4.0 | 4.0 | 4 = | 4.5 | 4 = |    | 40 | 40 |    | *                        |
| 20  | 19  | 18  | 17  | 16  | 15  | 14 | 13 | 12 | 11 | رقم<br>السوال            |



توجيعي علمي { airs | 4 equ }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

### <u>امتحان درس الإشتقاق الضمن</u>

#### أجب عن الأسئلة التالية جميعها وعددها ( 15 ):

أ. زكى غنيم أ ابر اهيم العقرباوي

ي: المماس عند 
$$y = 1$$
 تساوي:  $y = 1$  أذا كان  $y = 1$  أذا كان  $y = 1$  أذا كان أدا كان كان أدا كان أدا كان أدا كان أدا كان أدا

- a)-2
- $c)\frac{2}{3}$

إذا كان  $\mathbf{x} = \mathbf{0} = \mathbf{n}(x^2 + y^2)$ ، فإنَّ معادلة العمودي على المماس عَنْد (2 النقطة (1,0) هي:

$$a)x + y = 1$$

$$b)y-x=-1$$

$$c(x - y) = 1$$

$$d) x - y = -1$$

أ. زكى غنيم أ ابر اهيم العقرباوي  $s(t)=t^{\frac{1}{t}}$  ) إذا كان الإقتران t :  $s(t)=t^{\frac{1}{t}}$  موقع الجسم يتحرك في مسار مستقيم ، حيث s الموقع بالأمتار t الزمن بالثواني ، فإنَّ موقع الجسم عندما تنعدم السرعة هو :

c) 
$$e^{\frac{1}{e}}m$$

$$d)\frac{1}{e}a) 1m$$

x=2 ميل المماس لمنحنى العلاقة :  $y=x^{x^2}$  ، عندما (4

$$a) 4ln(2) + 2$$

$$b) 64 ln(2) + 32$$

c) 
$$64 \ln(2) + 2$$

$$d) 16 ln(2) + 32$$



$$rac{d^2y}{dx^2}$$
ا اِذَا کان $x=tan(t)$  ,  $y=sec^2(t)$  فان (5) (5)

$$b)\frac{1}{2}$$

$$c)2\sqrt{3}$$

$$d)\frac{2}{\sqrt{3}}$$

:وكان  $\frac{d^2y}{dx^2}$  ، فإن  $\frac{dx}{dt} = 3$  ، وكان  $y = e^{1-t^3} - e^{-7}$  . : (6)

$$a)\frac{44}{3}e^{-7}$$

a)2

$$b)32e^{-7}$$

$$d) 24e^{-7}$$

ر احداثیات نقطة على منحنى  $3y^2-2x^2=10$  والتي يكون عندها المماس للمنحنى المنحنى أو زكي غنيم موازياً للمستقيم: x-3y=2 هي:



$$a)(2,1),(-2,-1)$$

$$b)(1,2),(-1,-2)$$

$$c)(1,-2),(-1,2)$$

$$c)(1,-2),(-1,2)$$
  $d)(\sqrt{10},2),(-\sqrt{10},-2)$ 

8) قيم  $\chi$  التي يكون عندها مماسً أفقيا لمنحنى العلاقة 16 $y^2+3xy+3x^2+3x^2$ ، هي:

$$a) \pm 1$$

$$b) \pm 2$$

$$c) \pm 16$$

$$d) \pm 4$$

توجيعي علمي { ais | s + x y |

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

أ. زكى غنيم أ ابر اهيم العقرباوى و) قيم  $\chi$  التي تقع على منحنى  $\chi^2=\chi^3$  بحيث يكون عندها مماس المنحنى عمودياً  $\chi$ y = xعلى المستقيم

- $a) 0, \frac{4}{9}$

- $(b)\frac{4}{9}$   $(c)\frac{9}{4}$   $(d)\frac{9}{4}$ , 0

\* ملاحظة:  $y \neq 0$  حتى لا يكون المماس أفقيا.

 $rac{3}{4}$  احداثیات جمیع النقاط علی منحنی الدائرة  $\chi^2+y^2=100$  ، التي یکون عندها میل المماس (10

- a) (6,-8), (-6,8)
- b) (6,8), (-6,-8)
- c)(8,-6),(-8,6)
- (-8,-6),(8,6)

أ. زكي غنيم

11) احداثيات النقط التي تقع على منحنى العلاقة:  $x^2+y^2=18$  والتي يمر المماس عندها بالنقطة (6,0)

- a)(3,-3),(3,3)
- b)  $(0, \sqrt{18})$ ,  $(0, -\sqrt{18})$
- أ.ابر اهيم العقرباوي (-3,3),(3,-3)
- $(2,\sqrt{14}),(2,-\sqrt{14})$

ي:  $\frac{dy}{dx}$  تساوي:  $y^2 + 2xy = 5$  يَانَ قيمة (12) إذا كان:

- $a) \frac{1}{2}$
- $(b)\frac{1}{2}$
- $c)\frac{1}{2}$
- $(d) \frac{1}{2}$

ينا كان  $y \in (0, \frac{\pi}{2})$  ، فإنَّ قيمة المقدار  $y \in (0, \frac{\pi}{2})$  تساوي: (13)

أ. زكي غنيم أ ابر اهيم العقرباوي

- $a)\frac{x}{2}$
- b) x

- c) 0
- d) 2x

ينا:  $y^3(4y''+y)$  ، فإنَّ قيمة  $y^3(4y''+y)$  تساوي:  $y^3(4y''+y)$ 

- a)-2
- **b**) 0

x

5

- c) 1
- d)-1

15) احداثيات النقطة A:

y أ. زكى غنيم  $x^2 + y^2 = 10$ أ ابر اهيم العقرباوي -10

- a)(5,5)
- (5,3)

 $d) (5,\frac{1}{\epsilon})$ 

 $b) (5,\frac{1}{2})$ 

الإبدا؟ في الرياضيات

### الوحدة الأولى - التفاضل -

توجيھي علمي { منھاح جديد }

فرص اكتشاف ـ سرعة بديهة ـ انشاء علاقة ـ تغيير حياة

## <u>إجابات أسئلة الإمتحان</u>

| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | رقم<br>السؤال            |
|----|---|---|---|---|---|---|---|---|---|--------------------------|
| а  | b | d | b | а | а | b | С | а | b | فرع<br>الإجابة<br>الصحيح |

| 15 | 14 | 13 | 12 | 11 | رقم<br>السوال            |
|----|----|----|----|----|--------------------------|
| а  | d  | b  | а  | а  | فرع<br>الإجابة<br>الصحيح |

50

### <u> الوحدة الأولى – التفاطل -</u>

توجيعي علمي {منهاج جديد }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

#### إمتحان وحدة التفاضل

الصف: 12 علمي

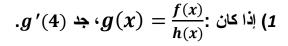
التاريخ: /

الاسم :

الزمن: ساعة وربع

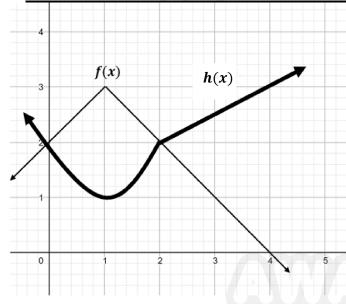
أجب عن الأسئلة التالية جميعها وعددها ( 4 ) علمًا بأن عدد صفحات الاختبار (2)

السؤال الأول: ( 12 علامة )


x=-1 ابحث في قابلية اشتقاق  $f(x)=\sqrt[3]{x+1}$  : إذا كان  $f(x)=\sqrt[3]{x+1}$ 

باستخدام التعريف العام للمشتقة ( 4 علامات )

اً. زكي غنيم f(x) غنيم f(x) فجد قيم كلاً من f(x) اللتين تجعلان f(x) فجد قيم كلاً من f(x) في أدار الهيم العقرباوي قابلاً للاشتقاق عند f(x)


- ، الموقع بالأمتار s (1) موقع جسيم على خط مستقيم حيث s الموقع بالأمتار s (2) يمثّل الإقتران s (4) الزمن بالثواني ، جد مايلي:
  - a) الموقع الإبتدائي للجسيم.
  - b) تسارع الجسيم عندما تكون سرعته المتجهة صفراً.

السؤال الثاني:



- $q'(4) \leftrightarrow q(x) = f(h(x)) (2)$
- قيم x التي يكون عندها وf(x) غير قابل للاشتقاق.

$$w(x) = \sqrt{f^3(x) + \sqrt{x+1}}$$
 : إذا كان  $w(x) = \sqrt{f^3(x) + \sqrt{x+1}}$  بذا كان  $w'(3)$  بذا



توجيعي علمي { airs | 4 equ }

فرص اكتشاف - سرعة بديهة - انشاء علاقة - تغيير حياة

( 14 علامة )

السؤال الثالث:

( 6 علامات )

لكل مما يلي:  $\frac{dy}{dx}$  لكل مما يلي:

$$f(x) = log_3\left(rac{\sqrt[3]{x^2-x}}{e^{sin(x)}}
ight)$$
 (a

$$f(x) = 2^{x^2} . \cos^3(2x) (b)$$

$$x. e^y + y. ln(x) = 2$$
 ,  $x = 1$  (c

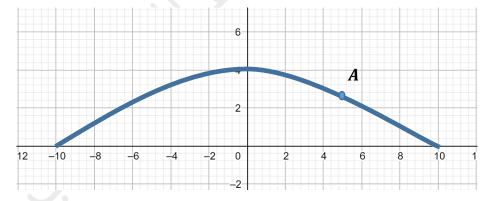
( 4 علامات )

2) جد معادلة المماس والعمودي على المماس لمنحنى المعادلة الوسيطية:

$$y = tan(t)$$
 ,  $x = sec^2(t) - 1$ 

 $0 < t < \pi$  : عندما يكون ميله  $m = rac{1}{2\sqrt{3}}$  : عندما يكون ميله

3) يمثّل الإقتران :  $N \cdot (2)^{0.1t+3}$  عدد الخلايا البكتيرية بعد t ساعة في مجتمع بكتيري ، جد مايلي:


a) قيمة الثابت N علماً أنَّ القيمة الإبتدائية = 24. ( 4 علامات )

B) معدَّل نمو المجتمع البكتيري بعد 10 ساعات.

( 14 علامة ) السؤال الرابع:

( علامات  $f(x)=rac{(x+1)}{
ho^x}$  : مداثیات النقطة التي یکون عندها مماس منحنی f(x) أفقیا ، حیث f(x)=f(x)( 3 علامات )

2) من خلال الرسم الذي يمثّل منحنى المعادلة الوسيطية حيث:



- $y = 2 + 2\cos(2t)$ 
  - $x = 10 \sin(t)$
  - $\cdot \quad , -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

جد ميل المماس عند النقطة A

3) جد احداثیات نقطة علی المنحنی  $x + y^2 = 1$  ، بحیث یکون عندها مماس المنحنی ( 3 علامات )

x + 2y = 0: موازيا للمستقيم

x=1 عند  $y=x^2$  لمنحنى x , y مساحة المثلث المحصور بين العمودي على المماس ومحوري x( 4 علامات )