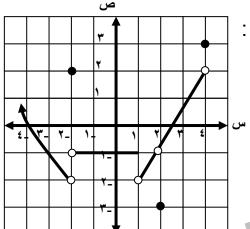


ملاحظة: اجب عن الأسئلة الآتية جميعها وعددها (٦) ، علما بأن عدد أوراق الإمتحان (٤)

(۱۳ علامة)

السؤال الاول:



- أ) من الشكل المجاور الذي يمثل منحنى ق(س) : س معرف على الفترة (∞ ، 3] ، أجب عما يلي :
 - (۱) جد قيم أ التي يكون نها ق(س) غير موجودة $w \rightarrow 1$ الحل : $1 \leftarrow \{-1, 1, 3\}$
 - (") جد ناتج نه ل (س ق(") + \circ (")

- (٤) جد قيم م التي يكون عندها ق(m) غير متصل الحل : م $\{-7, 1, 7, 3\}$
- (٥) جد ناتج ق (\cdot) = صفر (ثابت) ، ق (τ) غیر موجودة (انفصال)

الحل: نهــــاق(ص) = ل ــــ ل ّ + ۱۲ + ل = ۱۲ ـــ ل ّ + ۱۲ + ل = ۰ ـــ ل = ۱۰ ، ل = ٠ ص ـــ ٤

جـ) إذا كان المستقيم ص + ٣س = ١ عامو ديا على منحنى ق(س) عند النقطة (-١ ، ق(-١)) ، فجد (ق 7) (-١)

$$\frac{1}{r} = (1-)^{1}$$
 (۱-) عن ق $(1-)^{1} \times (1-)^{2} \times$

· YAA٣91 • Y7 // • Y9 • 1 • 1 YAA

إعداد الأستاذ مهند المجالي

السؤال الثاني: ٢٣ علامة)

(-۲ ، -۱) // ۱ ثابت متصل ، (-۱ ، ۰) // ۲ ثابت متصل ، (۰ ، ۲] // (۲ – س) کثیر حدود متصل (۰ ، ۲)

$$1 - 1 = 1$$
 ، نه عند س $1 - 1 = 1$ ، نه عند س $1 - 1 = 1$ ، غیر متصل عند س

$$oldsymbol{\cdot}=$$
 ق $oldsymbol{\cdot}=$ ، نهــــا ق $oldsymbol{\cdot}=$ ، نهـــا ق $oldsymbol{\cdot}=$ ، نهـــا ق $oldsymbol{\cdot}=$

إذا ق(س) متصل على الفترة (٢٠٢] - { ١٠٠٠ }

 $[\ \ \ \ \]$ با إذا كان نها $\frac{\pi^{1}\pi^{0}}{\pi^{0}} = \frac{\pi^{1}\pi^{0}}{\pi^{0}} = \frac{\pi^{1}\pi^{0}}{\pi^{0}} = \frac{\pi^{1}\pi^{0}}{\pi^{0}} = \frac{\pi^{1}\pi^{0}}{\pi^{0}}$

ج) إذا علمت أن نه $\frac{1}{m} - \frac{1}{m} = 11$ ، جد قيمة أ ، ب ؟

الحل : نعوض $\frac{1- جتا صفر}{2}$ \longrightarrow بما أن النهاية موجودة البسط أ = 1 = - صفر = 1

CAMMA

د) جد كلا من النهايات التالية:

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 + \gamma \omega} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee + \omega \circ r}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times r \leftarrow \omega$$

$$\frac{T - 1 \vee \tau}{T - 0 \vee \tau} \times \tau} \times r \leftarrow \omega$$

$$\frac{\sqrt{\pi} \operatorname{rel} \pi_{w}}{\gamma - w} = \frac{\sqrt{\pi} \operatorname{rel} \pi_{w}}{\gamma - w} \times \operatorname{rel} \pi_{w} = \frac{\sqrt{\pi} \operatorname{rel} \pi_{w}}{\gamma - w} \times \operatorname{rel} \pi_{w} \times \operatorname{r$$

$$\pi^{1}$$
 (π^{1}) (π^{1}

هـ) إذا كان ق (س) =
$$w^{"}$$
 ، هـ $(Y) = Y^{"}$ ، $(Y) = Y^{"}$ ، $(Y) = Y^{"}$

$$''((\omega)) \times ((\omega)) \times ((\omega))'' \longrightarrow \hat{\omega}$$
نشتق $(\hat{\sigma}''((\omega(\omega))) \times (\omega))$ هـ (ω)

$$(\Upsilon)$$
 نشتق ضرب ق $((\omega)) \times ((\omega)) \times ((\omega)) + (\omega) + (\omega) \times ((\omega)) \times ((\omega))^{1/2}$ نعوض (Υ)

$$\longrightarrow \ddot{\mathfrak{G}}^{\prime\prime}(\mathfrak{a}_{-}(7))\times \mathfrak{a}_{-}^{\prime\prime}(7)+\ddot{\mathfrak{G}}^{\prime\prime\prime}(\mathfrak{a}_{-}(7))\times (\mathfrak{a}_{-}^{\prime}(7))^{7}$$

$$\circ \longrightarrow \ddot{\mathfrak{G}}''(7) \times -\circ + \ddot{\mathfrak{G}}'''(7) \times (-7)^{7}$$

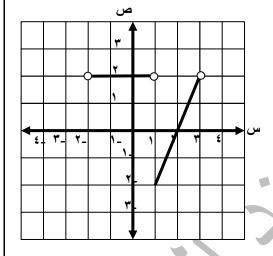
$$77 = 75 + 9 = 7$$

$$\ddot{\upsilon}$$
 (س) = ω^{7} $\ddot{\upsilon}$ (س) = γ^{7} $\ddot{\upsilon}$ (س) = γ $\ddot{\upsilon}$ (س) = γ $\ddot{\upsilon}$ (س) = γ $\ddot{\upsilon}$ $\ddot{\upsilon}$ (۳) = γ

(١٥ علامة)

السؤال الثالث:

أ) الشكل المجاور يمثل منحنى الأقتران ق $^{\prime}$ (س) ، حيث ق(س) متصل على الفترة [-۲،۳] ، (علامات)



- $1 > w \ge 7$ ن س $+ \neq$ ن س $+ \neq$ ن ق $(w) = \begin{cases} (w) & 0 < 1 \\ 0 & 0 \end{cases}$ ن جد
 - ١) فترات التناقص للأقتران ق(س)
 - (w) النقاط الحرجة للأقتران ق(w)
- (\cdot) قيم كل من الثوابت ل ، جـ ، م ، هـ ، ب ، علما بأن ق (\cdot)

- ١) فترات التناقص للأقتران ق(س) [١،٢]
- (u) (u) (u) النقاط الحرجة للأقتران ق(u) (u)

قيمة U = Y = (من الرسم) ، ق $(\cdot) = 1 \longrightarrow = 1$ ،

ق
$$^{\prime}(\Upsilon)= \bullet$$
 عم + هه $= \bullet$ ، ق $^{\prime}(\Upsilon)= -\Upsilon$ م + هه $= -\Upsilon$ ، ينتج م $= \Upsilon$ ، هه $= -3$

$$(w)^{\prime}=(w)$$

السؤال الرابع:

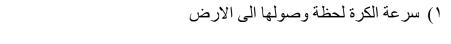
أ) أوجد قياس الزاوية بين مماسي الاقترانين ق $(m) = \frac{m'}{m'}$ ، هـ(m) = m + m' عندما m = 1?

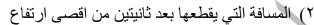
الحل : المطلوب الزاوية المحصور بين المماسين ق(س) و هـ(س) \longrightarrow نحسب زاوية كل مماس

$$\ddot{v}(w) = \frac{\gamma_w}{\gamma_{\parallel}} \longrightarrow \ddot{v}(1) = \frac{\gamma_w}{\gamma_{\parallel}}, \quad \alpha = d | \alpha = 0.7$$

الزاوية المحصورة = ٥٤° $_{\circ}$ - ٥٠° = ٥١°

ب) قذفت كره رأسيا الى أعلى من سطح بناية ترتفع (٤٠م) عن سطح الارض، فكان ارتفاعه في أي لحظة ف (ن) = ع. ن - من $^{ Y}$ ، ع. > صفر، فإذا كان أقصى ارتفاع وصل إلية الكرة عن سطح الارض $^{ Y}$ ، فجد :





الحل : نحسب اقصى ارتفاع من سطح البناية au م= au م= au م

$$3(i) = 3. - 17$$
 ن ، عند اقصى ارتفاع $3(i) = 0$ صفر $3(i) = 0$ نعوض في المسافة

ف(ن) = ۱۱ ن
$$\times$$
 ن \wedge ن 7 \longrightarrow ف(ن) = ۱ ن 7 ن 8 ف(ن) = ۱ ن 7 ن 8 ف(ن) = ۱ ن 8 ن 8

$$\wedge$$
 ن $^{7} = 7$ (\div \wedge) \longrightarrow ن $^{7} = 3$ \longrightarrow ن $^{7} = 7$ \longrightarrow 3. $= 7.1 \times 7 = 7$

ف(ن) = 77 ن - 7 \longrightarrow لإيجاد سرعة الكرة لحظة وصولها الى الأرض يجب ان نحسب الزمن لقطع (-6.5) م

لحساب المسافة المقطوعة بعد ثانين من اقصى ارتفاع ب زمن الوصول الى اقصى ارتفاع ثانيتين

الزمن : ۲ + ۲ = ٤ ثوان ، ف $(3) = 2 \times 3 = -4$ (۱) حصفر (اي ان الجسم و صاء الد مستوى سطح البناية)

اي ان الجسم على ارتفاع ٤٠ م من سطح الأرض

$$ilde{ au}=1$$
 إذا كان $|$ س $|$ ≤ 1 ، أثبت باستخدام القيم القصوى أن $|$ $|$ س $|$ س $|$

الحل:

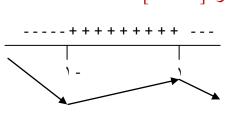
,
$$\Upsilon \geq \omega \geq \Upsilon$$
 - \longleftarrow $\Upsilon \geq |$ ω $|$

 $| ^{7}w - w^{7} | \leq 7 \longrightarrow ^{7}w - w^{7} \leq 7$ ، أي ان الاقتران محصور بين $- ^{7}v = ^{7}w + ^{7}w = ^{7}w =$

 $\bullet = (m) = 7$ نسمي ق(m) = 7 ، نشتق الاقتران \longrightarrow ق(m) = 7 - 7 ، نساوي ق $(m) = \bullet$

عند س = ١٠ قيمة صغرى محلية صورتها ق(١٠) = ٢٠

 $\Upsilon = (1)$ عند س = ا قیمهٔ عظمی محلیهٔ صورتها ق



· VAA٣٩١ • Y7 // • V9 • 1 • 1 VAA

إعداد الأستاذ ممند المجالي

السؤال الخامس: (١٩ علامة)

أ) جد مساحة المثلث المكون من محور السينات و المماس و العامودي على المماس لمنحنى ق(m) = +7m عند النقطة التي يصنع المماس عندها زاوية قياسها $(\frac{\pi}{7}, \frac{\pi}{7})$ مع الاتجاه الموجب لمحور السينات في الفترة $(\frac{\pi}{7}, \frac{\pi}{7})$ ؟

 $\frac{1}{\sqrt{|\gamma|}} - \frac{\pi}{\sqrt{|\gamma|}} = \frac{1}{\sqrt{|\gamma|}} - \frac{\pi}{\sqrt{|\gamma|}} = \frac{1}$

$$\frac{\pi}{\gamma}$$
 معادلة العامودي : ص $-\frac{\gamma}{\gamma} = \frac{1}{\gamma}$ (س $-\frac{\pi}{\gamma}$) \longrightarrow تقاطعه مع محور السينات ص $=$ ، \longrightarrow س $=\frac{\pi}{\gamma}$ $+\frac{\pi}{\gamma}$ $+\frac{\pi}{\gamma}$

 $\frac{1}{\sqrt{\gamma}} = \frac{1}{\sqrt{\gamma}} \times \frac{1}{\sqrt{\gamma}} \times \frac{1}{\sqrt{\gamma}} = \frac{1}{\sqrt{\gamma}} \times \frac{$

ب) يتحرك جسيم على خط مستقيم بحيث أن المسافة ف(ن) بالامتار التي يقطعها في زمن قدره (ن) ثانية بسرعة مقدر ها ع(ن) هي $3^7 = \sqrt{160} - 73$ ، حيث $3 \neq 0$ صفر $3 \neq 0$ صفر جد تسارع الجسيم عندما يقطع مسافة قدر ها $3 \neq 0$ م

الحل: نشتق ضمني

 $9 = \frac{3}{\sqrt{6}}$ - ٢ت ، نجد السرعة من العلاقة الاصلية \longrightarrow $3^7 = \sqrt{6}$ - ٢ع ، نعوض ف = 9

$$\gamma = 1 \longrightarrow 1 \times 1 \times 2 = \frac{1}{\sqrt{p}} = 1 \times 1 \times 2 = \frac{1}{\sqrt{p}} = 1 \times 1 \times 2 = \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{p}}$$

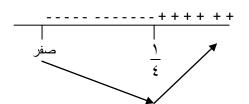
ج) اذا کان ق (س) = 7س ، أوجد:

١) الفترات التي يكون فيها الاقتران ق (س) متزايد .

٢) القيم العظمى والصغرى المحلية للاقتران ق (س).

(w) الحل : المجال الأقتران ق(w) [• ، ∞) ، نشتق الاقتران ق(w)

$$\frac{1}{2}$$
 = س = $\frac{1}{2}$ ، نساوي المشتقة بالصفر $\frac{1}{2}$ عس = $\frac{1}{2}$ س = $\frac{1}{2}$ س = $\frac{1}{2}$

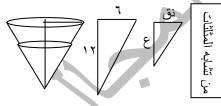


فترات التزايد : $\left[\frac{1}{\xi}\right]$ ، ∞)

عند س = $\frac{1}{3}$ قیمة صغری محلیة مطلقة

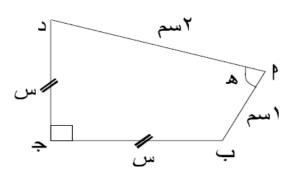
السؤال السادس:

أ) استخدم معلم الكيماء في احدى التجارب قمع على شكل مخروط قطر قاعدته ١٢سم وارتفاعه ١٢سم قاعدته افقيه ورأسه الى الاسفل ، إذا صب السائل فيه بمعدل (١٦سم /ثانية) وفي اللحظة نفسها يخرج منه السائل بمعدل
 (٧ سم /ثانية) ، فجد سرعه أرتفاع سطح السائل في القمع عندما يكون عمق السائل فيه ٦سم؟



المطلوب
$$\frac{23}{6}$$
 ، $\frac{25}{6} = 17 - 17 = 9$ سم /ثانية $\frac{\pi}{2}$ المطلوب $\frac{\pi}{2}$ ، $\frac{\pi}{2}$ $\frac{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$

$$\frac{2}{1} = \frac{\pi}{2}$$
 $\frac{2}{1} \times \frac{23}{1} \times \frac{23}{1} \times \frac{\pi}{2} = \frac{\pi}{2} \times \frac{\pi}{2} \times \frac{23}{1} \times \frac{\pi}{2} = \frac{\pi}{2} \times \frac{\pi}{2} \times \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi}{2} \times \frac{\pi}{2} \times$

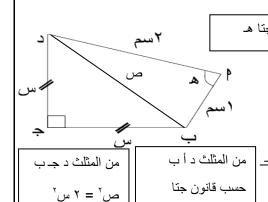


ص ۲ = ٥ - ٤ جتا هـ

ب) معتمداً على الشكل المجاور جد قيمة س لتكون مساحة المضلع أب جد أكبر ما يمكن ؟

الحل: المطلوب قيمة س،

مساحة الشكل = مساحة المثلث د جـ ب + مساحة المثلث د أ ب



م = $\frac{1}{7} \times m \times m + \frac{1}{7} \times 1 \times 1 \times q$ هـ $\frac{1}{7} \times m \times m \times q$ هـ $\frac{1}{7} \times m \times q$ هـ $\frac{1}{7} \times m \times q$ نشتق بالنسبة لـ هـ م = 1,10 - جتا هـ + جا هـ $\frac{1}{7} \times m \times q$ نشتق بالنسبة لـ هـ

