Hasanat

مدرسة البقعة الثانوية للبنين

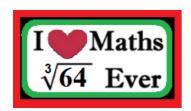
الثاني الثانوي العلهي

Integration Techniques

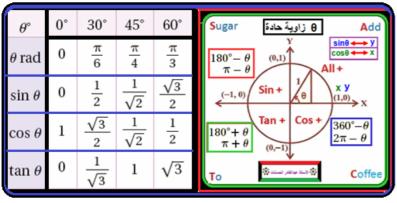
للعلم: طرق جمع طريق ، بينما طرائق جمع طريقة

078 <mark>531</mark> 88 77

الأستاذ: عبدالقادر الحسنات



تطابقات



$$1) \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$3) \boxed{\csc \theta = \frac{1}{\sin \theta}}$$

$$\frac{|\cos \theta|}{|\cos \theta|}$$
 2) $|\sec \theta| = \frac{1}{|\cos \theta|}$

$$4) \cot \theta = \frac{\cos \theta}{\sin \theta}$$

5)
$$| | sin^2 \theta + cos^2 \theta = 1 | \Rightarrow 6 | | sin^2 \theta = 1 - cos^2 \theta | \Rightarrow 7 | | | cos^2 \theta = 1 - sin^2 \theta |$$

$$(cos^2 \theta) | \Rightarrow (sin^2 \theta)$$

8)
$$\tan^2\theta + 1 = \sec^2\theta$$

9)
$$\cot^2\theta + 1 = \csc^2\theta$$

$$10)$$
 $\sin(\frac{\pi}{2}-\theta)=\cos\theta$ $\cos(\frac{\pi}{2}-\theta)=\sin\theta$ $\tan(\frac{\pi}{2}-\theta)=\cot\theta$ $\tan(\frac{\pi}{2}-\theta)=\cot\theta$ (جتا) متممتها والعکس

$$\cos(\frac{\pi}{2} - \theta) = \sin\theta$$

$$\tan(\frac{\pi}{2} - \theta) = \cot\theta$$

$$11)$$
 $\sin(-\theta) = -\sin \theta$ $\cos(-\theta) = \cos \theta$ $\tan(-\theta) = -\tan \theta$

$$\cos(-\theta) = \cos\theta$$

$$|\tan(-\theta) = -\tan\theta|$$

12)
$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$\frac{\sin 2\theta - \sin(\theta + \theta) - \sin\theta}{\cos \theta + \cos \theta} + \frac{\sin \theta}{\sin \theta} \Rightarrow 13) \sin 2\theta = 2\sin \theta \cos \theta$$

$$|\cos(a \pm b)| = \cos a \cos b \mp \sin a \sin b$$

$$\cos 2\theta = \cos(\theta + \theta) = \cos\theta \cos\theta - \sin\theta \sin\theta \Rightarrow 15$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= \boxed{1 - 2\sin^2 \theta}$$

$$= \boxed{2\cos^2 \theta - 1}$$

16)
$$\tan(a\pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a + \tan b}$$

$$\left|\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)\right|$$

$$\tan 2\theta = \tan(\theta + \theta) \Rightarrow 17$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$\left| \sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta) \right|$$

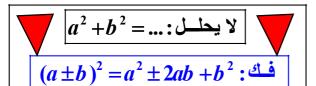
$$20) \tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

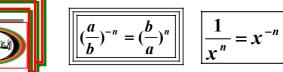
$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$x^{n} - y^{n} = (x - y)(x^{n-1}y^{0} + x^{n-2}y^{1} + x^{n-3}y^{2} + \dots + x^{1}y^{n-2} + x^{0}y^{n-1})$$



$$a^2-b^2=(a-b)(a+b)$$
 :

$$\sqrt[n]{x^m} = (\sqrt[n]{x})^m = x^{\frac{m}{n}}$$



$$\frac{1}{x^n} = x^{-n}$$

ـ من قواعد التكامل غير المحدود

$$\left| \int a \, x^n dx = \frac{a \, x^{n+1}}{n+1} + c \, , n \neq 1 \right| \left| \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c \right| \left| \int k^{ax+b} dx = \frac{1}{a \, Lnk} e^{ax+b} + c \right|$$

$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$$

$$\int k^{ax+b} dx = \frac{1}{a \ln k} e^{ax+b} + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \sec^2 x \ dx = \tan x + c$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \csc^2 x \ dx = -\cot x + c$$

$$\frac{\int \sin x \, dx = -\cos x + c}{\int \csc^2 x \, dx = -\cot x + c}$$

$$\int \cos(ax + b) \, dx = \frac{1}{a} \sin x + c$$

$$\int \sec x \ \tan x \ dx = \sec x + c$$

$$\int \sec x \ \tan x \ dx = \sec x + c \left| \int \csc x \ \cot x \ dx = -\csc x + c \right|$$

$$\left| \int \frac{1}{x} \, dx = Ln \, |x| + c \right|$$

$$\left| \int \frac{1}{ax+b} \, dx = \frac{1}{a} L n \left| ax + b \right| + c \right|$$

Abdulkadir Hasanat 078 531 88 77

$$\int \frac{f'(x)}{f(x)} dx = Ln |f(x)| + c$$

ا مشتقة لمقامــه

أي مقدار بسطه م
$$dx = Ln$$
 المقام $|+c|$

$$|s(t_2) - s(t_1)| = \int_{t_1}^{t_2} v(t) dt$$
 الإزاحة $|s(t_2) - s(t_1)| = \int_{t_1}^{t_2} |v(t)| dt$

المسافة الكليــة
$$=\int_{t_1}^{t_2} |v(t)| dt$$

$$\int a x^{n} dx = \frac{a x^{n+1}}{n+1} + c = \frac{a}{n+1} x^{n+1} + c , \quad n \neq -1$$

قاعدة

 $\frac{11}{2}$ إضافة (1) إلى القوة ثم القسمة على الناتج

1)
$$\int 3x^4 dx = 3\frac{x^5}{5} + c = \frac{3}{5}x^5 + c$$

2)
$$\int 7 x^{-8} dx = 7 \frac{x^{-7}}{-7} + c = -x^{-7} + c$$

3)
$$\int x^{\frac{3}{2}} dx = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + c = \frac{2}{5}x^{\frac{5}{2}} + c \qquad : \frac{a}{b} + 1 = \frac{a+b}{b}$$

البسط + المقام المقام

4)
$$\int (3x^2 + 6x - 4) dx = 3\frac{x^3}{3} + 6\frac{x^2}{2} - 4x + c = x^3 + 3x^2 - 4x + c$$

5)
$$\int \frac{3}{x^4} dx = \int 3x^{-4} dx = 3\frac{x^{-3}}{-3} + c = -x^{-3} + c$$
 $\frac{1}{x^n} = x^{-n}$

6)
$$\int \sqrt[4]{x^3} \ dx = \int x^{\frac{3}{4}} \ dx = \frac{4}{7} x^{\frac{7}{4}} + c$$
 : $\sqrt[n]{x^m} = x^{\frac{m}{n}}$

7)
$$\int \frac{8x + 3x^4}{2x} dx = \int \frac{8x}{2x} dx + \int \frac{3x^4}{2x} dx = 4x + \frac{3}{2} \frac{x^4}{4} + c$$

8)
$$\int \frac{x^2 - 16}{x + 4} dx = \int \frac{(x - 4)(x + 4)}{x + 4} dx = \int (x - 4)dx = \frac{1}{2}x^2 - 4x + c$$

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + C, \ n \neq -1 \quad \text{فإن} \quad a \neq 0$$
، فإنَّ $a \neq 0$ ، فإنَّ عددين حقيقيين، و $a \neq 0$ فإنَّ

9)
$$\int (3x+4)^5 dx = \frac{(3x+4)^6}{6\times 3} + c$$

10)
$$\int \frac{3}{\sqrt[4]{8-7x}} dx = \int \frac{3}{(8-7x)^{\frac{1}{4}}} dx = \int 3(8-7x)^{-\frac{1}{4}} dx = \frac{3(8-7x)^{\frac{5}{4}}}{-7 \times \frac{3}{4}} + c$$

تمارين

a)
$$\int 9 dx$$

b)
$$\int x^{-4} dx$$

c)
$$\int \sqrt[6]{x} dx$$

c)
$$\int \sqrt[6]{x} \ dx$$
 جد كُلًّا من التكاملات الآتية:

a)
$$\int (2x^4 + 3x^3 - 7x^2) dx$$

b)
$$\int (5x^{\frac{3}{2}} + 3x^2) dx$$

a)
$$\int \frac{2x^2 + 4}{x^2} dx$$

b)
$$\int \frac{x+2}{\sqrt{x}} dx$$

c)
$$\int (2x+3)(x-1) dx$$

c)
$$\int (2x+3)(x-1) dx$$
 آگِد کُلًّا من التکاملات الآتية:

a)
$$\int (x-4)^6 dx$$

b)
$$\int \sqrt{x+1} \ dx$$

$$\int 6x dx$$

6
$$\int (4x+2) dx$$
 7 $\int 2x^4 dx$

$$\int 2x^4 dx$$

$$\frac{5}{\sqrt{x^3}} dx$$
 جد كُلًا من التكاملات الآتية:

$$10 \int 2x^{\frac{3}{2}} dx$$

$$\int (6x^2 - 4x) \, dx$$

$$(2x^4-5x+10) dx$$

11)
$$\int x^2 (x-8) dx$$
 15) $\int \left(x^2 - \frac{3}{2}\sqrt{x} + x^{-\frac{4}{3}}\right) dx$

$$\int \frac{4x^3 - 2}{x^3} dx$$

$$\int \frac{x^2 - 1}{x - 1} \, dx$$

(16)
$$\int \frac{4x^3-2}{x^3} dx$$
 (17) $\int \frac{2x+8}{\sqrt{x}} dx$ (18) $\int \frac{x^2-1}{x-1} dx$ (19) $\int \left(\frac{x^2+1}{x^2}\right)^2 dx$ $\int \frac{2x+8}{\sqrt{x}} dx$ (19) $\int \left(\frac{x^2+1}{x^2}\right)^2 dx$

$$\int \frac{x^2 - 1}{\sqrt[3]{x}} dx$$

20
$$\int x\sqrt{x} \, dx$$
 21 $\int \left(\frac{x^2 + 2x}{x}\right)^3 dx$ 22 $\int \frac{x^2 - 1}{\sqrt[3]{x}} \, dx$ 23 $\int (x - 1)(x - 3)(x + 1) \, dx$

24
$$\int (x+7)^4 dx$$
 25 $\int \frac{3}{(10x+1)^2} dx$ 26 $\int 3\sqrt{4x-2} dx$ 27 $\int \frac{1}{\sqrt{10x+5}} dx$

$$\int \frac{1}{\sqrt{10x+5}} \ dx$$

جد كُلًّا من التكاملات الآتية:

التكامل المحدود إذا كان الاقتران f(x) متصلًا على الفترة [a,b]، وF(x) يُمثِّل أيَّ اقتران أصلي للاقتران f(x)

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a) = F(x) \Big|_{a}^{b} = F(b) - F(a) :$$
فإنَّ التكامل المحدود للاقتران $f(x)$ من a إلى a هو

$$\int_0^1 x^2 dx = \frac{1}{3} x^3 \Big|_0^1 = \left(\frac{1}{3} (1)^3\right) - \left(\frac{1}{3} (0)^3\right) = \frac{1}{3}$$

a)
$$\int_{-1}^{1} x^4 dx$$
 b) $\int_{-2}^{3} (3x^2 - 4x + 1) dx$ جد كُلًّا من التكاملين الآتيين:



قواعد إذا كان g(x) و g(x) اقترانين متصلين التكامل المحدود على الفترة [a,b]، وكان x ثابتًا، فإنَّ:

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$$

$$\int_{-2}^{5} f(x) dx = 3, \int_{-2}^{5} g(x) dx = -4, \int_{3}^{5} f(x) dx = 7$$

$$\int_{-2}^{3} f(x) dx = \int_{-2}^{5} f(x) dx + \int_{5}^{3} f(x) dx = 3 - 7 = -4$$

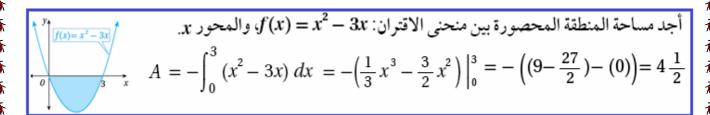
أجد كُلًّا من التكاملات الآتية:

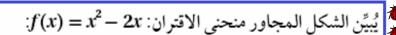
$$\int_{1}^{5} g(x) dx = 8$$
 و $\int_{1}^{5} f(x) dx = 6$ و أو أجد كُلًّا ممّا يأتي و أو كان: $\int_{1}^{5} g(x) dx = 6$

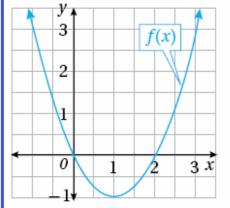
المساحة

 $\int f(x) \, dx$ تساوي $\mathbf{x}=\mathbf{b},\,\mathbf{x}=\mathbf{a}$ والمحور \mathbf{x} والمستقيمين $\mathbf{x}=\mathbf{b},\,\mathbf{x}=\mathbf{a}$ تساوي \mathbf{x} السينات) تكون المساحة معكوس ناتج التكامل (نأخذ القيمة المطلقة للناتج) وإذا كانت المنطقة تحت المحور \mathbf{x} (السينات) وجزء تحته : نجزيئ التكامل ونجد كل منطقة على حدة وإذا كان هناك جزء من المنطقة فوق المحور \mathbf{x}) وجزء تحته : نجزيئ التكامل ونجد كل منطقة على حدة

حالات المساحة f(x) f(x)







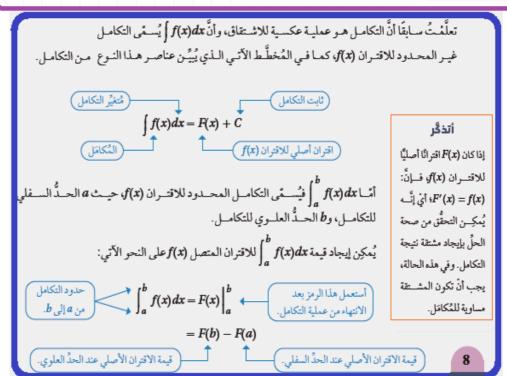
- $oxdot{1}$ أجد مساحة المنطقة المحصورة بين منحنى الاقتران، والمحور x .
- x أجد مساحة المنطقة المحصورة بين منحنى الاقتران، والمحور x، والمستقيم x = 3.
- x أجد مساحة المنطقة المحصورة بين منحنى الاقتران، والمحور x والمستقيم x = -1
- (x) أجد مساحة المنطقة المحصورة بين منحنى الاقتران: x x x والمحور x والمحور x والمستقيمين: x x y y y y y والمستقيمين: y
- a>0 أجد مساحة المنطقة المحصورة بين منحنى الاقتران: $f(x)=a^2-x^2$ ، والمحور x بدلالة الثابت a>0 حيث a>0
 - أجد مساحة المنطقة المحصورة بين منحنى العلاقة: $\frac{3}{4}$ (2x+16) =y، والمحورين الإحداثيين.

تکامل اقترانات خاصة Integration of Special Functions

 $e^0=1$

ln1=0

lne=1



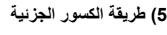
هناك عدة طرق للتكامل، منها:1) الطريقة المباشرة من خلال البحث عن اقتران مشتقته تعطي الاقتران المُكامَل.

ก็ส อันอนิกนี้นานี้นานี้มานั้นก็มีมานั้นก็มีมีนั้นก็มานั้นก็มีนั้นก็มานั้นก็มีนั้นก็มีนั้นก็มนั้นก็มีนั้นก็มนั้นก็มีน

3) من خلال المتطابقات المثلثية

Abdulkadir Hasanat 078 531 88 77

4) طريقة التكامل بالتعويض



6) طريقة التكامل بالأجزاء

*** هناك عدة مفاهيم في الدرس الأول ، نستعرضها كما يأتي:

1) المفهوم الأول: صيغ تكاملات اقترانات أسِّية

•
$$\frac{d}{dx}(e^{x}) = e^{x}$$
 أَتَذَكُّر
• $\frac{d}{dx}(e^{ax+b}) = ae^{ax+b}$
• $\frac{d}{dx}(k^{x}) = k^{x} \times \ln k$

$$\frac{d}{dx}(k^{ax+b}) = k^{ax+b} \times \ln k \times a$$

 $.k \neq 1$ و $.k > 0$

$$a \neq 0$$
 ميغ تكاملات امترانات أُسِّية إذا كانت k, b, a أعدادًا حقيقيةً، و $a \neq 0$ و $k \neq 1$ و $k > 0$ العدد النيبيري، فإنَّ :
$$\int e^x dx = e^x + C \qquad \qquad \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

$$\int k^x dx = \frac{k^x}{\ln k} + C \qquad \qquad \int k^{ax+b} dx = \frac{k^{ax+b}}{a \ln k} + C$$

$$1) \int e^{3x} dx = \frac{e^{3x}}{3} + c \qquad 2) \int 6 e^{4-5x} dx = 6 \frac{e^{4-5x}}{-5} + c \qquad 3) \int 3^{2x} dx = \frac{3^{2x}}{2 \ln 3} + c$$

$$4) \int_0^1 (2x + 8e^{2x}) dx = (x^2 + 4e^{2x}) \Big]_0^1 = (1 - 4e^2) - (0 + 4) = -3 - 4e^2$$

a)
$$\int (5x^2 - 3e^{7x}) dx$$
 b) $\int_0^{\ln 3} 8e^{4x} dx$ أتحقُّق من فهمي أجد كُلًّا من التكاملات الآتية: $\int_0^{\ln 3} 8e^{4x} dx$

c)
$$\int \sqrt{e^{1-x}} dx$$
 d) $\int (3^x + 2\sqrt{x}) dx$

a
$$\int (5x^2 - 3e^{7x})dx = \frac{5}{3}x^3 - \frac{3}{7}e^{7x} + C$$

b
$$\int_0^{\ln 3} 8e^{4x} dx = \frac{8}{4}e^{4x} \Big|_0^{\ln 3} = 2(e^{4 \ln 3} - e^0) = 2(e^{\ln 3^4} - e^0) = 2(81 - 1) = 160$$

d
$$\int (3^x + 2\sqrt{x})dx - \frac{3^x}{\ln 3} + 2(\frac{2}{3}x^{\frac{3}{2}}) + C - \frac{3^x}{\ln 3} + \frac{4}{3}x^{\frac{3}{2}} + C$$

$$ig(e^{2x-3}-\sqrt{x}\,)\,dx$$
 2 $\int \left(e^{0.5x}-rac{3}{e^{0.5x}}
ight)dx$: وَأَخُلُّ المسائل الْحَدِّ أَلِم مِن التكاملات الآتية dx

$$1 \int (e^{2x-3} - \sqrt{x}) dx = \int (e^{2x-3} - x^{1/2}) dx = \frac{1}{2} e^{2x-3} - \frac{2}{3} x^{3/2} + C$$

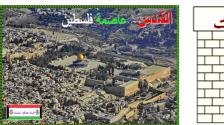
$$2 \int \left(e^{0.5x} - \frac{3}{e^{0.5x}} \right) dx = \int \left(e^{0.5x} - 3e^{-0.5x} \right) dx = 2e^{0.5x} + 6e^{-0.5x} + C$$

(a)
$$\int e^{3x} dx = \frac{e^{3x}}{3} + c$$
 (b) $\int e^{4-5x} dx = 6 = \frac{e^{4-5x}}{-5} + c$ (c) $\int e^{3x} dx = \frac{3^{2x}}{2 \ln 3} + c$ (c) $\int e^{3x} dx = \frac{e^{3x}}{3} + c$ (d) $\int e^{4-5x} dx = 6 = \frac{e^{4-5x}}{-5} + c$ (e) $\int e^{2x} dx = \frac{3^{2x}}{2 \ln 3} + c$ (e) $\int e^{2x} dx = (x^2 + 4e^{2x}) \int_0^1 e^{1-4e^2} e^{1-4e$

$$| \int (e^x + 1)^2 dx = \int (e^{2x} + 2e^x + 1) dx = \frac{1}{2}e^{2x} + 2e^x + x + C$$

11
$$\int \frac{e^x + 1}{e^x} dx = \int (1 + e^{-x}) dx = x - e^{-x} + C$$

33
$$\left| \int_0^3 (x - 5^x) dx = \left(\frac{1}{2} x^2 - \frac{5^x}{\ln 5} \right) \right|_0^3 = \frac{9}{2} - \frac{125}{\ln 5} - (0 - \frac{1}{\ln 5}) = \frac{9}{2} - \frac{124}{\ln 5}$$



استاذ عبدالقادر الحسنات	IJ
	Ц
	Ц
	Ц
1 2 2 2 3 2 2 3	$\overline{}$
البنابوييه لنستين	$ \exists $

f(x)	f'(x)
sin x	cos x
cos x	$-\sin x$
tan x	$\sec^2 x$
cot x	$-\csc^2 x$
sec x	sec x tan x
csc x	$-\csc x \cot x$

القادر الحسنات القريس عاصمة فاسطين				سيات / علمى – ف2 / المفهوم الثاني :صيغ
در سام			f(x)	f'(x)
			sin x	cos x
	النانو		cos x	— sin <i>x</i>
$a \neq 0$ اثلية إذا كان $a \neq b$ عددين حقيقيين، و $a \neq a$ ، ف	ع تكاملات اقترانات م	مين	tan x	$\sec^2 x$
$\sin x dx = -\cos x + C \qquad \qquad \int \cos x dx = -\cos x + C$	$x dx = \sin x + C$		cot x	$-\csc^2 x$
$\sec^2 x dx = \tan x + C \qquad \int \csc^2 x dx = \cot x + C$	$x dx = -\cot x +$	c	sec x	sec x tan x
1	$x \cot x dx = -\csc x$		csc x	$-\csc x \cot x$
J		J. T. C.		
$\sin(ax + b) dx = -\frac{1}{a}\cos(ax + b) + C$				
$\sec (ax + b) \tan (ax + b) dx = \frac{1}{a} \sec (ax + b) + \frac$	(x + b) + C	_		
$\int \tan x dx = (\frac{1}{2}x + \frac{1}{2}x + \frac{1}{2$	J	x dx =		لذلك (في ويجب عدم الخلط
$\int \sec^2 x \ dx = tanx$	c + c	ن عكسيتان :	. بينها وبين متقاق عمليتا	ويجب عدم الخلط التكامل والاش
$\int \sec^2 x \ dx = tanx$	c + c	ن عكسيتان :	. بينها وبين متقاق عمليتا	ويجب عدم الخلط التكامل والاش
$\int \sec^2 x \ dx = \tan x$ $f'(x) = -\sin x \implies \int (-\sin x) = -\sin x \implies \int (-\sin x) = -\sin x$ (sinx + عدد ثابت (co	$c + c$ $\sin x = \cos x + c$	ن عكسيتان : C ⇔ ∫(s	. بینها وبین متقاق عملیتا in <i>x</i>) <i>dx</i> =	ويجب عدم الخلط التكامل والاش : .
$\int \sec^2 x \ dx = tanx$ $f'(x) = -\sin x \implies \int (-\sin x) = \cos x \implies \int (-\sin x) = \sin x \implies \int (-\cos x) = \sin x \implies \int (-\cos x) = \cos x \implies $	$c + c$ $\sin x) dx = \cos x + \cos x$ الذي مشتقته (SX)	ن عكسيتان : C ➡∫(s ما هو المقدار	. بينها وبين متقاق عمليتا in x) dx =	ويجب عدم الخلط التكامل والاش - cos x + C د : cos x dx
$\int \sec^2 x \ dx = tanx$ $f'(x) = -\sin x \implies \int (-\sin x) = \cos x \implies \int (-\sin x) = \sin x \implies \int (-\cos x) = \cos x \implies $	$c + c$ $\sin x) dx = \cos x + \cos x$ الذي مشتقته (SX)	ن عكسيتان : C ➡∫(s ما هو المقدار	. بينها وبين متقاق عمليتا in x) dx =	ويجب عدم الخلط التكامل والاش - cos x + C د : cos x dx
$\int \sec^2 x dx = \tan x$ $f'(x) = -\sin x \implies \int (-\sin x)^2 dx$	$c + c$ $\sin x) dx = \cos x + c$ $\sin x = \cos x + c$ $\cos x + c$ $\sin x = \cos x + c$ $\cos x + c$ $\cos x + c$ $\sin x = c$ $\cos x + c$ $\cos x + c$ $\sin x = c$ $\cos x + c$ $\sin x + c$ $\cos x + c$	ن عكسيتان : $C \implies \int (S)$ ما هو المقدار $= \frac{-3}{5} \cos S$. بينها وبين متقاق عمليتا in x) dx = يعني :	ويجب عدم الخلط التكامل والاش $-\cos x + C$ $\cos x dx : 9$

$$\int \tan x \ dx = (فیما بعد)$$
، $\int \cot x \ dx = (فیما بعد)$

$$\int \sec^2 x \ dx = tanx + c$$

$$f(x) = \cos x \implies f'(x) = -\sin x \implies \int (-\sin x) \, dx = \cos x + C \implies \int (\sin x) \, dx = -\cos x + C$$

$$1) \int 4\cos x \ dx = 4\sin x + c$$

$$2) \int 3\sin(5x-1) \ dx = 3\frac{-\cos(5x-1)}{5} + c = \frac{-3}{5}\cos(5x-1) + c$$

$$3) \int (\sec^2 x + 4x - 6e^{2x} + 7) \ dx = \tan x + 2x^2 - 3e^{2x} + 7x + c$$

4)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \sec x \tan x \ dx = \sec x \Big]_{\frac{\pi}{3}}^{\frac{\pi}{4}} = \sec \frac{\pi}{4} - \sec \frac{\pi}{3} = \sqrt{2} - 2$$

﴿ أَتحقُّق مِن فِهِمِي أَجِد كُلًّا مِنِ التكاملاتِ الآتية:

a)
$$\int \cos(3x - \pi) dx$$

b)
$$\int (\csc^2(5x) + e^{2x}) dx$$

$$\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx$$
 $\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx$
 $\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx$

تحقق من فهمي صفحة 12

$$a \int \cos(3x - \pi) dx = \frac{1}{3}\sin(3x - \pi) + C$$

b
$$\int (\csc^2(5x) + e^{2x})dx = -\frac{1}{5}\cot 5x + \frac{1}{2}e^{2x} + C$$

$$\begin{vmatrix}
\int_0^{\frac{\pi}{3}} (\sin 2x - \cos 4x) \, dx = \left(-\frac{1}{2} \cos 2x - \frac{1}{4} \sin 4x \right) \Big|_0^{\frac{\pi}{3}} \\
= \left(-\frac{1}{2} \cos \frac{2\pi}{3} - \frac{1}{4} \sin \frac{4\pi}{3} \right) - \left(-\frac{1}{2} \cos 0 - \frac{1}{4} \sin 0 \right) \\
= \left(-\frac{1}{2} \left(-\frac{1}{2} \right) - \frac{1}{4} \left(-\frac{\sqrt{3}}{2} \right) \right) - \left(-\frac{1}{2} - 0 \right) = \frac{6 + \sqrt{3}}{8}
\end{vmatrix}$$

$$egin{aligned} 3 & \int \left(4\sin 5x - 5\cos 4x
ight)dx \end{aligned}$$
 أتدرّب وأحُلُّ المسائل أجد كُلًّا من التكاملات الآتية:

$$\int (4\sin 5x - 5\cos 4x)dx = -\frac{4}{5}\cos 5x - \frac{5}{4}\sin 4x + C$$

6
$$\int (\sin(5-3x)+2+4x^2)dx = \frac{1}{3}\cos(5-3x)+2x+\frac{4}{3}x^3+C$$

$$\begin{cases} \int (e^{4-x} + \sin(4-x) + \cos(4-x)) dx \\ = -e^{4-x} + \cos(4-x) - \sin(4-x) + C \end{cases}$$

المسائل العالمات الآية:
$$\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx$$

a) $\int \cos(3x - \pi) dx$

b) $\int (\csc^2(5x) + e^{2x}) dx$

c) $\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx$

d) $\int \cos(3x - \pi) dx = \frac{1}{3}\sin(3x - \pi) + C$

b) $\int (\csc^2(5x) + e^{2x}) dx = -\frac{1}{5}\cot 5x + \frac{1}{2}e^{2x} + C$

c) $\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx = \left(-\frac{1}{2}\cos 2x - \frac{1}{4}\sin 4x\right)\Big|_{0}^{\pi/3}$
 $= \left(-\frac{1}{2}\cos\frac{2\pi}{3} - \frac{1}{4}\sin\frac{4\pi}{3}\right) - \left(-\frac{1}{2}\cos 0 - \frac{1}{4}\sin 0\right)$
 $= \left(-\frac{1}{2}(-\frac{1}{2}) - \frac{1}{4}(-\frac{\sqrt{3}}{2})\right) - \left(-\frac{1}{2} - 0\right) = \frac{6 + \sqrt{3}}{8}$

3) $\int (4\sin 5x - 5\cos 4x) dx$

8) $\int (e^{4x} + \sin (4-x) + \cos (4-x)) dx$

3) $\int (4\sin 5x - 5\cos 4x) dx = -\frac{4}{5}\cos 5x - \frac{5}{4}\sin 4x + C$

6) $\int (\sin(5-3x) + 2 + 4x^2) dx = \frac{1}{3}\cos(5-3x) + 2x + \frac{4}{3}x^3 + C$

8) $\int (e^{4-x} + \sin(4-x) + \cos(4-x)) dx$
 $= -e^{4-x} + \cos(4-x) - \sin(4-x) + C$

2) $\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx = ... \frac{1}{\ln 2} - \frac{\pi}{4}$

2) $\int_{0}^{\pi/3} (\sin 2x - \cos 4x) dx = ... \frac{1}{\ln 2} - \frac{\pi}{4}$

$$4) \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \sec^2 x \ dx = ...1 - \sqrt{3}$$

3) المفهوم الثالث: المتطابقات المثلثية والتكامل

هناك اقترانات مثلثية لا يُمكِن إيجاد تكاملها مباشرة، مثل: اقترانات الجيب، وجيب التمام، والظلّ، وطللّ المناسمة وظلّ التمام المرفوعة إلى أُس (زوجي)، أو الاقترانات المثلثية التي تكون في صورة حاصل ضرب اقتراني جيب، أو اقتراني جيب، أو اقتراني جيب تمام، وغيرها من الاقترانات المثلثية. لذلك نستخدم المتطابقات المثلثية المناسبة، وأحيانا نضرب في المرافق.

والهدف دائما: تبسيط المُكامَل إلى حدود جبرية منفصلة لعدم وجود قاعدة لإيجاد تكامل الضرب أو القسمة أ

أهم المتطابقات

$$\sin 2x = 2\sin x \cos x \quad \sin^2 x = \frac{1}{2}(1-\cos 2x) \quad \cos^2 x = \frac{1}{2}(1+\cos 2x)$$

$$sin a cos b = \frac{1}{2}(sin(a-b)+sin(a+b))
sin a sin b = \frac{1}{2}(cos(a-b)-cos(a+b))
cos a cos b = \frac{1}{2}(cos(a-b)+cos(a+b))
= 1-2sin^2x
= 1-2sin^2x
= 2cos^2x-1$$

$$1) \int \sin^2 4x \ dx = \int \frac{1}{2} (1 - \cos 8x) \ dx \qquad : \sin^2 x = \frac{1}{2} (1 - \cos 2x)$$
$$= \frac{1}{2} (x - \frac{1}{8} \sin 8x) + c$$

$$2) \int \cos^2 3x \ dx = \int \frac{1}{2} (1 + \cos 6x) \ dx \qquad : \cos^2 x = \frac{1}{2} (1 + \cos 2x)$$
$$= \frac{1}{2} (x + \frac{1}{6} \sin 6x) + c$$

تكامل sinx أو cosx بقوى زوجية ... الحل عن طريق المتطابقات فقط

$$3) \int \sin 2x \cos 3x \, dx = \int \frac{1}{2} (\sin(-x) + \sin(5x)) \, dx$$

$$= \frac{1}{2} (\frac{-\cos(-x)}{-1} + \frac{-\cos 5x}{5}) + c = \frac{1}{2} (\cos x + \frac{1}{5} \cos 5x) + c$$

$$\sin a \cos b = \frac{1}{2} (\sin(a - b) + \sin(a + b))$$

4)
$$\int \sin x \cos x \, dx = \int \frac{2}{2} \sin x \cos x \, dx = \frac{1}{2} \int 2 \sin x \cos x \, dx$$

= $\frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} (\frac{-1}{2} \cos 2x) + c$: $\sin 2x = 2 \sin x \cos x$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 6</mark>

5)
$$\int \tan^2 4x \ dx = \int (\sec^2 4x - 1) \ dx = \frac{1}{4} \tan 4x - x + c : \tan^2 x + 1 = \sec^2 x$$

6)
$$\int (\sin^2 x - \cos^2 x) dx = -\int \cos 2x dx = \frac{-1}{2} \sin 2x + c : \cos 2x = \cos^2 x - \sin^2 x$$

$$7) \int \frac{1}{1+\sin x} dx = \int \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} dx = \int \frac{1-\sin x}{1-\sin^2 x} dx = \int \frac{1-\sin x}{\cos^2 x} dx$$
$$= \int (\frac{1}{\cos^2 x} - \frac{\sin x}{\cos x}) dx = \int (\sec^2 x - \tan x \sec x) dx$$
$$= \tan x - \sec x + c$$

$$8) \int (\sin x + \cos x)^2 dx = \int (\sin^2 x + 2\sin x \cos x + \cos^2 x) dx$$
$$= \int (1 + \sin 2x) dx = x + \frac{1}{2} (-\cos 2x) + c$$

$$9) \int (\sin^4 x - \cos^4 x) dx = \int (\sin^2 x - \cos^2 x) (\sin^2 x + \cos^2) dx$$
$$= \int (-\cos 2x) (1) dx = -\frac{1}{2} \sin 2x + c$$

$$10) \int \sin^4 x \ dx = \int (\sin^2 x)(\sin^2 x) dx = \int \frac{1}{2} (1 - \cos 2x) \times \frac{1}{2} (1 - \cos 2x) dx$$

$$= \frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx = \frac{1}{4} \int (1 - 2\cos 2x + \frac{1}{2} (1 + \cos 4x)) dx$$

$$= \frac{1}{4} (x - \sin 2x + \frac{1}{2} (x + \frac{1}{4} \sin 4x)) + c$$

الأستاذ: عبدالقادر الحسنات 77 88 531 88 77

﴿ أَتحقُّق مِن فِهِمِي أَجِد كُلًّا مِنِ التَكامِلاتِ الآتية:

a)
$$\int \cos^4 x \, dx$$
 b) $\int_0^{\pi/6} \sin 3x \sin x \, dx$ c) $\int \frac{dx}{1 + \cos x}$

a
$$\int \cos^4 x \, dx$$

$$\cos^4 x = (\cos^2 x)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2 = \frac{1}{4}(1 + 2\cos 2x + \cos^2 2x)$$

$$= \frac{1}{4}\left(1 + 2\cos 2x + \frac{1 + \cos 4x}{2}\right) = \frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{8} + \frac{1}{8}\cos 4x$$

$$= \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

$$\int \cos^4 x \, dx = \int \left(\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x\right) dx = \frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C$$

$$\begin{vmatrix}
\frac{\pi}{6} \sin 3x \sin x \, dx &= \int_{0}^{\frac{\pi}{6}} \frac{1}{2} (\cos(3x - x) - \cos(3x + x)) \, dx \\
&= \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (\cos 2x - \cos 4x) \, dx &= \left(\frac{1}{4} \sin 2x - \frac{1}{8} \sin 4x\right) \Big|_{0}^{\frac{\pi}{6}} \\
&= \left(\frac{1}{4} \sin \frac{2\pi}{6} - \frac{1}{8} \sin \frac{4\pi}{6}\right) - (0 - 0) &= \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{16} &= \frac{\sqrt{3}}{16}
\end{vmatrix}$$

$$c \int \frac{dx}{1 + \cos x} = \int \left(\frac{1}{1 + \cos x} \times \frac{1 - \cos x}{1 - \cos x}\right) dx$$

$$= \int \frac{1 - \cos x}{\sin^2 x} \, dx &= \int (\csc^2 x - \cot x \csc x) dx = -\cot x + \csc x + C$$

$$\int \frac{1}{1-\sin x} dx$$

$$\int \sec^2 x \, (1 + e^x \cos^2 x) dx$$

$$21 \int \left(\frac{1 + \cos x}{\sin^2 x} + (\sin^2 x \csc x) \right) dx$$

$$(9\cos^2 x - \sin^2 x - 6\sin x\cos x) dx$$

7
$$(0785318877)$$
 23
a $\int \cos^4 x \, dx$

$$\cos^4 x = (\cos^2 x)^2 = \frac{1}{8}$$
b $\int_0^{\frac{\pi}{6}} \sin 3x \sin x \, dx$

$$= \frac{1}{2} \int_0^{\frac{\pi}{6}} (\cos 2x - \frac{1}{8})$$
c $\int \frac{dx}{1 + \cos x} = \int (\frac{1}{8} - \frac{1}{8})$
c $\int \frac{1}{1 - \sin x} dx$
16 $\int \sec^2 x (1 + e^x \cos^2 x)$
21 $\int (\frac{1 + \cos x}{\sin^2 x} + (\sin^2 x))$
22 $\int (\sec x + \tan x)^2 dx$
15 $\int \frac{1}{1 - \sin x} dx = \frac{1}{8}$
25 $\int \frac{1}{1 - \sin x} dx = \frac{1}{8}$
26 $\int \sec^2 x (1 + e^x \cos^2 x)$
27 $\int (\sec x + \tan x)^2 dx = \frac{1}{8}$
28 $\int \sin 3x \cos 2x$
29 $\int (\sec^2 x (1 + e^x \cos^2 x))$
29 $\int (\sec^2 x (1 + e^x \cos^2 x))$
20 $\int (\frac{1 + \sin x}{\cos^2 x} + (\sin^2 x))$
21 $\int \frac{1}{1 - \sin x} dx = \frac{1}{8}$
22 $\int (\sec^2 x (1 + e^x \cos^2 x))$
23 $\int (\sec^2 x (1 + e^x \cos^2 x))$
24 $\int (\sec^2 x (1 + e^x \cos^2 x))$
25 $\int \frac{1}{1 - \sin x} dx = \frac{1}{8}$
26 $\int (\cos^2 x (1 + e^x \cos^2 x))$
27 $\int (\cos^2 x (1 + e^x \cos^2 x))$

$$(\cos^4 x - \sin^4 x) dx$$

$$\int \frac{1}{1 - \sin x} dx = \int \frac{1}{1 - \sin x} \times \frac{1 + \sin x}{1 + \sin x} dx = \int \frac{1 + \sin x}{1 - \sin^2 x} dx
= \int \frac{1 + \sin x}{\cos^2 x} dx = \int (\sec^2 x + \tan x \sec x) dx = \tan x + \sec x + C$$

$$\int \sec^2 x (1 + e^x \cos^2 x) dx = \int (\sec^2 x + e^x) dx = \tan x + e^x + C$$

$$18 \int \sin 3x \cos 2x \, dx = \frac{1}{2} \int (\sin 5x + \sin x) \, dx = -\frac{1}{10} \cos 5x - \frac{1}{2} \cos x + C$$

$$\int \left(\frac{1+\cos x}{\sin^2 x} + \sin^2 x \csc x\right) dx = \int (\csc^2 x + \cot x \csc x + \sin x) dx$$
$$= -\cot x - \csc x - \cos x + C$$

$$\int (\sec x + \tan x)^2 dx = \int (\sec^2 x + 2\sec x \tan x + \tan^2 x) dx$$

$$= \int (\sec^2 x + 2\sec x \tan x + \sec^2 x - 1) dx$$

$$= \int (2\sec^2 x + 2\sec x \tan x - 1) dx = 2\tan x + 2\sec x - x + C$$

$$\frac{3}{\sin^2 x} \frac{(078 \pm 31887)}{\sin^2 x} + \sin^2 x \csc x + \cos^2 x + \sin^2 x \csc x + \cos^2 x + \cos^$$

$$\int (\cos^4 x - \sin^4 x) dx = \int (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) dx$$

$$= \int (\cos^2 x - \sin^2 x) dx = \int \cos 2x \, dx = \frac{1}{2} \sin 2x + C$$

29
$$\int_{\pi/6}^{\pi/3} 3 \tan^2 x \, dx$$

31)
$$\int_0^{\pi/6} \sin 3x \cos x \, dx$$
 32) $\int_{\pi/4}^{\pi/3} \frac{\cot^2 x}{1 + \cot^2 x} \, dx$

$$32 \int_{\pi/4}^{\pi/3} \frac{\cot^2 x}{1 + \cot^2 x} dx$$

$$= 4$$

$$= 4$$

$$\Rightarrow C = 5$$

$$27 \int_0^{\pi} 2 \cos \frac{1}{2} x \ dx = 4 \sin \frac{1}{2} x \Big|_0^{\pi} = 4 \left(\sin \frac{\pi}{2} - \sin 0 \right) = 4$$

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 3 \tan^2 x \ dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 3 (\sec^2 x - 1) \ dx = 3 (\tan x - x) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{3}}$$

$$= 3 \left(\tan \frac{\pi}{3} - \frac{\pi}{3} \right) - 3 \left(\tan \frac{\pi}{6} - \frac{\pi}{6} \right) = 2\sqrt{3} - \frac{\pi}{2}$$

$$\int_0^{\frac{\pi}{6}} \sin 3x \cos x \ dx = \frac{1}{2} \int_0^{\frac{\pi}{6}} (\sin 4x + \sin 2x) \ dx$$

$$\left| = \left(-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x \right) \right|_{0}^{\frac{\pi}{6}} = -\frac{1}{8}\cos \frac{4\pi}{6} - \frac{1}{4}\cos \frac{2\pi}{6} - \left(-\frac{1}{8}\cos 0 - \frac{1}{4}\cos 0 \right) = \frac{5}{16}$$

$$\frac{32}{\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cot^{2} x}{1 + \cot^{2} x} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cot^{2} x}{\csc^{2} x} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos^{2} x}{\sin^{2} \csc^{2} x} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos^{2} x}{\sin^{2} x} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos^{2} x}{\sin^{2} x} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos^{2} x dx = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (1 + \cos 2x) dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right)$$

$$f(0)$$
 فأجد $f(\pi)=3$ وكان: $f(x)=\int \cos\left(\frac{1}{2}x+\pi\right)dx$ فأجد (10)

$$y = \frac{1 + \sin 2x}{2}$$
، وكان: $y = 1$ عندما $y = \frac{\pi}{4}$ ، فأُثبِت أَنَّه يُمكِن كتابة y في صورة: $y = \int \sin\left(\frac{\pi}{2} - 2x\right) dx$ إذا كان: $y = \frac{1 + \sin 2x}{2}$

$$f(x) = \int \cos\left(\frac{1}{2}x + \pi\right) dx = 2\sin\left(\frac{1}{2}x + \pi\right) + C$$

$$f(\pi) = 2\sin\left(\frac{1}{2}\pi + \pi\right) + C \longrightarrow 3 = 2\sin\frac{3\pi}{2} + C \longrightarrow 3 = -2 + C \implies C = 5$$

$$\Rightarrow f(x) = 2\sin\left(\frac{1}{2}x + \pi\right) + 5 \implies f(0) = 2\sin\pi + 5 = 5$$

$$\begin{array}{lll}
\textbf{27} & \int_{0}^{\pi} 2\cos\frac{1}{2}x \ dx & \textbf{20} & \int_{\pi/6}^{\pi/3} 3\tan^{2}x \ dx & \textbf{30} & \int_{0}^{\pi/6} \sin 3x \cos x \ dx \\
\textbf{27} & \int_{0}^{\pi} 2\cos\frac{1}{2}x \ dx = 4\sin\frac{1}{2}x \Big|_{0}^{\pi} = 4\left(\sin\frac{\pi}{2} - \sin 0\right) = \\
\textbf{29} & \int_{\frac{\pi}{6}}^{\pi} 3\tan^{2}x \ dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 3(\sec^{2}x - 1) \ dx = 3(\tan x - x)\Big|_{\frac{\pi}{6}}^{\frac{\pi}{6}} \\
& = 3\left(\tan\frac{\pi}{3} - \frac{\pi}{3}\right) - 3\left(\tan\frac{\pi}{6} - \frac{\pi}{6}\right) = 2\sqrt{3} - \frac{\pi}{2} \\
\textbf{31} & \int_{0}^{\pi} \sin 3x \cos x \ dx = \frac{1}{2}\int_{0}^{\pi} (\sin 4x + \sin 2x) \ dx \\
& = \left(-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x\right)\Big|_{0}^{\pi} = -\frac{1}{8}\cos\frac{4\pi}{6} - \frac{1}{4}\cos\frac{2\pi}{6} - \left(-\frac{1}{8}\cos 0 - \frac{1}{4}\cos 0\right) \\
& = \int_{\frac{\pi}{4}}^{\pi} \frac{\cot^{2}x}{4 + \cot^{2}x} \ dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}\cot^{2}x} \ dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^{2}x}{\sin^{2}\cos^{2}x} \ dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^{2}x}{\sin^{2}x} \left(-\frac{1}{8}\sin^{2}x\right)\Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& = \int_{\frac{\pi}{4}}^{\pi} \cos^{2}x \ dx = \frac{1}{2}\int_{\frac{\pi}{4}}^{\pi} (1 + \cos 2x) \ dx = \frac{1}{2}\left(x + \frac{1}{2}\sin 2x\right)\Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& = \frac{\pi}{6} + \frac{1}{4}\sin\frac{2\pi}{3} - \left(\frac{\pi}{8} + \frac{1}{4}\sin\frac{2\pi}{4}\right) = \frac{3\sqrt{3} + \pi - 6}{24} \\
& f(0) \text{ with } \text{ if } (\pi) = 3 \text{ id } \text{ if } (\pi) = 2 \sin\left(\frac{\pi}{2}\right) \\
& = \frac{\pi}{6} + \frac{1}{4}\sin\frac{2\pi}{3} - \left(\frac{\pi}{8} + \frac{1}{4}\sin\frac{2\pi}{4}\right) = \frac{3\sqrt{3} + \pi - 6}{24} \\
& f(\pi) = 2\sin\left(\frac{\pi}{2}\right) + \int_{\frac{\pi}{4}} \sin\left(\frac{\pi}{2}\right) \\
& = \int_{\frac{\pi}{4}} \sin\left(\frac{\pi}{2}\right) + \int_{\frac{\pi}{4}} \sin\left(\frac{\pi}{2}\right) \\
& =$$

.
$$b$$
 و ناجد قيمة الثابتين النسبيين: a و a الأبتين النسبيين: a و أجد قيمة الثابتين النسبيين: a و a

$$\frac{44}{\int_{\frac{\pi}{9}}^{\pi}} (9 + \sin 3x) \, dx = \left(9x - \frac{1}{3}\cos 3x\right) \Big|_{\frac{\pi}{9}}^{\pi}$$

$$= 9\pi - \frac{1}{3}\cos 3\pi - \pi + \frac{1}{3}\cos \frac{\pi}{3} = 8\pi + \frac{1}{3} + \frac{1}{6} = 8\pi + \frac{1}{2}$$

$$\Rightarrow 8\pi + \frac{1}{2} = \alpha\pi + b$$

$$\alpha = 8, b = \frac{1}{2}:$$

فلا يوجد حل لهذه المعادلة سوى أن يكون: $\alpha = 8, b = \frac{1}{2}$

$$\int_{0}^{\pi/4} \cos x \cos 3x \, dx - \int_{0}^{\pi/4} \sin x \sin 3x \, dx = 0$$
 تبریر: أُثبِت بطریقتین مختلفتین أنَّ: 58

$$\int_{0}^{\frac{\pi}{4}} \cos x \cos 3x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\cos 4x + \cos 2x) \, dx$$

$$= \left(\frac{1}{8} \sin 4x + \frac{1}{4} \sin 2x\right) \Big|_{0}^{\frac{\pi}{4}} = \left(\frac{1}{8} \sin \pi + \frac{1}{4} \sin \frac{\pi}{2}\right) - (0 + 0) = \frac{1}{4}$$

$$\int_{0}^{\frac{\pi}{4}} \sin x \sin 3x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\cos 2x - \cos 4x) \, dx = \left(\frac{1}{4} \sin 2x - \frac{1}{8} \sin 4x\right) \Big|_{0}^{\frac{\pi}{4}}$$

$$= \left(\frac{1}{4} \sin \frac{\pi}{2} - \frac{1}{8} \sin \pi\right) - (0 - 0) = \frac{1}{4}$$

$$\int_{0}^{\frac{\pi}{4}} \cos x \cos 3x \, dx - \int_{0}^{\frac{\pi}{4}} \sin x \sin 3x \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} \cos x \cos 3x - \sin x \sin 3x \, dx = \int_{0}^{\frac{\pi}{4}} (\cos x \cos 3x - \sin x \sin 3x) \, dx = \int_{0}^{\frac{\pi}{4}} (\cos x \cos 3x - \sin x \sin 3x) \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} \cos 4x \, dx = \frac{1}{4} \sin 4x \Big|_{0}^{\frac{\pi}{4}} = \frac{1}{4} (\sin \pi - \sin 0) = 0$$

رياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 07) 11

. قاجد قيمة الثابت
$$k$$
، مُبرِّرًا إجابتي. $\int_{\pi/4k}^{\pi/3k} (1-\pi\sin kx)\,dx = \pi(7-6\sqrt{2})$ فأجد قيمة الثابت $\pi/4k$

$$\int_{\frac{\pi}{4k}}^{\frac{\pi}{3k}} (1 - \pi \sin kx) \, dx = \left(x + \frac{\pi}{k} \cos kx\right) \Big|_{\frac{\pi}{4k}}^{\frac{\pi}{3k}}$$

$$= \frac{\pi}{3k} + \frac{\pi}{k} \cos \frac{\pi}{3} - \frac{\pi}{4k} - \frac{\pi}{k} \cos \frac{\pi}{4} = \frac{\pi}{k} \left(\frac{1}{3} + \frac{1}{2} - \frac{1}{4} - \frac{\sqrt{2}}{2}\right)$$

$$= \frac{\pi}{12k} (7 - 6\sqrt{2}) \Rightarrow \frac{\pi}{12k} (7 - 6\sqrt{2}) = \pi (7 - 6\sqrt{2}) \Rightarrow k = \frac{1}{12}$$

1)
$$\int (\tan^2 2x + \sin^2 2x + \cos^2 2x) dx = ... \frac{1}{2} \tan 2x + C$$

2)
$$\int 8\sin^2 2x \cos^2 2x \ dx = ...x - \frac{1}{8}\sin 8x + C$$

3)
$$\int 2\sin 5x \cos 4x \ dx = ...\sin x + \frac{1}{9}\sin 9x + C$$

4)
$$\int_{0}^{\pi} \frac{\cos^{2} x}{1 + \sin x} dx = ...(x + \cos x) \Big]_{0}^{\pi} = \pi - 1$$

4) المفهوم الرابع: تكاملات ينتج منها اقتران لوغاريتمي طبيعي

تكاملات ينتج منها اقتران لوغاريتمي طبيعي

إذا كان $b,\,a$ عددين حقيقيين، و0
eq a، وكان f(x) اقترانًا قابلًا للاشتقاق، فإنَّ:

$$\int \frac{1}{x} \, dx = \ln|x| + C \quad , x \neq 0$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + C \quad , x \neq -\frac{b}{a}$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C, f(x) \neq 0$$

باختصار: إذا كان البسط مشتقة للمقام، فإن تكامل الكسر يساوى اللوغاريتم الطبيعي للمقام مضافاً إلية ثابت

$$1) \int \frac{4}{5x} dx = \frac{4}{5} \int \frac{1}{x} dx = \frac{4}{5} \ln |x| + c$$

$$2) \int \frac{5}{2x-3} dx = \frac{2}{2} \int \frac{5}{2x-3} dx = \frac{5}{2} \int \frac{2}{2x-3} dx = \frac{5}{2} \ln|2x-3| + c$$

$$3) \int \frac{4x+10}{x^2+5x-1} dx = \int \frac{2(2x+5)}{x^2+5x-1} dx = 2\int \frac{2x+5}{x^2+5x-1} dx = 2\ln|x^2+5x-1| + c$$

$$4)\int_{0}^{1} \frac{e^{x}}{e^{x}+1} dx = \ln \left| e^{x}+1 \right| \Big]_{0}^{1} = \ln \left| e^{1}+1 \right| - \ln \left| e^{0}+1 \right| = \ln (e+1) - \ln 2$$

$$5) \int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx = \frac{-1}{-1} \int \frac{\sin x}{\cos x} \ dx = \frac{1}{-1} \int \frac{-\sin x}{\cos x} \ dx = -\ln|\cos x| + c$$

$$6) \int \frac{x^3 + \sqrt{x} - 7x - 1}{x^2} dx = \int \left(\frac{x^3}{x^2} + \frac{\sqrt{x}}{x^2} - \frac{7x}{x^2} - \frac{1}{x^2}\right) dx$$
$$= \int \left(x + x^{-\frac{3}{2}} - \frac{7}{x} - x^{-2}\right) dx = \frac{1}{2}x^2 - 2x^{-\frac{1}{2}} - 7\ln|x| + x^{-1} + c$$

$$7) \int \frac{7 \sin x}{5 + 2 \cos x} dx = \frac{7}{-2} \int \frac{-2 \sin x}{5 + 2 \cos x} dx = \frac{-7}{2} \ln|5 + 2 \cos x| + c$$

$$8) \int \sec x \, dx = \int \sec x \times \frac{\sec x + \tan x}{\sec x + \tan x} \, dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx$$
$$= \ln|\sec x + \tan x| + c$$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 078) 13</mark>

$$9) \int \frac{x^2 + x}{x - 3} dx = \int (x + 4 + \frac{12}{x - 3}) dx =$$

$$= \frac{1}{2} x^2 + 4x + 12 \ln|x - 3| + c$$

$$10) \int \frac{x^3 - 5x + 4}{x + 2} dx = \int (x^2 - 2x - 1 + \frac{6}{x + 2}) dx$$
$$= \frac{x^3}{3} - x^2 - x + 6 \ln|x + 2| + c$$

$$11) \int \frac{1 - \cos x}{\sin x} \, dx = \int \frac{1 - \cos x}{\sin x} \, \frac{1 + \cos x}{1 + \cos x} \, dx = \int \frac{1 - \cos^2 x}{\sin x (1 + \cos x)} \, dx$$
$$= \int \frac{\sin^2 x}{\sin x (1 + \cos x)} \, dx = \int \frac{\sin x}{(1 + \cos x)} \, dx$$
$$= \int \frac{-1}{-1} \times \frac{\sin x}{1 + \cos x} \, dx = -\ln|1 + \cos x| + c$$

$$12) \int \frac{dx}{3 + \frac{x}{4}} = \int \frac{dx}{\frac{12 + x}{4}} = \int \frac{4 dx}{12 + x} = 4 \ln |12 + x| + c$$

$$12) \int \frac{dx}{3 + \frac{x}{4}} = \frac{1}{\frac{1}{4}} \int \frac{\frac{1}{4}dx}{3 + \frac{1}{4}x} = 4 \ln \left| 3 + \frac{1}{4}x \right| + c$$

1)
$$\int (2 + \tan x)^2 dx = ...3x - 4 \ln \left| \cos x \right| + \tan x + c$$

$$2)\int \frac{4x^3 - x + 3}{x - 1} dx = ... \frac{4}{3}x^3 + 2x^2 + 3x + 8\ln|x - 1| + C$$

$$3) \int \frac{4 \csc 2x}{\sin 2 x + \cos 2 x} dx = \dots - 2 \ln |1 + \cot 2 x| + C$$

$$\begin{array}{r}
x+4 \\
x-3 \overline{\smash)x^2 + x} \\
-x^2 - 3x \\
\hline
4x \\
-4x + 12 \\
\hline
12
\end{array}$$

$$\begin{array}{r}
x^{2} - 2x - 1 \\
x + 2 \overline{\smash)x^{3} - 5x + 4} \\
\underline{x^{3} + 2x^{2}} \\
-2x^{2} - 5x + 4 \\
\underline{-2x^{2} + 4x} \\
-x + 4 \\
\underline{-x + 2} \\
6
\end{array}$$

الأستاذ:عبدالقادر الحسنات 77 531 88 77

$$4)\int \frac{e^{2x} + x}{e^{2x} + x^2} dx = ... \ln(e^{2x} + x^2)^2 + C$$

الأستاذ عبدالقادر الحسنات

﴿ أَنحقُّق من فهمي أجد كُلًّا من التكاملات الآتية:

a)
$$\int \left(\sin x - \frac{5}{x}\right) dx$$

b)
$$\int \frac{5}{3x+2} dx$$

c)
$$\int \frac{x^2 - 7x + 2}{x^2} dx$$

d)
$$\int \frac{2x+3}{x^2+3x} dx$$

e)
$$\int \frac{\sin 2x}{1+\cos 2x} dx$$

f)
$$\int \cot x \, dx$$

g)
$$\int \frac{e^x}{e^x + 7} dx$$

h)
$$\int \csc x \, dx$$

a
$$\int \left(\sin x - \frac{5}{x}\right) dx = -\cos x - 5\ln|x| + C$$
b
$$\int \frac{5}{3x+2} dx = \frac{5}{3} \int \frac{3}{3x+2} dx = \frac{5}{3} \ln|3x+2| + C$$
c
$$\int \frac{x^2 - 7x + 2}{x^2} dx = \int \left(1 - \frac{7}{x} + 2x^{-2}\right) dx = x - 7\ln|x| - 2x^{-1} + C$$
d
$$\int \frac{2x+3}{x^2+3x} dx = \ln|x^2+3x| + C$$
e
$$\int \frac{\sin 2x}{1+\cos 2x} dx = -\frac{1}{2} \int \frac{-2\sin 2x}{1+\cos 2x} dx = -\frac{1}{2} \ln|1+\cos 2x| + C = -\frac{1}{2} \ln(1+\cos 2x) + C$$

$$f \int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + C$$

$$g \int \frac{e^x}{e^x + 7} \, dx = \ln|e^x + 7| + C = \ln(e^x + 7) + C$$

$$h \int \csc x \, dx = \int \csc x \times \frac{\csc x + \cot x}{\csc x + \cot x} \, dx$$

$$= \int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} \, dx = -1 \int \frac{-\csc^2 x - \csc x \cot x}{\csc x + \cot x} \, dx = -\ln|\csc x + \cot x| + C$$

$$\int \frac{x^2+x+1}{x+1} dx$$
 أتحقَّق من فهمي 17 أجد:

$$\int \frac{x^2 + x + 1}{x + 1} dx = \int \left(x + \frac{1}{x + 1}\right) dx = \frac{1}{2}x^2 + \ln|x + 1| + C$$

$$\int \frac{e^x}{e^x + 4} \, dx$$

$$\int \frac{dx}{5 - \frac{x}{3}}$$

$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

$$\int \frac{x^2}{x^3 - 3} dx$$

4
$$\int \left(3 \sec x \tan x - \frac{2}{5x}\right) dx = 3 \sec x - \frac{2}{5} \ln|x| + C$$

9
$$\int \frac{x^2-6}{2x} dx = \int \left(\frac{1}{2}x - \frac{3}{x}\right) dx = \frac{1}{4}x^2 - 3\ln|x| + C$$

10
$$\int \left(3\csc^2(3x+2) + \frac{5}{x}\right) dx = -\cot(3x+2) + 5\ln|x| + C$$

12
$$\int \frac{e^x}{e^x + 4} dx = \ln|e^x + 4| + C = \ln(e^x + 4) + C$$

13
$$\int \frac{\cos 2x}{\sin x \cos x + 4} dx = \int \frac{\cos 2x}{\frac{1}{2} \sin 2x + 4} dx = \ln \left| \frac{1}{2} \sin 2x + 4 \right| + C$$

14
$$\int \frac{dx}{5 - \frac{x}{3}} = -3 \int \frac{-\frac{1}{3}}{5 - \frac{x}{3}} dx = -3 \ln \left| 5 - \frac{x}{3} \right| + C$$

17
$$\int \left(\frac{2}{x} - 2^x\right) dx = 2 \ln|x| - \frac{2^x}{\ln 2} + C$$

$$\int \frac{2x+3}{3x^2+9x-1} dx = \frac{1}{3} \int \frac{6x+9}{3x^2+9x-1} dx = \frac{1}{3} \ln |3x^2+9x-1| + C$$

$$\int \frac{x^2 + x + 1}{x^2 + 1} dx = \int \left(\frac{x^2 + 1}{x^2 + 1} + \frac{x}{x^2 + 1}\right) dx = \int \left(1 + \frac{1}{2} \times \frac{2x}{x^2 + 1}\right) dx$$
$$= x + \frac{1}{2} \ln(x^2 + 1) + C$$

23
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx = \ln(e^x + e^{-x}) + C$$

24
$$\int \frac{x^2}{x^3 - 3} dx = \frac{1}{3} \int \frac{3x^2}{x^3 - 3} dx = \frac{1}{3} \ln|x^3 - 3| + C$$

$$30 \int_{1}^{e} \frac{8x}{x^{2}+1} dx = 4 \int_{1}^{e} \frac{2x}{x^{2}+1} dx = 4 \ln |x^{2}+1||_{1}^{e} = 4 \ln (e^{2}+1) - 4 \ln 2$$

$$a > 0$$
 : فأجد قيمة الثابت $a > 0$: فأجد قيمة الثابت $a > 0$: وذا كان ($\int_{a}^{3a} \frac{2x+1}{x} dx = \ln 12$

$$a \neq 0$$
 : حيث: $\int_{0}^{a} \frac{x}{x^{2} + a^{2}} dx = \ln \sqrt{2}$ عيث: 39

38
$$\int_{a}^{3a} \frac{2x+1}{x} dx = \int_{a}^{3a} \frac{1}{x} dx = (2x+\ln|x|)|_{a}^{3a} = 6a + \ln 3a - 2a - \ln a$$
$$= 4a + \ln 3 \Rightarrow 4a + \ln 3 = \ln 12 \Rightarrow 4a = \ln 12 - \ln 3 = \ln \frac{12}{3} \Rightarrow a = \frac{1}{4} \ln 4$$

$$\int_0^a \frac{x}{x^2 + \alpha^2} \, dx = \frac{1}{2} \int_0^a \frac{2x}{x^2 + \alpha^2} \, dx = \frac{1}{2} \ln(x^2 + \alpha^2) \Big|_0^a = \frac{1}{2} \ln 2 = \ln \sqrt{2}$$

$$\int \frac{\sec x}{\sin x - \cos x} \ dx$$

$$\int \frac{\cot x}{2 + \sin x} dx$$

$$\int \frac{1}{x \ln x^3} dx$$
 : أجد كُلًّا من التكاملات الآتية:

is
$$\frac{\sec x}{\sin x - \cos x} dx = \int \frac{\frac{\sec x}{\cos x}}{\left(\frac{\sin x}{\cos x} - 1\right)} dx$$

$$= \int \frac{\sec^2 x}{(\tan x - 1)} dx = \ln|\tan x - 1| + C$$

$$\int \frac{1}{x \ln x^3} dx = \int \frac{1}{3x \ln x} dx = \frac{1}{3} \int \frac{\frac{1}{x}}{\ln x} dx = \frac{1}{3} \ln|\ln x| + C$$

$$a>0$$
: عيث: $a>0$ قاجد قيمة الثابت $a>0$ عيث: $a>0$ تبرير: إذا كان: $a>0$ عيث: $a>0$

$$\int_{1}^{a} \left(\frac{1}{x} - \frac{1}{2x+3}\right) dx = \left(\ln|x| - \frac{1}{2}\ln|2x+3|\right)\Big|_{1}^{a}$$

$$= \left(\ln a - \frac{1}{2}\ln(2a+3)\right) - \left(-\frac{1}{2}\ln 5\right) = \ln a - \frac{1}{2}\ln(2a+3) + \frac{1}{2}\ln 5$$

$$= \ln \frac{a}{\sqrt{2a+3}} + \frac{1}{2}\ln 5 \implies \ln \frac{a}{\sqrt{2a+3}} + \frac{1}{2}\ln 5 = 0.5 \ln 5 \implies \ln \frac{a}{\sqrt{2a+3}} = 0$$

$$\Rightarrow \frac{a}{\sqrt{2a+3}} = 1 \implies a = \sqrt{2a+3} \implies a^{2} = 2a+3 \implies a^{2} - 2a-3 = 0$$

$$\Rightarrow (a-3)(a+1) = 0 \implies a^{2} - 2a-3 = 0 \implies (a-3)(a+1) = 0$$

$$\Rightarrow a = 3 \quad , a = -1 \quad a > 0 \quad \forall a \neq 0$$

5) المفهوم الخامس: تكاملات الاقترانات المُتشعّبة

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$
 إذا كان $f(x)$ اقترنًا متصلًا على الفترة $[a,b]$ ، فإنَّ

$$\int_{0}^{5} f(x) dx \quad \text{i.e.} \quad f(x) = \begin{cases} 4, x \ge 3 \\ 2x, x \le 3 \end{cases}$$
 (1)

$$\int_{0}^{5} f(x) dx = \int_{0}^{3} 2x dx + \int_{3}^{5} 4 dx = x^{2} \Big]_{0}^{3} + 4x \Big]_{3}^{5} = 9 - 0 + 20 - 12 = 17$$

$$\int_{0}^{4} f(x) dx = |x^{2} - 2x - 3|$$
 إذا كان (2

$$x^{2}-2x-3=0 \Rightarrow (x-3)(x+1)=0 \Rightarrow x=3$$
, $x=-1$

$$\int_{-2}^{4} f(x) dx = \int_{-2}^{-1} (x^2 - 2x - 3) dx + \int_{-1}^{3} (3 + 2x - x^2) dx + \int_{3}^{4} (x^2 - 2x - 3) dx$$

$$= \left(\frac{1}{3}x^3 - x^2 - 3x\right) \bigg]_{-2}^{-1} + \left(3x + x^2 - \frac{1}{3}x^3\right) \bigg]_{-1}^{3} + \left(\frac{1}{3}x^3 - x^2 - 3x\right) \bigg]_{3}^{4} = \frac{46}{3}$$

$$1)\int_{-1}^{3} f(x)dx \quad \text{i.i.} \quad f(x) = \begin{cases} 4x , x \ge 2 \\ 2x+1, x \le 2 \end{cases} \quad \text{i.i.} \quad 2)\int_{0}^{4} |2x-3| \, dx = \dots \frac{17}{2}$$

(الجواب: 28=10+11)

$$\int_{-1}^{3} f(x)dx$$
 إذا كان: $f(x) = \begin{cases} 1+x & , x < 1 \\ 2x & , x \ge 1 \end{cases}$ إذا كان (a)

.
$$\int_{-2}^{2} f(x)dx$$
 : قاجد قيمة $f(x) = |1 - x|$ إذا كان: $\int_{-4}^{0} f(x)dx$ قيمة $f(x) = |x^{2} - 1|$ فأجد قيمة ودا كان: $f(x) = |x^{2} - 1|$

a
$$\int_{-1}^{3} f(x) dx = \int_{-1}^{1} (1+x) dx + \int_{1}^{3} 2x dx$$

$$= \left(x + \frac{1}{2}x^{2}\right)\Big|_{-1}^{1} + x^{2}\Big|_{1}^{3} = \left(1 + \frac{1}{2}\right) - \left(-1 + \frac{1}{2}\right) + 9 - 1 = 10$$

$$f(x) = \begin{cases} x^{2} - 1, x < -1 \\ 1 - x^{2}, -1 \le x \le 1 \\ x^{2} - 1, x > 1 \end{cases}$$

$$\int_{-1}^{1} (x^{2} - 1) dx + \int_{-1}^{0} (1 - x^{2}) dx = \left(\frac{1}{3}x^{3} - x\right) \Big|_{-1}^{1} + \left(x - \frac{1}{3}x^{3}\right) \Big|_{-1}^{0} = \frac{56}{3}$$

$$|\sin x| = \begin{cases} \sin x & , 0 \le x \le \pi \\ -\sin x & , \pi < x \le 2\pi \end{cases}$$

$$\int_{0}^{2\pi} |\sin x| \, dx = \int_{0}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} -\sin x \, dx$$

$$= -\cos x|_{0}^{\pi} + \cos x|_{\pi}^{2\pi} = -(\cos \pi - \cos 0) + \cos 2\pi - \cos \pi = 4$$

$$\begin{vmatrix} 34 \\ |x^2 - 4x + 3| = \begin{cases} x^2 - 4x + 3 & , x < 1 \\ -x^2 + 4x - 3, 1 \le x \le 3 \\ x^2 - 4x + 3 & , x > 3 \end{vmatrix}$$

$$\int_0^4 |x^2 - 4x + 3| \, dx = \int_0^1 (x^2 - 4x + 3) \, dx + \int_1^3 (-x^2 + 4x - 3) \, dx + \int_3^4 (x^2 - 4x + 3) \, dx$$

$$= \left(\frac{1}{3}x^3 - 2x^2 + 3x\right)\Big|_0^1 + \left(-\frac{1}{3}x^3 + 2x^2 - 3x\right)\Big|_1^3 + \left(\frac{1}{3}x^3 - 2x^2 + 3x\right)\Big|_3^4$$

$$= \frac{1}{3} - 2 + 3 - 0 + (-9 + 18 - 9) - \left(-\frac{1}{3} + 2 - 3\right) + \frac{64}{3} - 32 + 12 - (9 - 18 + 9) = 4$$

35
$$|x-3| = {3-x , x \le 3 \atop x-3 , x > 3}$$
 National Center Nation
$$\int_{1}^{4} (3-|x-3|) dx = \int_{1}^{3} (3-(3-x)) dx + \int_{3}^{4} (3-(x-3)) dx$$

$$= \int_{1}^{3} dx + \int_{3}^{4} (6-x) dx = \frac{1}{2}x^{2} \Big|_{1}^{3} + \left(6x - \frac{1}{2}x^{2}\right) \Big|_{3}^{4} = \frac{9}{2} - \frac{1}{2} + 24 - 8 - (18 - \frac{9}{2}) = \frac{13}{2}$$

$$\begin{vmatrix} 36 \\ \int_{-1}^{1} f(x) dx = \int_{-1}^{0} (x^{2} + 4) dx + \int_{0}^{1} (4 - x) dx \\ = \left(\frac{1}{3}x^{3} + 4x\right) \Big|_{-1}^{0} + \left(4x - \frac{1}{2}x^{2}\right) \Big|_{0}^{1} = 0 - \left(-\frac{1}{3} - 4\right) + 4 - \frac{1}{2} - 0 = \frac{47}{6} \end{vmatrix}$$

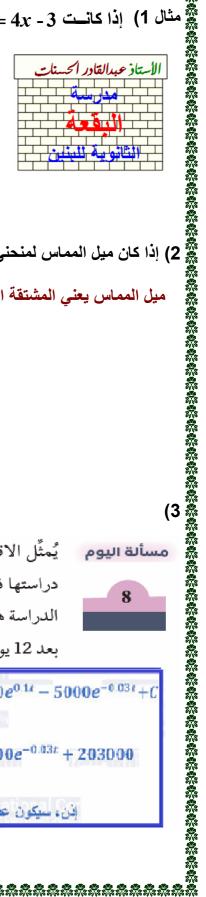
 $\Rightarrow f(x) = 2x^2 - 3x + 2$

6) المفهوم السادس: تطبيقات التكامل: الشرط الأوّلي

الشرط الأوَّلي هو نقطة تُحقِّق الاقتران الأصلي ، ويُمكِن بتعويضها إيجاد قيمة الثابت ٢٠، وبالتالي إيجاد الاقتران الأصلي الوحيد الذي يُحقق شرط المسألة .

(1،1) علماً بأن منحناه يمر بالنقطة f(x) فجد قاعدة الاقتران f(x) علماً بأن منحناه يمر بالنقطة والمثال 1،1

$$f'(x) = 4x - 3 \Rightarrow \int f'(x) dx = \int (4x - 3) dx$$
$$\Rightarrow f(x) = 2x^2 - 3x + c$$
$$\Rightarrow (1,1): 2 - 3 + c = 1 \Rightarrow c = 2$$



ميل المماس يعنى المشتقة الأولى

2) إذا كان ميل المماس لمنحنى الاقتران y هو $\frac{6}{r^2}$ ، فجد قاعدة الاقتران y علماً بأن منحناه يمر بالنقطة (2،1-)

$$f'(x) = \frac{6}{x^2} = 6x^{-2} \Rightarrow \int f'(x) dx = \int 6x^{-2} dx$$

$$\Rightarrow f(x) = -6x^{-1} + c$$

$$\Rightarrow (-2,1) : -6(-2)^{-1} + c = 1 \Rightarrow \frac{-6}{-2} + c = 1 \Rightarrow c = -2$$

$$\Rightarrow f(x) = \frac{-6}{x} - 2$$

يُمثِّل الاقتران P(t) عدد الخلايا البكتيرية بعد t يومًا من بَدْء

دراستها في مجتمع بكتيري. إذا كان عدد هذه الخلايا عند بَدْء الدراسة هو 200000 خلية، فأجد عددها في المجتمع البكتيري

 $P'(t) = 200e^{0.1t} + 150e^{-0.03t}$: بعد 12 يومًا من بَدْء الدراسة، علمًا بأنَّها تتغيَّر بمُعدَّل

$$P(t) = \int (200e^{0.1t} + 150e^{-0.03t})dt = rac{200}{0.1}e^{0.1t} + rac{150}{-0.03}e^{-0.03t} + C = 2000e^{0.1t} - 5000e^{-0.03t} + C$$
 $P(0) = 2000 - 5000 + C$
 $200000 = -3000 + C \Rightarrow C = 203000 \implies P(t) = 2000e^{0.1t} - 5000e^{-0.03t} + 203000$
 $P(12) = 2000e^{1.2} - 5000e^{-0.36} + 203000 \approx 206152$
 $E(t) = 2000e^{1.2} + 2000e^{0.1t} = 2000e^{0.1t} = 2000e^{0.1t} = 2000e^{0.1t}$

🍂 أتحقُّق من فهمي

تلوُّث: تسرَّب نفط من ناقلة بحرية، مُكوِّنًا بقعة دائرية الشكل على سطح الماء، نصف قُطْرها (R(t) قدمًا بعد t دقيقة من بَدْء التسرُّب.

R(0)=0 إذا كان نصف قُطْر الدائــرة يزداد بمُعدَّل: $\frac{21}{0.07t+5}=\frac{21}{0.07t+5}$ ، فأجد R(t)، علمًا بأنَّ

y يُمثِّل الاقتران: $\frac{dy}{dx} = e^{2x} - 2e^{-x}$ ميل المماس لمنحنى الاقتران $\frac{dy}{dx}$ أجد قاعدة الاقتران y إذا علمْتُ أنَّ منحناه يمرُّ بالنقطة (0,1).

 $f(x) = \cos^2 x$ يُمثِّل الاقتران: $f'(x) = \cos^2 x$ ميل المماس لمنحنى الاقتران $f(x) = \cos^2 x$. أجد قاعدة الاقتران $f(x) = \cot^2 x$ أجد قاعدة الاقتران $f(x) = \cot^2 x$

بيئة: في دراسة تناولت أحد أنواع الحيوانات المُهدَّدة بالانقراض في غابة، تَبيَّن أنَّ عدد حيوانات هذا النوع P(t) يتغيَّر بمُعدَّل:

الدراسة: $P'(t) = -0.51e^{-0.03t}$ الزمن بالسنوات بعد بَدْء الدراسة:

- ھ أجـد قاعدة الاقتران (P(t عند أيِّ زمن t، علمًا بأنَّ عدد حيوانات هذا النوع عند بَدْء الدراسة هو 500 حيوان.
 - 49 أجد عدد الحيوانات بعد 10 سنوات من بَدْء الدراسة، مُقرِّبًا إجابتي إلى أقرب عدد صحيح.

طب: في تجربة لدواء جديد أُعطِي لمريض لديه ورم حميد، حجمه $30\,\mathrm{cm}^3$ ، تَبيَّن أَنَّ حجم الورم بعد t يومًا من بَدْء التجربة يتغيَّر بمُعلَّل: $P'(t) = 0.15 - 0.9e^{0.006t}$ مَقيسًا بوحدة ($\mathrm{cm}^3/\mathrm{day}$):

- أجد قاعدة حجم الورم بعد t يومًا من بَدْء التجربة.
 - أجد حجم الورم بعد 10 أيام من بَدْء التجربة.

يتم ضُخ الهواء داخل بالون كروي الشكل ، فيصبح نصف قطره (y) سنتيمترا بعد (t) ثانية

، وكان نصف قطر البالون بعد (4) ثوان من بدء النفخ يساوي (20) سنتيمترا ، وكان نصف قطر البالون بعد (4) ثوان من بدء النفخ يساوي (20) سنتيمترا فجد قاعدة (y) بدلالة (t)

$$R(t) = \int \frac{21}{0.07t + 5} dt$$

$$= \frac{21}{0.07} \int \frac{0.07}{0.07t + 5} dt = 300 \ln|0.07t + 5| + C$$

$$R(0) = 300 \ln 5 + C \implies 0 = 300 \ln 5 + C \implies C = -300 \ln 5$$

$$R(t) = 300 \ln|0.07t + 5| - 300 \ln 5 = 300 \ln \left|\frac{0.07t + 5}{5}\right| = 300 \ln|0.014t + 1|$$

$$y = \int (e^{2x} - 2e^{-x}) dx = \frac{1}{2}e^{2x} + 2e^{-x} + C$$

$$y|_{x=0} = \frac{1}{2} + 2 + C \implies 1 = \frac{5}{2} + C \implies C = -\frac{3}{2} \implies y = \frac{1}{2}e^{2x} + 2e^{-x} - \frac{3}{2}$$

$$f(x) = \int \cos^2 x \, dx = \frac{1}{2} \int (1 + \cos 2x) \, dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + C$$

$$f(0) = \frac{1}{2} \left(0 + \frac{1}{2} \sin 0 \right) + C \implies 0 = 0 + C \implies C = 0 \implies f(x) = \frac{1}{2} x + \frac{1}{4} \sin 2x$$

$$P(t) = \int -0.51 e^{-0.03t} dt = \frac{-0.51}{-0.03} e^{-0.03t} + C = 17 e^{-0.03t} + C$$

$$P(0) = 17 + C \implies 500 = 17 + C \implies C = 483 \implies P(t) = 17 e^{-0.03t} + 483$$

$$P(10) = 17 e^{-0.3} + 483 \approx 496$$

$$R(t) = \int \frac{21}{0.07t + 5} dt$$

$$= \frac{21}{0.07} \int \frac{0.07}{0.07t + 5} dt = 300 \ln |0.07t + 5| + C$$

$$R(0) = 300 \ln 5 + C \implies 0 = 300 \ln 5 + C \implies 0 = 300 \ln |0.07t + 5| = 300 \ln$$

7) المفهوم السابع: تطبيقات التكامل: الحركة في مسار مستقيم

الإزاحة هي: التغيّر في موقع الجسم ، فإذا كان (s(t موقع جسم عند الزمن t، فإنّ الإزاحة على الفترة الزمنية s(t) - s(t₂) - s(t₁) هي: [t₁, t₂] هي: s(t₂) - s(t₁) ، وقد تكون قيمتها موجبةً، أو سالبةً، أو صفرًا، حسب اتجاه حركة الجسم.

ملاحظة : المسافة هي طول المسار الذي يقطعه الجسم بصرف النظر عن الاتجاه، وقيمتها أكبر من أو تساوي الصفر.

الإزامة الإزامة المتجهة هي: v(t)=s'(t) الإزامة المتحه المتجهة هي: s(t)=s'(t)، فإنَّ سرعته المتجهة هي: v(t)=s'(t)

الإزاحة = تكامل السرعة

 $s(t_2)-s(t_1)=\int_{t_1}^{t_2}v(t)dt$: هي $[t_1,t_2]$ هي الفترة الزمنية وإزاحته في الفترة الزمنية

أمًا إذا كان المطلوب إيجاد المسافة الكلية التي قطعها جسم خلال فترة زمنية فيجب تحديد الفترات الزمنية الجزئية التي تكون التي تكون عندها السرعة سالبة (يتحرَّك الجسم إلى الجهة السالبة)، وتحديد الفترات الزمنية الجزئية التي تكون عندها السرعة موجبة(يتحرَّك الجسم إلى الجهة الموجبة) . وفي الحالتين:المسافة = تكامل اقتران السرعة [v(t)]

المسافة الكلية المقطوعة

v(t)=s'(t)=s'(t) إذا تحرِّك جسم في مسار مستقيم وَفق اقتران الموقع s(t)، فإنَّ سرعته المتجهة هي v(t)=s'(t)=s'(t) والمسافة الكلية التي قطعها في الفترة الزمنية s(t)=s(t)=s(t) هي s(t)=s(t)=s(t) المسافة = تكامل السرعة السرعة المسافة الكلية التي قطعها في الفترة الزمنية s(t)=s(t)=s(t)

مثال : يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t)=2\sin t$ ، مثال : يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: 1) جد موقع الجسم بعد $(\frac{\pi}{4})$ ثانية علماً أنه تحرك من نقطة الأصل

 $s(t) = \int v(t) dt = \int 2 \sin t dt = -2 \cos t + c_1$

$$s(0) = 0 \Rightarrow -2\cos 0 + c_1 = 0 \Rightarrow c_1 = 2$$

$$\Rightarrow s(t) = -2\cos t + 2 \Rightarrow s(\frac{\pi}{4}) = -2\cos(\frac{\pi}{4}) + 2 = 2 - \sqrt{2}$$

$$s(t_2) - s(t_1) = \int_{t_1}^{t_2} v(t) dt$$
 [0,3 π] : عن الفترة (2) جد إزاحة الجُسنَيْم في الفترة

$$s(3\pi) - s(0) = \int_{0}^{3\pi} 2\sin t \ dt = -2\cos t \Big]_{0}^{3\pi} = -2(\cos 3\pi - \cos 0) = +4$$

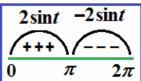
 $[0,2\pi]$ عبد المسافة الكلية التي قطعها الجُسَيْم في الفترة (3

 $2 \sin t = 0$

$$\int_{0}^{2\pi} |v(t)| dt = \int_{0}^{\pi} 2 \sin t dt + \int_{\pi}^{2\pi} (-2 \sin t) dt$$

 $\Rightarrow t = 0 , t = \pi , t = 2\pi$

$$= -2\cos t \Big|_0^{\pi} + 2\cos t \Big|_{\pi}^{2\pi} = 4 + 2 = 6$$



رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531) 23</mark>

ر أتحقُّق من فهمي يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t)=3\cos t$ ميث t الزمن بالثواني، وv سرعته المتجهة بالمتر لكل ثانية: v إذا بدأ الجُسَيْم حركته من نقطة الأصل، فأجد موقع الجُسَيْم بعد $\frac{\pi}{6}$ ثانية من بَدْء الحركة.

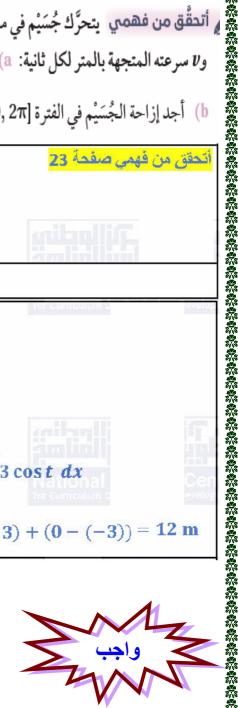
 $(c \quad [0,2\pi]$ أجد إزاحة الجُسَيْم في الفترة $[0,2\pi]$. أجد المسافة الكلية التي قطعها الجُسَيْم في الفترة (b

$$s(t) = \int v(t)dt = \int 3\cos t \, dt = 3\sin t + C$$
 $s(0) = 3\sin 0 + C \Longrightarrow 0 = 3\sin 0 + C \Longrightarrow C = 0$
 $s(t) = 3\sin t \Longrightarrow s\left(\frac{\pi}{6}\right) = 3\sin\left(\frac{\pi}{6}\right) = 1.5 \,\mathrm{m}$
b $s(2\pi) - s(0) = 3\sin(2\pi) - 3\sin(0) = 0 \,\mathrm{m}$

$$|v(t)| = |3\cos t| = \begin{cases} 3\cos t, 0 \le t < \frac{\pi}{2} \\ -3\cos t, \frac{\pi}{2} \le t \le \frac{3\pi}{2} \\ 3\cos t, \frac{3\pi}{2} < t \le 2\pi \end{cases}$$

$$\int_{0}^{2\pi} |v(t)| \, dx = \int_{0}^{\frac{\pi}{2}} 3\cos t \, dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} -3\cos t \, dx + \int_{\frac{3\pi}{2}}^{2\pi} 3\cos t \, dx$$

$$= 3\sin t|_{0}^{\frac{\pi}{2}} - 3\sin t|_{\frac{\pi}{2}}^{\frac{3\pi}{2}} + 3\sin t|_{\frac{3\pi}{2}}^{\frac{2\pi}{2}} = (3-0) - (-3-3) + (0-(-3)) = 12 \text{ m}$$



 $v(t) = e^{t+1} + \frac{2}{t}$:يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران (1

إذا كانت إزاحة الجسيم بعد ثانية واحدة تساوي (e² m) ، فجد موقع الجسم بعد (5) ثوان

a(t)=12t - 6 : يتحرَّك جُسَيْم في مسار مستقيم، ويعطى تسارعه بالعلاقة : 6

إذا كانت السرعة الابتدائية للجسيم تساوي 3 m/sec ، وإزاحته بعد ثانية واحدة تساوي (7 m) ،

Abdulkadir Hasanat 078 531 88 77

ب) موقع الجسم بعد (3) ثوان

فجد أ) سرعة الجسم بعد ثانيتين

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 87) 24</mark>

يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t) = e^{-2t}$ ، حيث t الزمن بالثواني، وv سرعته المتجهة بالمتر لكل ثانية. إذا كان الموقع الابتدائي للجُسَيْم هو \mathbf{m} 3، فأجد كُلَّا ممّا يأتي:

$$\begin{array}{ll}
46 & s(t) = \int e^{-2t} dt = -\frac{1}{2}e^{-2t} + C \Longrightarrow s(0) = -\frac{1}{2} + C = 3 \Longrightarrow C = \frac{7}{2} \\
3 = -\frac{1}{2} + C \Longrightarrow C = \frac{7}{2} \Longrightarrow s(t) = -\frac{1}{2}e^{-2t} + \frac{7}{2} \\
47 & s(100) = -\frac{1}{2}e^{-200} + \frac{7}{2} \approx 3.5 \, m
\end{array}$$

$$v(t) = \begin{cases} 2t+4 & , 0 \le t \le 6 \\ 20-(t-8)^2 & , 6 < t \le 10 \end{cases}$$
 : يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران:

حيث t الزمن بالثواني، وv سرعته المتجهة بالمتر لكل ثانية. إذا بدأ الجُسَيْم حركته من نقطة الأصل، فأجد كُلًّا ممّا يأتي:

$$v(t) = \begin{cases} 2t + 4 &, & 0 \le t \le 6 \\ 16t - t^2 - 44 &, & 6 < t \le 10 \end{cases} \implies s(t) = \int v(t) dt : 0 \le t \le 6$$

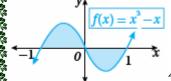
$$s(t) = \int (2t + 4) dt = t^2 + 4t + C_1 \implies s(0) = 0 \implies C_1 = 0$$

$$\implies s(t) = t^2 + 4t , 0 \le t \le 6 \implies s(5) = 25 + 20 = 45 \text{ m}$$

$$s(t) = \int (16t - t^2 - 44) \ dt = 8t^2 - \frac{1}{3}t^3 - 44t + C_2 : 6 < t \le 10$$
 المنه (6, 10] إليجاد قيمة c_2 نستعمل موقع الجسم عند c_3 موقعًا ابتدائيًا بالنسبة للفترة c_4 الموقع الجسم عند c_5 من القتران الموقع الذي وجدناه في السؤال السابق بالنسبة للفترة c_4 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة للفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة للفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة للفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة للفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة للفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة الفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة الفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة الفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة الفترة c_5 من اقتران الموقع الذي وجدناه في السؤال السابق بالنسبة الفترة الموقع الذي الموقع المو

8) المفهوم الثامن: تطبيقات التكامل: المساحة

مساحة المنطقة المحصورة بين منحنى الاقتران f والمحور f والمحور f تساوي f تساوي f تساوي منحنى الاقتران f والمساحة معكوس ناتج التكامل وإذا كانت المنطقة تحت محور السينات تكون المساحة معكوس ناتج التكامل



مثال: جد مساحة المنطقة المحصورة بين منحنى الاقتران: $f(x) = x^3 - x$ ، والمحور (x) و $f(x) = x^3 - x$ الحل: جزء من المنحنى فوق المحور (x) وجزء تحته لذلك نجزئ التكامل

$$A = \int_{-1}^{0} (x^3 - x) dx + (-\int_{0}^{-1} (x^3 - x) dx)$$

$$= \left(\frac{1}{4}x^4 - \frac{1}{2}\right) \Big]_{-1}^0 - \left(\frac{1}{4}x^4 - \frac{1}{2}\right) \Big]_0^1 = \left((0) - \left(-\frac{1}{4} - \frac{1}{2}\right)\right) - \left(\left(\frac{1}{4} - \frac{1}{2}\right) - (0)\right) = \frac{1}{2}$$

elen E

 $\begin{bmatrix} 0 \ , \frac{\pi}{4} \end{bmatrix}$ الفترة $f(x) = \cos^2 x - \sin^2 x$ والمحور (x) في الفترة أثبت أن مساحة المحصورة بين منحنى $g(x) = \sin x$ والمحور (x) في نفس الفترة تساوي مثلي المساحة المحصورة بين منحنى $g(x) = \sin x$

آجد مساحة المنطقة المُظلَّلة بين المحور x ومنحنى الاقتران:

ور. المُمثّل في الشكل المجاور. $f(x) = e^{0.5x} - 2$

$$f(x) = e^{0.5x} - 2$$

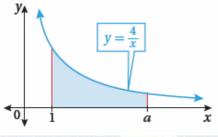
$$y$$

$$2$$

$$4$$

$$x$$

$$A = \int_{2}^{4} (e^{0.5x} - 2) dx = (2e^{0.5x} - 2x)|_{2}^{4} = 2e^{2} - 8 - (2e - 4) = 2e^{2} - 2e - 4$$

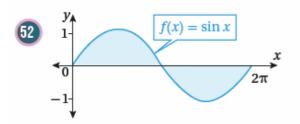


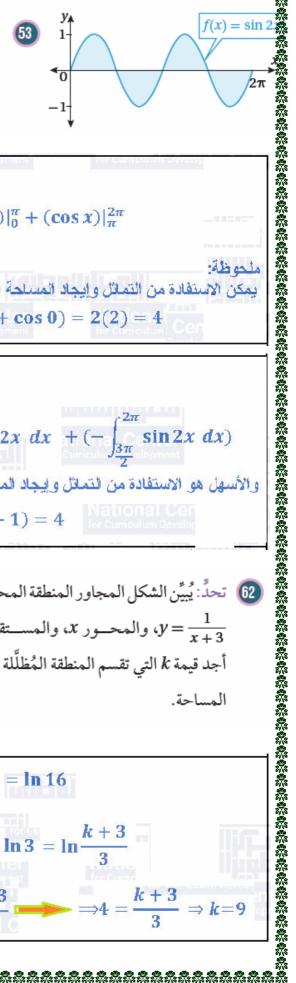
يُبيِّن الشكل المجاور منحنى الاقتران: $\frac{4}{x}$ المحاور منحنى الاقتران مساحة المنطقة المحصورة بين منحنى الاقتران f(x)، والمحور x، والمستقيمين: x = a، وهي 10 وحدات مربعة، فأجد قيمة الثابت a.

$$\begin{vmatrix} 40 \\ A = \int_{1}^{\alpha} \frac{4}{x} dx = 4 \ln|x||_{1}^{\alpha} = 4 \ln \alpha - 4 \ln 1 = 4 \ln \alpha$$

$$\Rightarrow 4 \ln \alpha = 10 \Rightarrow \ln \alpha = \frac{5}{2} \Rightarrow \alpha = e^{\frac{5}{2}}$$

مهارات التفكير العليا ◘ ◘ تبرير: أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين، مُبرِّرًا إجابتي:





$$|\mathbf{52}| \sin x = \mathbf{0} \implies x = \mathbf{0}, \pi, 2\pi$$

$$A = \int_0^{\pi} \sin x \ dx + (-\int_{\pi}^{2\pi} \sin x \ dx) = (-\cos x)|_0^{\pi} + (\cos x)|_{\pi}^{2\pi}$$

$$= -\cos \pi + \cos 0 + \cos 2\pi - \cos \pi = 4$$

$$A = 2 \int_0^{\pi} \sin x \ dx = 2(-\cos x)|_0^{\pi} = 2(-\cos \pi + \cos 0) = 2(2) = 4$$

$$|\sin 2x = 0| \Rightarrow x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$$

$$A = \int_0^{\frac{\pi}{2}} \sin 2x \ dx + \left(-\int_{\frac{\pi}{2}}^{\pi} \sin 2x \ dx\right) + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin 2x \ dx + \left(-\int_{\frac{3\pi}{2}}^{2\pi} \sin 2x \ dx\right)$$

والأسهل هو الاستفادة من التماثل وإيجاد المسلحة المطلوبة كما يأتي:

$$A = 4 \int_0^{\frac{\pi}{2}} \sin 2x \ dx = -2 \cos 2x \Big|_0^{\frac{\pi}{2}} = -2(-1 - 1) = 4$$

$$y = \frac{1}{x+3}$$

$$0$$

$$k$$

$$45$$

$$x$$

x = 45، والمحور x، والمستقيمين: x = 0، و $x = \frac{1}{x+3}$ أجد قيمة k التي تقسم المنطقة المُظلَّلة إلى منطقتين متساويتين في

62
$$A = \int_0^{45} \frac{1}{x+3} dx = \ln|x+3||_0^{45} = \ln 48 - \ln 3 = \ln 16$$

$$\frac{1}{2}A = \int_0^k \frac{1}{x+3} \, dx = \ln|x+3||_0^k = \ln(k+3) - \ln 3 = \ln\frac{k+3}{3}$$

$$\Rightarrow \frac{1}{2}\ln 16 = \ln \frac{k+3}{3} \Rightarrow \ln 16^{1/2} = \ln \frac{k+3}{3} \Rightarrow k=9$$

$$\mathbf{1} \int 4e^{-5x} dx \qquad \mathbf{2} \int (\sin 2x)^{-5x} dx$$

$$\oint \frac{e^x + 4}{e^{2x}} dx$$

$$\int \left(\frac{\cos x}{\sin^2 x} - 2e^x \right) dx$$

$$\int \ln e^{\cos x} \, dx$$

$$\int \sin^2 \frac{x}{2} \, dx$$

$$\int \frac{3 - 2\cos\frac{1}{2}x}{\sin^2\frac{1}{2}x} \ dx$$

$$\begin{array}{c} 27 \left(973 \, 531 \, 88 \, 77 \right) \\ 27 \left(973 \, 531 \, 88 \,$$

$$\int_0^{\pi/3} \sin x \, \cos x \, dx$$

$$\int_0^{\pi/4} (\cos x + 3\sin x)^2 dx$$

$$\int_{0}^{1} \frac{6x}{3x+2} dx$$

$$16 \int_{0}^{1} \frac{e^{x}}{e^{x} + 4} dx = \ln|e^{x} + 4||_{0}^{1} = \ln(e + 4) - \ln 5 = \ln \frac{e + 4}{5}$$

$$17 \int_{1}^{2} \frac{1}{3x - 2} dx = \frac{1}{3} \int_{1}^{2} \frac{3}{3x - 2} dx = \frac{1}{3} \ln|3x - 2||_{1}^{2} = \frac{1}{3} \ln 4 - 0 = \frac{1}{3} \ln 4$$

$$18 \int_{0}^{\frac{\pi}{3}} \sin x \cos x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin 2x dx = -\frac{1}{4} \cos 2x \Big|_{0}^{\frac{\pi}{3}} = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$

$$\int_{-1}^{1} |3x - 2| dx = \int_{-1}^{\frac{2}{3}} (2 - 3x) dx + \int_{\frac{2}{\pi}}^{1} (3x - 2) dx$$

$$= \left(2x - \frac{3}{2}x^{2}\right)\Big|_{-1}^{2} + \left(\frac{3}{2}x^{2} - 2x\right)\Big|_{\frac{2}{3}}^{1} = \frac{13}{3}$$

$$\int_{0}^{\frac{\pi}{4}} (\cos x + 3\sin x)^{2} dx = \int_{0}^{\frac{\pi}{4}} (\cos^{2} x + 6\sin x \cos x + 9\sin^{2} x) dx$$

$$= \int_{0}^{\frac{\pi}{4}} (1 - \sin^{2} x + 6\sin x \cos x + 9\sin^{2} x) dx$$

$$= \int_{0}^{\frac{\pi}{4}} (1 + 8\sin^{2} x + 3\sin^{2} x) dx = \int_{0}^{\frac{\pi}{4}} (1 + 4(1 - \cos^{2} x) + 3\sin^{2} x) dx$$

$$= \int_{0}^{\frac{\pi}{4}} (5 - 4\cos^{2} x + 3\sin^{2} x) dx = \left(5x - 2\sin^{2} x - \frac{3}{2}\cos^{2} x\right) \Big|_{0}^{\frac{\pi}{4}} = \frac{5\pi - 2}{4}$$

 $\frac{4}{2}\ln 5 + \frac{4}{2}\ln 2 = 2 + \frac{4}{3}\ln \frac{2}{5}$

$$k > \frac{1}{2}$$
 : فأجد قيمة الثابت k حيث: $\int_{1}^{k} \frac{4}{2x-1} \ dx = 1$ إذا كان: 26

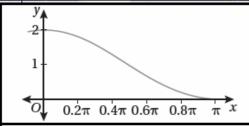
$$a>0$$
 : فأجد قيمة الثابت $a>0$: إذا كان $a>0$: أبد كان $\int_0^{\ln a} (e^x+e^{-x}) \ dx=\frac{48}{7}$

$$\begin{vmatrix}
25 \\
\int_{1}^{5} f(x) dx &= \int_{1}^{3} (2x+1) dx + \int_{3}^{5} (10-x) dx \\
&= (x^{2}+x) \Big|_{1}^{3} + \Big(10x - \frac{1}{2}x^{2}\Big) \Big|_{3}^{5} = 12 - 2 + 50 - \frac{25}{2} - 30 + \frac{9}{2} = 22
\end{vmatrix}$$

$$\frac{26}{\int_{1}^{k} \frac{4}{2x - 1} dx} = 1 \Rightarrow 2 \ln|2x - 1||_{1}^{k} = 1 \Rightarrow 2 \ln|2k - 1| = 1 \Rightarrow 2 \ln(2k - 1) = 1$$

$$\Rightarrow \ln(2k - 1) = \frac{1}{2} \quad , k > \frac{1}{2} \quad \forall i \Rightarrow 2k - 1 = e^{\frac{1}{2}} \Rightarrow k = \frac{e^{\frac{1}{2}} + 1}{2}$$

$$\begin{array}{ll}
27 & \int_{0}^{\ln a} (e^{x} + e^{-x}) dx = \frac{48}{7} \Rightarrow (e^{x} - e^{-x})|_{0}^{\ln a} = \frac{48}{7} \Rightarrow \left(a - \frac{1}{a}\right) - (1 - 1) = \frac{48}{7} \\
\Rightarrow a - \frac{1}{a} - \frac{48}{7} = 0 \Rightarrow 7a^{2} - 48a - 7 = 0 \Rightarrow (7a + 1)(a - 7) = 0 \\
\Rightarrow a = -\frac{1}{7} \left(\dot{u}\dot{a}\dot{a}\right), \quad a = 7
\end{array}$$



 $f(x) = 2\cos^2 0.5x$ يُبيِّن الشكل المجاور جزءًا من منحنى الاقتران: 28 أجد مساحة المنطقــة المحصورة بيــن منحنى الاقتــران والم الإحداثيين الموجبين.

28
$$A = \int_0^{\pi} 2\cos^2\frac{1}{2}x \, dx = \int_0^{\pi} (1+\cos x) dx = (x+\sin x)|_0^{\pi} = \pi$$

في كلِّ ممّا يأتي المشــتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحني y=f(x). أستعمل المعلومات المعطاة لإيجاد قاعدة

29
$$f'(x) = e^{-x} + x^2$$
; (0, 4)

30 $f'(x) = \frac{3}{x} - 4$; (1, 0) : f(x) الاقتران

بتحـرَّك جُسَيْم فـي مسـار مسـتقيم، وتعطـى سـرعته بالاقتـران: $rac{-t}{1+t^2}=v$ ، حيـث t الزمـن بالثوانـي، وv سـرعته بالمتر

لكل ثانية: 31 أجد إزاحة الجُسَيْم في الفترة [0, 3]. عن أجد المسافة الكلية التي قطعها الجُسَيْم في الفترة [0, 3].

31
$$s(3) - s(0) = \int_0^3 v(t) dt = \int_0^3 \frac{-t}{1+t^2} dt = -\frac{1}{2} \ln(1+t^2) \Big|_0^3 = -\frac{1}{2} \ln 10 \text{ m}$$

32
$$d = \int_0^3 |v(t)| dt = \int_0^3 \frac{t}{1+t^2} dt = \frac{1}{2} \ln(1+t^2) \Big|_0^3 = \frac{1}{2} \ln 10 \text{ m}$$

يتحـرَّك جُسَيْم في مسـار مسـتقيم، وتعطـى سـرعته بالاقتـران: $v(t)=6 \sin 3t$ ، حيث t الزمـن بالثواني، وv سـ

لكل ثانية:
$$33$$
 أجد إزاحة الجُسَيْم في الفترة $\left[0, \frac{\pi}{2}\right]$. $\left[0, \frac{\pi}{2}\right]$ أجد المسافة الكلية التي قطعها الجُسَيْم في الفترة $\left[0, \frac{\pi}{2}\right]$.

$$u(t) = \begin{cases}
8t - t^2, & 0 \le t \le 6 \\
15 - \frac{1}{2}t, & t > 6
\end{cases}$$
 يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته بالاقتران: $0 \le t \le 6$ عيث t الزمن بالثواني، و t سرعته بالمتر لكل ثانية.

$$s(t) = \int (8t - t^2) dt = 4t^2 - \frac{1}{3}t^3 + C_1$$
 $0 \le t \le 6$ الموقع $s(0) = 0 - 0 + C_1$ $\Rightarrow 0 = 0 + C_1 \Rightarrow C_1 = 0$ $\Rightarrow s(t) = 4t^2 - \frac{1}{3}t^3$ $0 \le t \le 6$ $s(t) = \int \left(15 - \frac{1}{2}t\right) dt = 15t - \frac{1}{4}t^2 + C_2$ $t > 6$ الموقع الابتدائي للجسيم في هذه الفترة هو موقعه في نهاية الفترة الأولى أي $s(6) = 144 - \frac{216}{3} = 72$ نحسب $s(6) = 144 - \frac{216}{3} = 72$ $\Rightarrow s(6) = 90 - 9 + C_2$ $\Rightarrow 72 = 81 + C_2 \Rightarrow C_2 = -9$ $\Rightarrow s(t) = 15t - \frac{1}{4}t^2 - 9$ $\Rightarrow s(40) = 15(40) - \frac{1}{4}(1600) - 9 = 191$ m

$$s(40)-s(0) = \int_{0}^{40} v(t)dt \Rightarrow s(40)=s(0) + \int_{0}^{40} v(t)dt$$

$$= 0 + \int_{0}^{6} (8t - t^{2})dt + \int_{6}^{40} \left(15 - \frac{1}{2}t\right)dt = \left(4t^{2} - \frac{t^{3}}{3}\right)\Big|_{0}^{6} + \left(15t - \frac{t^{2}}{4}\right)\Big|_{6}^{40} = 191 \text{ m}$$

وزارة علمي 2023 ف2

a) $\frac{2^e}{e \ln 2}$ b) $\frac{2^{e-1}}{\ln 2}$

c) $\frac{2^{e}-1}{e \ln 2}$ d) $\frac{1}{e \ln 2}$

:هي $\int_0^1 (2^e)^x dx$ هي (1

a) $-\frac{1}{3}\cot(3x) + \pi x + C$

c) $-\frac{1}{3}\tan(3x) + \pi x + C$: هو $\int \left(\frac{1}{\sin^2(3x)} + \pi\right) dx$ ناتج: (2

b) $\frac{1}{3}\cot(3x) + \pi + C$

d) $\frac{1}{3} \tan(3x) + \pi + C$

a) $\ln|\csc x \cot x| + C$

c) $\ln|\csc x| + C$

3) ناتج: cot(-x) dx هو:

b) $-\ln|\csc x \cot x| + C$

d) $-\ln|\csc x| + C$

a) -3

c) -2

d) 2

 $\int_{3}^{4} |4-2x| dx$ هي: (4

وكان: f(1) = 6، وكان: $f'(x) = \frac{3x^3+1}{x}$ فإنّ قاعدة الاقتران $f'(x) = \frac{3x^3+1}{x}$ (5

a) $f(x) = 3x^2 + \ln|x| + 5$

c) $f(x) = x^3 + \ln|x| - 5$

b) $f(x) = x^3 + \ln|x| + 5$

d) $f(x) = x^3 - \ln|x| + 5$

نتحرك جُسيم في مسار مستقيم، وتُعطى سرعته المتجهة بالاقتران: $v(t) = \frac{-3t}{t^2+2}$ ، حيث t الزمن بالثواني، (6 و 10 سرعته المتجهة بالمتر لكل ثانية. إزاحة الجُسيم بالأمتار في الفترة [0,4] تساوي:

a) $-\frac{3}{2}\ln 3$

b) $-\frac{3}{2}\ln 9$ c) $\frac{3}{2}\ln 3$ d) $\frac{3}{2}\ln 9$

وزارة علمي 2023 ف2 تكميلم

a) $\frac{2}{3 \ln 3}$

c) $\frac{2}{3}$ d) $\frac{8}{3}$

(1) قيمة $\int_{-1}^{1} 3^{x} dx$ تساوي:

a) $-\cos(5x - \frac{3}{2}x^2) + C$

c) $-\frac{\cos(5-3x)}{3} + C$

 $\sin(5-3x) dx$ (2) يساوى:

b) $\cos(5 - 3x) + C$

 $\frac{\cos(5-3x)}{3}+C$

a) x + C

:پساوي $\int (\tan^2 2x - \sec^2 2x) dx$ (3 c) $x - \tan 2x + C$

-x+C

d) tan2x - x + C

: نساوي:
$$f(x) = \begin{cases} (2-3x)^2, & x < 1 \\ 3x^2 - 2x, & x \ge 1 \end{cases}$$
 نساوي: (4

- a) 1
- b) 17
- c) 18

إذا كان: $f'(x) = e^x + e^{-x}$ يمثل ميل المماس لمنحنى الاقتران f ، وكان منحنى الاقتران يمر (5 بالنقطة (0,-1)، فإنّ قاعدة الاقتران f، هي:

- $f(x) = e^x e^{-x} 1$
- c) $f(x) = e^x e^{-x} + 1$
- b) $f(x) = e^x + e^{-x} + 1$
- d) $f(x) = e^x + e^{-x} 1$

ن يتحرك جُسيم في مسار مستقيم، وتُعطى سرعته المتجهة بالاقتران: $v(t)=12t-3t^2$ ، حيث t الزمن بالثواني tو v السرعة المتجهة بالمتر لكل ثانية. فإنّ ازاحة الجسم في الفترة [6,6] تساوي:

- a) -36
- c) 36
- d) -24

وزارة صناعي 2023 ف2

- a) $2\cos(2x \pi) + c$
- c) $-2\cos(2x \pi) + c$
- $\sin(2x-\pi) dx$ هي: -14

- b) $\frac{1}{2}\cos(2x-\pi)+c$
- d $-\frac{1}{2}\cos(2x-\pi)+c$

- a) e^2 b) $e^2 2$ c) $\frac{1}{2}e^2 1$ d) $\frac{1}{2}e^2 2$ (a) $\frac{1}{2}e^2 2$ (b) $e^2 2$ (c) $\frac{1}{2}e^2 1$ d) $\frac{1}{2}e^2 2$ (d) $\frac{1}{2}e^2 2$ (e) $\frac{1}{2}e^2 2$ (f) $\frac{1}{2}e^2 2$ (e) $\frac{1}{2}e^2 2$ (f) $\frac{1}{2}e^2 -$
- a) -3

- d) 4
- $\int_{-1}^{1} (2-|x|) dx$ هي: -16

- a) $\frac{1}{e} 1$ b) $-\frac{1}{e}$ c) $\frac{1}{e}$

- d) $1 \frac{1}{e}$
- :هي $\int_0^1 e^{-x} dx$ هي –17

- a) $\frac{\pi}{2}$
- b) $-\frac{\pi}{2}$ c) $\frac{\pi}{4}$
- d) $-\frac{n}{4}$
- $\int_0^{\frac{\pi}{2}} \cos^2 x \ dx$ هي: –18

 $\left(rac{\pi}{2},2
ight)$ إذا كان: f f الذي يمر منحناه بالنقطة إلى المماس لمنحنى الاقتران f ، فجد قاعدة الاقتران f الذي يمر منحناه بالنقطة f(8 علامات)

وزارة صناعي 2023 تكميلي ف2

a)
$$-3e^{3x-1} + c$$

$$\sqrt{2}e^{3x-1} + c$$

b)
$$3e^{3x-1} + c$$

d)
$$-2e^{3x-1}+c$$

$$\sqrt{-\frac{1}{5}}\sin(7-5x)+c$$
 c) $\frac{1}{5}\sin(7-5x)+c$

c)
$$\frac{1}{5}\sin(7-5x) + a$$

: هو
$$\int \cos(7-5x)dx$$
 هو –15

b)
$$-\frac{1}{7}\sin(7-5x)+c$$

d)
$$\frac{1}{7}\sin(7-5x)+c$$

a)
$$-1 - \frac{\pi}{4}$$

a)
$$-1 - \frac{\pi}{4}$$
 b) $-1 + \frac{\pi}{4}$ c) $1 + \frac{\pi}{4}$

$$\sqrt{1-\frac{\pi}{4}}$$
 هي: $\int_0^{\frac{\pi}{4}} \tan^2 x \ dx$ هي -16

a)
$$6 \ln(e^2 + 1)$$

c)
$$-3 \ln(e^2 + 1)$$

:هي:
$$\int_0^e \frac{6x}{x^2+1} dx$$
 هي: –17

b)
$$-6 \ln(e^2 + 1)$$



c)
$$-14$$

c)
$$-14$$
 d) -6 $= \frac{1}{4} \int_4^6 (5 + |3 - x|) dx$ = -18

$$a$$
 اِذَا كَانِ: $a>0$ ، فجد قيمة الثابت (c

ورادة مناعي 2023 نصيلي فيد
$$2023$$
 نصيلي فيد 203 نصيلي فيد نص

نمارين على الدرس الأول

1)
$$\int 6 e^{2x} dx = a$$
) $6 e^{2x} + c$ b) $3 e^{2x} + c$ c) $12 e^{2x} + c$ d) $6 e^{3x} + c$: $\frac{1}{2} \int 6 e^{2x} dx = a$

$$2)\int_{0}^{1} (3 + e^{x}) dx = a) 3 + e \qquad b) 2 + e \qquad c) e \qquad d) 4 + e$$

3)
$$\int \tan^2 x \, dx = a$$
) $\sec x + c$ b) $\sec^2 x + c$ c) $x - \tan x + c$ d) $\tan x - x + c$

4)
$$\int 4\cos 2x \, dx = a$$
) $8\sin 2x + C$
 c) $-8\sin 2x + C$
 b) $2\sin 2x + C$
 d) $-2\sin 2x + C$

5)
$$\int 2(\sin x - \cos x)^2 dx = a$$
) $x + \sin 2x + C$
 b) $2x + \cos 2x + C$
 c) $x - \sin 2x + C$
 d) $2x - \cos 2x + C$

6)
$$\int_{0}^{6} 12 \cos^{2}(\frac{1}{2}x) dx = a) 6\pi + 3$$
 b) $\pi + 3$ c) $\pi + 3\sqrt{3}$ d) 6π

$$7) \int \frac{\sin 2x}{\sin^2 x} dx = a) 2\ln|\sin x| + C \qquad b) \ln|\sin x| + C$$

$$c) \frac{1}{2} \ln|\sin x| + C \qquad d) \cot x + C$$

$$8)\int_{0}^{3} (1+|2x-4|)dx = a) 8 \quad b) 7 \quad c) 6 \quad d) -1$$

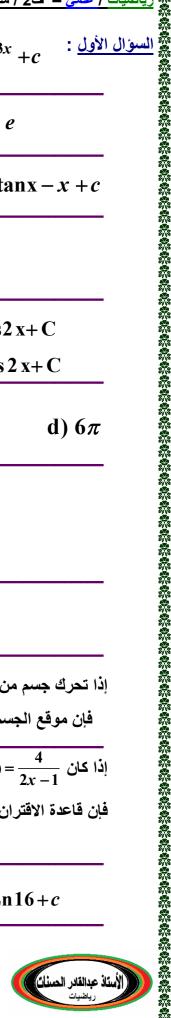
a) 6 b) $2-2\sqrt{3}$ c) 2 d) $\sqrt{3}$ يساوي: $(\frac{\pi}{3})$ ثانية يساوي: فإن موقع الجسم بعد (

(1,4) إذا كان
$$f'(x) = \frac{4}{2x-1}$$
 الذي يمر بالنقطة $f(x)$ المماس لمنحنى الاقتران أور 1)

- a) $\ln |2x-1|+4$
- b) $\ln \left| 2x-1
 ight|$: هي f(x) فإن قاعدة الاقتران
- c) $2\ln|2x-1|+4$
- d) $\ln |2x-1|+2$

$$\begin{cases} 11) \int 4^{2x} dx = a \frac{4^{2x}}{\ln 16} + c \qquad b \frac{4^{2x}}{\ln 4} + c \qquad c \frac{4^{2x}}{\ln 8} + c \qquad d = d \end{cases}$$

$$\int \frac{\ln x^4}{2 \ln x} dx = a \int 4 \ln x + c \quad b \int 4 x + c \quad c \int 2x + c \quad d \int 2x + c \quad d$$



1 2 3 4 5	6 7 8 9 1	0 11 12

جابات الدوائر

ملاحظة مهمة: (نصيحة)

يجب حفظ قو انين اللوغاريتمات وفهم طريقة تحويل المقدار من شكل إلى آخر خصوصاً في الأسئلة الموضوعيا

$$Ln(x y) = Lnx + Lny$$

$$Ln\frac{x}{y} = Lnx - Lny$$

$$Ln\frac{x}{y} = Lnx - Lny$$

$$Ln(x)^{a} = a Ln(x)$$

$$|Ln \ 4 + Ln \ 5 = Ln \ (4 \times 5) = Ln \ 20|$$
 غير معرف $|Ln0:$

$$lne = 1$$

$$3Ln \ 2 = Ln \ 2^3 = Ln \ 8$$

$$\ln 1 = 0$$

$$Ln \ 3x^5 \neq 5Ln \ 3x$$

$$Ln 3x^5 \neq 5Ln 3x$$
 $Ln 4x^2 = Ln 4 + Ln x^2 = Ln 4 + 2Ln x$

السؤال الثاني: جد قيمة التكاملات الآتية:

$$1)\int_{1}^{2} \sqrt[3]{e^{6-3x}} dx \qquad 2) \int 4^{2x-1} dx$$

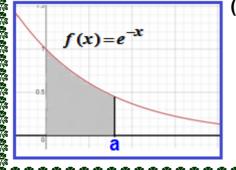
$$3)\int_{\frac{\pi}{2}}^{\frac{\pi}{3}}\cot^2 x\ dx$$

3)
$$\int_{\frac{\pi}{2}}^{3} \cot^2 x \ dx$$
 4) $\int_{0}^{1} \frac{e^{2x} - 3}{e^x - \sqrt{3}} \ dx$

$$f(\frac{\pi}{4})$$
 ، فجد قيمة $f'(x) = \frac{\sin 4x}{e + \sin^2 2x}$ ، فجد قيمة ألسؤال الثالث : إذا كانت

السؤال الرابع : إذا كان معدل تغير مساحة صفيحة غير منتظمة يعطى بالعلاقة $\frac{dA}{dt} = e^{\frac{-t}{10}}$ سنتيمترا مربعا / ث وكانت مساحة الصفيحة تساوي (80 cm²) عندما (t=0) ، جد مساحة سطحها بعد (5) ثوان

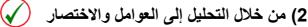
، $f(x) = e^{-x}$ السؤال الخامس : معتمداً الشكل المجاور والذي يمثل منحنى الاقتران



إذا كانت مساحة المنطقة المحصورة بين منحنى الاقتران f(x) والمحور (x) في الفترة [0, a] تساوي (0.5) وحدة مربعة ، فجد قيمة الثابت (a)

التكامل بالتعويض 2 Integration by Substitution





3) من خلال المتطابقات المثلثية

Abdulkadir Hasanat 078 531 88 77

 $I = \int f(x) dx$

 $x = g(u) \xrightarrow{\text{Differentiation}} dx = g'(u) du$

 $I = f(g(u)) \cdot g'(u) du$

4) طريقة التكامل بالتعويض

6) طريقة التكامل بالأجزاء

التكامل بالتعويض للتكاملات غير المحدودة

إذا كان: u=g(x) اقتر انًا قابلًا للاشتقاق، ومداه الفترة I، وكان f اقتر انًا متصلًا على I،

$$\int f(g(x)) g'(x) dx = \int f(u) du$$
 فإنْ:

تقوم طريقة التكامل بالتعويض على أساس تتضمَّن استعمال مُتغيِّر جديد بدلًا من مُتغيِّر التكامل (غالبا ما نختار u) عندها يجب أنْ يكون التكامل الجديد كله بدلالة المُتغيِّر الجديد (حتى dx). وهناك خطوات أساسية لهذه العملية وهي:

- 1) نحدد (u): وهي غالباً ما تكون المقدار داخل الجذر، أو الزاوية في الاقتران المثلثي أو القوة في الأسي
 - 2) نشتق (u) ، ثم نجد (dx) بدلالة (u) و (du)
 - (x) نكتب المُكامَل الجديد في أبسط صورة بعد حذف المقادير المحتوية على (x)
 - (u) نجد التكامل الجديد بدلالة
 - 5) نعيد قيمة (u) التي فرضناها ليصبح المقدار بدلالة (x)

والسؤال الأهم: متى نستخدم طريقة التعويض ؟ وكيف نختارها دون غيرها ؟

الجواب: هناك مسائل يمكن حلها بأكثر من طريقة ، فتكون طريقة التعويض خيارا

وهناك مسائل حلها يتضمن استخدام أكثر من طريقة معا ، أحدها التعويض (وربما نبدأ بها) ولكن هناك قواعد (شبه) ثابتة ، يمكن اعتمادها ، مثلاً

 $\int_{e}^{sinx} \cos x \ dx$ عند وجود مقدار ومشتقته في المسألة نستخدم التعويض

عند وجود اقتران مثلثي زاويته غير خطية ، نبدأ بالتعويض بفرض الزاوية (u)

إذا كان فرض (u) واشتقاقها يؤدي إلى تخفيض قوة المقدار ... نستخدم التعويض وهكذا ...

ولكن ، في معظم الحالات ، يُمكن تجربة التعويض وملاحظ إن كان يؤدي إلى تعقيد المسألة أم تسهيلها

إذا كان المُكامَل يتكون من مقدارين مختلفين في النوع (مثلثي و أسي $\int e^x \cos x \ dx$... لا نستخدم التعويض وهناك عدة حالات للتكامل بالتعويض ، نستعرض معظمها فيما يأتى :

^^^^^

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 27)

1) عندما تكون مشتقة u موجودة بصورة مباشرة في المُكامَل:

$$1) \int 6x(x^2+5)^7 dx ::: u = x^2+5 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$\Rightarrow \int 6x(\mathbf{u})^7 \frac{d\mathbf{u}}{2x} = 3\int u^7 du = 3\frac{u^8}{8} + c = \frac{3}{8}(x^2 + 5)^8 + C$$

$$2) \int \sec^2 3x \ e^{\tan 3x} dx ::: u = \tan 3x \Rightarrow \frac{du}{dx} = 3\sec^2 3x \Rightarrow dx = \frac{du}{3\sec^2 3x}$$

$$\Rightarrow \int \sec^2 3x \ e^{u} \frac{du}{3\sec^2 3x} = \frac{1}{3} \int e^{u} du = \frac{1}{3} e^{u} + C = \frac{1}{3} e^{\tan 3x} + C$$

$$3) \int \frac{\ln 5x}{2x} dx ::: u = \ln 5x \Rightarrow \frac{du}{dx} = \frac{5}{5x} \Rightarrow dx = x du$$

$$\Rightarrow \int \frac{u}{2x} x \ du = \frac{1}{2} \int u \ du = \frac{1}{2} \frac{u^2}{2} + C = \frac{1}{4} (\ln 5 x)^2 + C$$

4)
$$\int 4x^2 \sin(x^3 + 1) dx ::: u = x^3 + 1 \Rightarrow \frac{du}{dx} = 3x^2 \Rightarrow dx = \frac{du}{3x^2}$$

$$\Rightarrow \int 4x^2 \sin(u) \frac{du}{3x^2} = \frac{4}{3} \int \sin u \ du = \frac{-4}{3} \cos u + C = \frac{-4}{3} \cos(x^3 + 1) + C$$

5)
$$\int \sin x \cos x \, dx ::: u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$\Rightarrow \int u \cos x \frac{du}{\cos x} = \int u du = \frac{u^2}{2} + C = \frac{1}{2}\sin^2 x + C$$

تذكر: قمنا بحل هذا السؤال من قبل ، عن طريق المتطابقات ، والاختلاف في الناتج سببه اختلاف الثابت C

5+)
$$\int \sin x \cos x \, dx = \int \frac{1}{2} \times \, dx = \frac{1}{2} \int 2 \sin x \cos x \, dx$$

$$= \frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} \left(\frac{-1}{2} \cos 2x \right) + c \quad : \sin 2x = 2 \sin x \cos x$$

$$6)\int \frac{2^{\frac{3}{x}}}{x^2} dx ::: u = \frac{3}{x} \Rightarrow \frac{du}{dx} = \frac{-3}{x^2} \Rightarrow dx = \frac{x^2 du}{-3}$$

$$\Rightarrow \int \frac{2^{u}}{x^{2}} \frac{x^{2} du}{-3} = \frac{-1}{3} \int 2^{u} du = \frac{-1}{3 \ln 2} 2^{u} + C = \frac{-1}{3 \ln 2} 2^{\frac{3}{x}} + C$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 870) 3

a)
$$\int 4x^2\sqrt{x^3-5}\ dx$$
 b) $\int \frac{1}{2\sqrt{x}}\ e^{\sqrt{x}}\ dx$ **32** أتحقُّق من فهمي أجد كُلَّا من التكاملات الآتية:

c)
$$\int \frac{(\ln x)^3}{x} dx$$
 d) $\int \frac{\cos(\ln x)}{x} dx$ e) $\int \cos^4 5x \sin 5x dx$ f) $\int x 2^{x^2} dx$

$$|u = x^{3} - 5| \Rightarrow \frac{du}{dx} = 3x^{2} \Rightarrow dx = \frac{du}{3x^{2}}$$

$$\int 4x^{2} \sqrt{x^{3} - 5} dx = \int 4x^{2} \sqrt{u} \times \frac{du}{3x^{2}} = \int \frac{4}{3} u^{\frac{1}{2}} du = \frac{8}{9} u^{\frac{3}{2}} + C = \frac{8}{9} \sqrt{(x^{3} - 5)^{3}} + C$$

$$egin{aligned} \mathsf{b} & u = \sqrt{x} & \Longrightarrow rac{du}{dx} = rac{1}{2\sqrt{x}} & \Longrightarrow dx = 2\sqrt{x}du \end{aligned}$$

$$\int \frac{1}{2\sqrt{x}} e^{\sqrt{x}} dx = \int \frac{1}{2\sqrt{x}} e^{u} \times 2\sqrt{x} du = \int e^{u} du = e^{u} + C = e^{\sqrt{x}} + C$$

$$\begin{vmatrix} u & \ln x \end{vmatrix} \Rightarrow \frac{du}{dx} = \frac{1}{x} \Rightarrow dx = xdu$$

$$\int \frac{(\ln x)^3}{x} dx = \int \frac{u^3}{x} \times x du = \int u^3 du = \frac{1}{4} u^4 + C = \frac{1}{4} (\ln x)^4 + C$$

$$du = \ln x \implies \frac{du}{dx} = \frac{1}{x} \implies dx = xdu$$

$$\int \frac{\cos(\ln x)}{x} dx = \int \frac{\cos u}{x} \times xdu = \int \cos u \, du = \sin u + C = \sin(\ln x) + C$$

$$u = \cos 5x \implies \frac{du}{dx} = -5\sin 5x \implies dx = \frac{du}{-5\sin 5x}$$

$$\int \cos^4 5x \sin 5x \, dx = \int u^4 \sin 5x \times \frac{du}{-5\sin 5x} = \int -\frac{1}{5}u^4 \, du = -\frac{1}{25}u^5 + C = -\frac{1}{25}\cos^5 5x + C$$

$$f \quad u = x^2 \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$

$$\int x2^{x^7} dx = \int x2^u \times \frac{du}{2x} = \int \frac{1}{2}2^u du = \frac{1}{2\ln 2} + C = \frac{1}{\ln 2}2^{x^2-1} + C$$

1)
$$\int \frac{6x^2}{(x^3+5)^4} dx = ... \frac{-2}{3(x^3+5)^3} + C$$

$$2) \int \sec x \tan x \ e^{\sec x} dx = ...e^{\sec x} + C$$

$$3) \int \cot x \ln(\sin x) \, dx = \dots \, \frac{1}{2} (\ln(\sin x))^2 + C$$

Abdulkadir Hasanat Abdulkadir Hasanat

078 531 88 77

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88) 4

$$1$$
 أتدرّب وأحُلُّ المسائل أجد كُلًّا من التكاملات الآتية: $\int x^2 \left(2x^3+5\right)^4 dx$

$$\begin{array}{ll}
\mathbf{1} & u = 2x^3 + 5 \implies \frac{du}{dx} = 6x^2 \implies dx = \frac{du}{6x^2} \\
& \int x^2 (2x^3 + 5)^4 dx = \int x^2 u^4 \times \frac{du}{6x^2} = \int \frac{1}{6} u^4 du = \frac{1}{30} u^5 + C = \frac{1}{30} (2x^3 + 5)^5 + C
\end{array}$$

$$\int u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$\int e^{\sin x} \cos x \, dx = \int e^{u} \cos x \frac{du}{\cos x} = \int e^{u} du = e^{u} + C = e^{\sin x} + C$$

$$\begin{array}{l}
7 \int \sec^4 x \, dx = \int \sec^2 x \times \sec^2 x \, dx = \int \sec^2 x \, (1 + \tan^2 x) dx \\
u = \tan x \quad \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow dx = \frac{du}{\sec^2 x} \\
= \int \sec^2 x \, (1 + u^2) \times \frac{du}{\sec^2 x} = \int (1 + u^2) \, du = u + \frac{1}{3} u^3 + C = \tan x + \frac{1}{3} \tan^3 x + C
\end{array}$$

$$\begin{cases}
\frac{\tan x}{\cos^2 x} dx = \int \tan x \sec^2 x \, dx & u = \tan x \implies \frac{du}{dx} = \sec^2 x \implies dx = \frac{du}{\sec^2 x} \\
\int \frac{\tan x}{\cos^2 x} dx = \int u \sec^2 x \times \frac{du}{\sec^2 x} = \int u \, du = \frac{1}{2}u^2 + C = \frac{1}{2}\tan^2 x + C
\end{cases}$$

$$u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \implies dx = x du$$

$$\int \frac{\sin(\ln x)}{x} dx = \int \frac{\sin u}{x} \times x du = \int \sin u du = -\cos u + C = -\cos(\ln x) + C$$

10
$$u = 4 + \sin^2 x \Rightarrow \frac{du}{dx} = 2\sin x \cos x = \sin 2x \Rightarrow dx = \frac{du}{\sin 2x}$$

= $\int \sin 2x \times u^3 \times \frac{du}{\sin 2x} = \int u^3 du = \frac{u^4}{4} + C = \frac{(4 + \sin^2 x)^4}{4} + C$

$$\begin{vmatrix}
u = e^{x} + e^{-x} \Rightarrow \frac{du}{dx} = e^{x} - e^{-x} \Rightarrow dx = \frac{du}{e^{x} - e^{-x}} \\
\int \frac{2e^{x} - 2e^{-x}}{(e^{x} + e^{-x})^{2}} dx = \int \frac{2(e^{x} - e^{-x})}{u^{2}} \times \frac{du}{e^{x} - e^{-x}} = \int 2u^{-2} du = -2u^{-1} + C = -\frac{2}{e^{x} + e^{-x}} + C$$

ياضْيات / علمي – ف 2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 870) 5

عندما تكون مشتقة u موجودة بصورة مباشرة في المُكامَل

ولكن بعد الاختصار لا تختفي (x) ، عندها يجب أن نكتب (x المتبقية) بدلالة (u):

$$1) \int 3x \sqrt[5]{7x-1} dx ::: u = 7x-1 \Rightarrow \frac{du}{dx} = 7 \Rightarrow dx = \frac{du}{7} \rightarrow x = \frac{1}{7}(1-u)$$

$$\Rightarrow \int 3x \sqrt[5]{u} \frac{du}{7} = \frac{3}{7} \int (1-u)u^{\frac{1}{5}} du = \frac{3}{7} \int (u^{\frac{1}{5}} - u^{\frac{6}{5}}) du$$

$$=\frac{3}{7}\left(\frac{u^{\frac{6}{5}}}{\frac{6}{5}}-\frac{u^{\frac{11}{5}}}{\frac{11}{5}}\right)+C=\frac{3}{7}\left(\frac{5}{6}(7x-1)^{\frac{6}{5}}-\frac{5}{11}(7x-1)^{\frac{11}{5}}\right)+C$$

$$=\frac{5}{14}\sqrt[5]{(7x-1)^6}-\frac{15}{77}\sqrt[5]{(7x-1)^{11}}+C$$

$$(2)\int 2x^3(x^2+2)^4 dx ::: u = x^2+2 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x} \to x^2 = u - 2$$

$$\Rightarrow \int 2x^{3}(\mathbf{u})^{4} \frac{du}{2x} = \int x^{2}(\mathbf{u})^{4} du = \int (u-2)(\mathbf{u})^{4} du = \int (\mathbf{u}^{5} - 2\mathbf{u}^{4}) du$$

$$=\frac{u^6}{6}-\frac{2u^5}{5}+C=\frac{1}{6}(x^2+2)^6-\frac{2}{5}(x^2+2)^5+C$$

$$3) \int \frac{e^{3x}}{e^x - 1} dx ::: u = e^x - 1 \Rightarrow \frac{du}{dx} = e^x \Rightarrow dx = \frac{du}{e^x} \Rightarrow e^x = u - 1$$

$$\Rightarrow \int \frac{e^x e^{2x}}{u} \frac{du}{e^x} = \int \frac{(e^x)^2}{u} du = \int \frac{(u-1)^2}{u} du = \int \frac{u^2 - 2u + 1}{u} du$$

$$= \int (\frac{u^2}{u} - \frac{2u}{u} + \frac{1}{u})du = \int (u - 2 + \frac{1}{u})du = \frac{u^2}{2} - 2u + \ln u + C$$

$$= \frac{(e^x - 1)^2}{2} - 2(e^x - 1) + \ln |e^x - 1| + C$$

$$1) \int 4e^{2x} (e^x + 3)^2 dx = \dots (e^x + 3)^4 - 4(e^x + 3)^3 + C$$

$$2) \int 30x^3 \sqrt{x^2 + 1} dx = ...6 \sqrt{(x^2 + 1)^5} - 30\sqrt{(x^2 + 1)^3} + C$$

$$3) \int \frac{2x^3}{x^2 + 1} dx = ...x^2 + 1 - \ln(x^2 + 1) + C$$

Abdulkadir Hasanat Abdulkadir Hasanat

078 531 88 77

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 0) 6

أتحقُّق من فهمي أجد كُلًّا من التكاملات الآتية: 34

a)
$$\int \frac{x}{\sqrt{1+2x}} dx$$
 b) $\int x^7 (x^4 - 8)^3 dx$

c)
$$\int \frac{e^{3x}}{\left(1-e^{x}\right)^{2}} dx$$

a
$$u = 1 + 2x$$
 $\Rightarrow \frac{du}{dx} = 2 \Rightarrow dx = \frac{du}{2}$, $x = \frac{u - 1}{2}$

$$\int \frac{x}{\sqrt{1 + 2x}} dx = \int \frac{\frac{1}{2}(u - 1)}{u^{\frac{1}{2}}} \times \frac{du}{2} = \frac{1}{4} \int \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}}\right) du = \frac{1}{4} \left(\frac{2}{3}u^{\frac{3}{2}} - 2u^{\frac{1}{2}}\right) + C$$

$$= \frac{1}{6}(1 + 2x)^{\frac{3}{2}} - \frac{1}{2}(1 + 2x)^{\frac{1}{2}} + C = \frac{1}{6}\sqrt{(1 + 2x)^3} - \frac{1}{2}\sqrt{1 + 2x} + C$$

b
$$u = x^4 - 8 \Rightarrow \frac{du}{dx} = 4x^3 \Rightarrow dx = \frac{du}{4x^3}$$
, $x^4 = u + 8$

$$\int x^7 (x^4 - 8)^3 dx = \int x^7 u^3 \times \frac{du}{4x^3} = \frac{1}{4} \int x^4 u^3 du = \frac{1}{4} \int (u + 8)u^3 du$$

$$= \frac{1}{4} \int (u^4 + 8u^3) du = \frac{1}{4} \left(\frac{1}{5}u^5 + 2u^4\right) + C = \frac{1}{20} (x^4 - 8)^5 + \frac{1}{2} (x^4 - 8)^4 + C$$

$$\begin{vmatrix} u = 1 - e^{x} \Rightarrow \frac{du}{dx} = -e^{x} \Rightarrow dx = \frac{du}{-e^{x}} , e^{x} = 1 - u$$

$$= \int \frac{e^{3x}}{u^{2}} \frac{du}{-e^{x}} = \int -\frac{e^{2x}}{u^{2}} du = \int \frac{-(1 - u)^{2}}{u^{2}} du = \int \frac{-1 + 2u - u^{2}}{u^{2}} du = \int (-u^{-2} + \frac{2}{u} - 1) du$$

$$= (u^{-1} + 2\ln|u| - u) + C = \frac{1}{1 - e^{x}} + 2\ln|1 - e^{x}| - 1 + e^{x} + C$$

2
$$\int x^2 \sqrt{x+3} \ dx$$
 3 $\int x(x+2)^3 \ dx$ 4 $\int \frac{x}{\sqrt{x+4}} \ dx$

$$\begin{array}{ll}
\mathbf{2} & u = x + 3 \implies dx = du \quad , x = u - 3 \\
& \int x^2 \sqrt{x + 3} \, dx = \int x^2 \sqrt{u} \, du = \int (u - 3)^2 \sqrt{u} \, du = \int \left(u^{\frac{5}{2}} - 6u^{\frac{3}{2}} + 9u^{\frac{1}{2}}\right) \, du \\
& = \frac{2}{7} u^{\frac{7}{2}} - \frac{12}{5} u^{\frac{5}{2}} + 6u^{\frac{3}{2}} + C = \frac{2}{7} (x + 3)^{\frac{7}{2}} - \frac{12}{5} (x + 3)^{\frac{5}{2}} + 6(x + 3)^{\frac{3}{2}} + C \\
& = \frac{2}{7} \sqrt{(x + 3)^7} - \frac{12}{5} \sqrt{(x + 3)^5} + 6\sqrt{(x + 3)^3} + C
\end{array}$$

3
$$|u = x + 2| \implies dx = du$$
, $x = u - 2$

$$\int x(x+2)^3 dx = \int xu^3 du = \int (u-2)u^3 du = \int (u^4 - 2u^3) du$$

$$= \frac{1}{5}u^5 - \frac{1}{2}u^4 + C = \frac{1}{5}(x+2)^5 - \frac{1}{2}(x+2)^4 + C$$

4
$$u = x + 4 \implies dx = du$$
 , $x = u - 4$

$$\int \frac{x}{\sqrt{x+4}} dx = \int \frac{x}{\sqrt{u}} du = \int \frac{u-4}{\sqrt{u}} du = \int \left(u^{\frac{1}{2}} - 4u^{-\frac{1}{2}}\right) du = \frac{2}{3}u^{\frac{3}{2}} - 8u^{\frac{1}{2}} + C$$

$$= \frac{2}{3}(x+4)^{\frac{3}{2}} - 8(x+4)^{\frac{1}{2}} + C = \frac{2}{3}\sqrt{(x+4)^3} - 8\sqrt{x+4} + C$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88) 7

6
$$\int \frac{e^{3x}}{e^x + 1} dx$$
 12 $\int \frac{-x}{(x+1)\sqrt{x+1}} dx$ **13** $\int x \sqrt[3]{x+10} dx$

6
$$u = e^{x} + 1 \implies \frac{du}{dx} = e^{x} \implies dx = \frac{du}{e^{x}}$$
, $e^{x} = u - 1$

$$\int \frac{e^{3x}}{e^{x} + 1} dx = \int \frac{e^{3x}}{u} \times \frac{du}{e^{x}} = \int \frac{e^{2x}}{u} du = \int \frac{(u - 1)^{2}}{u} du = \int \left(u - 2 + \frac{1}{u}\right) du$$

$$= \frac{1}{2}u^{2} - 2u + \ln|u| + C = \frac{1}{2}(e^{x} + 1)^{2} - 2(e^{x} + 1) + \ln(e^{x} + 1) + C$$

12
$$u = x + 1 \implies dx = du, x = u - 1$$

$$\int \frac{-x}{(x+1)\sqrt{x+1}} dx = \int \frac{1-u}{u\sqrt{u}} du = \int \frac{1-u}{u^{\frac{3}{2}}} du = \int \left(u^{-\frac{3}{2}} - u^{-\frac{1}{2}}\right) du$$

$$= -2u^{-\frac{1}{2}} - 2u^{\frac{1}{2}} + C = -2(x+1)^{-\frac{1}{2}} - 2(x+1)^{\frac{1}{2}} + C = \frac{-2}{\sqrt{x+1}} - 2\sqrt{x+1} + C$$

$$\begin{array}{ll}
13 & u = x + 10 \implies dx = du , x = u - 10 \\
& \int x \sqrt[3]{x + 10} \, dx = \int (u - 10)u^{\frac{1}{3}} \, du = \int \left(u^{\frac{4}{3}} - 10u^{\frac{1}{3}}\right) du \\
& = \frac{3}{7}u^{\frac{7}{3}} - \frac{15}{2}u^{\frac{4}{3}} + C = \frac{3}{7}(x + 10)^{\frac{7}{3}} - \frac{15}{2}(x + 10)^{\frac{4}{3}} + C \\
& = \frac{3}{7}\sqrt[3]{(x + 10)^{\frac{7}{3}}} - \frac{15}{2}\sqrt[3]{(x + 10)^{\frac{4}{3}}} + C
\end{array}$$

ياضيات إعلمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 870) 8

3) التكامل بالتعويض لتكاملات تحوي جذور (قد تكون غير تربيعية)

$$1) \int x \sqrt[4]{x+1} \, dx ::: u = \sqrt[4]{x+1} \Rightarrow u^4 = x+1 \Rightarrow 4u^3 du = dx \rightarrow u^4 - 1 = x$$

$$\Rightarrow \int (u^4 - 1)(u)(4u) \, du = 4 \int (u^8 - u^5) \, du = 4(\frac{u^9}{9} - \frac{u^5}{5}) + C$$

$$= 4(\frac{\sqrt[4]{(x+1)^9}}{9} - \frac{\sqrt[4]{(x+1)^5}}{5}) + C$$

$$2) \int \frac{\sqrt{x} - x + 2}{\sqrt{x} + x} dx ::: u = \sqrt{x} \Rightarrow u^{2} = x \Rightarrow 2u \ du = dx$$

$$\Rightarrow \int \frac{u - u^{2} + 2}{u + u^{2}} (2u) du = \int \frac{u - u^{2} + 2}{u(1 + u)} (2u) du = -2 \int \frac{u^{2} - u - 2}{(1 + u)} du$$

$$= -2 \int \frac{(u - 2)(u + 1)}{(1 + u)} du = -2 \int (u - 2) du = -2 (\frac{u^{2}}{2} - 2u) + C$$

$$= -u^{2} + 4u + C = 4\sqrt{x} - x + C$$

$$3) \int \frac{x+2}{\sqrt[3]{x-3}} \, dx ::: u = \sqrt[3]{x-3} \Rightarrow u^3 = x-3 \Rightarrow 3u^2 du = dx \rightarrow x = u^3 + 3$$

$$\Rightarrow \int \frac{u^3 + 3 + 2}{u} \, 3u^2 du = 3 \int (u^4 + 5u) \, du = 3(\frac{u^5}{5} + \frac{u^2}{2}) + C$$

$$= 3(\frac{\sqrt[3]{(x-3)^5}}{5} + \frac{\sqrt[3]{(x-3)^2}}{2}) + C$$

$$4) \int \frac{\sqrt{x+1} - \sqrt{1-x}}{\sqrt{x+1} + \sqrt{1-x}} \, dx \dots (\frac{u^5}{\sqrt{x+1} + \sqrt{1-x}}) \, dx = \int \frac{2x}{2 + 2\sqrt{1-x^2}} \, dx$$

$$= \int \frac{\sqrt{x+1} - \sqrt{1-x}}{\sqrt{x+1} + \sqrt{1-x}} \, \frac{\sqrt{x+1} + \sqrt{1-x}}{\sqrt{x+1} + \sqrt{1-x}} \, dx = \int \frac{2x}{2 + 2\sqrt{1-x^2}} \, dx$$

$$::: u = \sqrt{1-x^2} \Rightarrow u^2 = 1-x^2 \Rightarrow 2u \, du = -2x \, dx$$

$$\Rightarrow -\int \frac{2u du}{2 + 2u} = \int (1 + \frac{-1}{1+u}) du = -u + \ln|1+u| + C$$

 $=-\sqrt{1-x^2}+l |\mathbf{n}| 1+\sqrt{1-x^2} +C$

$$5) \int \frac{1}{x^2 + 2x - 3} \sqrt{\frac{x + 3}{x - 1}} \ dx ::: u = \frac{x + 3}{x - 1} \Rightarrow \frac{du}{dx} = \frac{-4}{(x - 1)^2} \Rightarrow dx = \frac{-(x - 1)^2}{4} du$$

$$\Rightarrow \int \frac{1}{(x+3)(x-1)} \sqrt{u} \frac{(x-1)^2}{-4} du = \int \frac{1}{(x+3)} \sqrt{u} \frac{(x-1)}{-4} du = \frac{-1}{4} \int \frac{(x-1)}{(x+3)} \sqrt{u} du$$

$$= \frac{-1}{4} \int \frac{1}{u} \sqrt{u} \ du = \frac{-1}{4} \int u^{-\frac{1}{2}} \ du = \frac{-1}{4} (2u^{\frac{1}{2}}) + C = \frac{-1}{2} (\frac{x+3}{x-1})^{\frac{1}{2}} + C$$

a)
$$\int \frac{dx}{x+\sqrt[3]{x}}$$
 b) $\int x\sqrt[3]{(1-x)^2} \ dx$ 35 اتحقَّق من فهمي أجد كُلًّا من التكاملين الآتيين \mathbb{Z}

$$|u| = \sqrt[3]{x}$$
 $\Rightarrow \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}} \Rightarrow dx = 3x^{\frac{2}{3}}du$, $x = u^3$

$$\int \frac{dx}{x + \sqrt[3]{x}} = \int \frac{3x^{\frac{2}{3}}du}{u^3 + u} = \int \frac{3u^2}{u^3 + u} du = \int \frac{3u}{u^2 + 1} du = \frac{3}{2} \int \frac{2u}{u^2 + 1} du$$

$$=\frac{3}{2}\ln(u^2+1)+C=\frac{3}{2}\ln\left(x^{\frac{2}{3}}+1\right)+C$$

b
$$u = 1 - x$$
 $\Rightarrow \frac{du}{dx} = -1$ $\Rightarrow dx = -du$, $x = 1 - u$

$$\int x \sqrt[3]{(1 - x)^2} \, dx = \int x \sqrt[3]{u^2} \times -du = \int -(1 - u) \sqrt[3]{u^2} \, du = \int -(1 - u) u^{\frac{2}{3}} \, du$$

$$= \int \left(-u^{\frac{2}{3}} + u^{\frac{5}{3}}\right) du = -\frac{3}{5}u^{\frac{5}{3}} + \frac{3}{8}u^{\frac{8}{3}} + C = -\frac{3}{5}(1 - x)^{\frac{5}{3}} + \frac{3}{8}(1 - x)^{\frac{8}{3}} + C$$

$$= -\frac{3}{5}\sqrt[3]{(1 - x)^5} + \frac{3}{8}\sqrt[3]{(1 - x)^8} + C$$

$$1) \int \frac{\sqrt[3]{x}}{1 + \sqrt[3]{x}} dx = \dots = 3(1 + \sqrt[3]{x}) - \ln\left|1 + \sqrt[3]{x}\right| + C$$

$$2)\int \frac{3}{\sqrt{x}+x} dx \dots = 6 \ln \left| 1 + \sqrt{x} \right| + C$$

$$3) \int \frac{\sqrt{x}}{\sqrt{x}-2} \ dx \dots = (\sqrt{x}-2)^2 + 8(\sqrt{x}-2) + 8 \ln \left| \sqrt{x}-2 \right| + C$$

4) عند وجود اقتراني الجيب وجيب التمام المرفوعين إلى أُسِّ فردي $1) \int \cos^5 x \ dx = \int \cos x \times \cos^2 x \times \cos^2 x \ dx = \int \cos x (1 - \sin^2 x) (1 - \sin^2 x) \ dx$ $::: u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow \frac{du}{\cos x} = dx$ $\Rightarrow \int \cos x (1-u^2)(1-u^2) \frac{du}{\cos x} = \int (1-u^2)(1-u^2) du = \int (1-2u^2+u^4) du$ $= u - \frac{2}{3}u^3 + \frac{1}{5}u^5 + C = \sin x - \frac{2}{3}\sin^3 x + \frac{1}{5}\sin^5 x + C$ $2) \int \cos^2 x \sin^3 x \ dx ::: u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow \frac{du}{-\sin x} = dx$ $= \int u^2 \sin^3 x \frac{du}{-\sin x} = -\int u^2 (1 - \cos^2 x) du = -\int u^2 (1 - u^2) du$

 $= -\int (u^2 - u^4) du = \frac{u^3}{3} + \frac{u^3}{5} + C = \frac{-1}{3}\cos^3 x + \frac{1}{5}\cos^3 x + C$

عند وجود اقتراني الجيب وجيب التمام مرفوعين إلى أ<u>سَّ زوجي</u> : لا حل لهما إلا عن طريق المتطابقات

 \mathbf{a}) $\int \sin^3 x \ dx$ \mathbf{b}) $\int \cos^5 x \sin^2 x \ dx$ 39 أتحقُق من فهمي أجد كُلًّا من التكاملين الآتيين $2\mathbf{9}$

$$\int \sin^3 x \, dx = \int \sin x \sin^2 x \, dx = \int \sin x (1 - \cos^2 x) dx$$

$$u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$$

$$\int \sin^3 x \, dx = \int \sin x (1 - u^2) \frac{du}{-\sin x} = \int (u^2 - 1) du = \frac{1}{3} u^3 - u + C = \frac{1}{3} \cos^3 x - \cos x + C$$

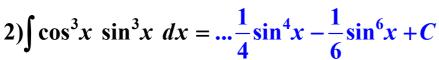
b
$$u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$

$$\int \cos^5 x \sin^2 x \, dx = \int \cos^5 x \, u^2 \, \frac{du}{\cos x} = \int \cos^4 x \, u^2 \, du = \int (1 - \sin^2 x)^2 \, u^2 \, du$$

$$= \int (1 - u^2)^2 \, u^2 \, du = \int (u^2 - 2u^4 + u^6) \, du = \frac{1}{3}u^3 - \frac{2}{5}u^5 + \frac{1}{7}u^7 + C$$

$$= \frac{1}{3}\sin^3 x - \frac{2}{5}\sin^5 x + \frac{1}{7}\sin^7 x + C$$

1)
$$\int \cos 2x \sin^3 2x \ dx = ... \frac{1}{8} \sin^4 2x + C$$



3)
$$\int \cos x \ \csc^3 x \ dx = ... \frac{-1}{2} \csc^2 x + C$$

$$4) \int \sin^2 x \cos^3 x \ dx = \dots \frac{1}{3} \sin^3 - \frac{1}{5} \sin^5 x + C$$

$$5) \int \frac{\cos^3 x}{\sqrt{\sin x}} \, dx = ... 2 \sqrt{\sin x} - \frac{2}{5} \sqrt{\sin^5 x} + C$$

$$(1+\sqrt[3]{\sin x})\cos^3 x \ dx$$
 $(1+\sqrt[3]{\sin x})\sin x \ \sec^5 x \ dx$

$$\begin{aligned}
16 \quad u &= \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x} \\
&\int (1 + \sqrt[3]{\sin x}) \cos^3 x \, dx = \int (1 + u^{\frac{1}{3}}) \cos^3 x \, \frac{du}{\cos x} = \int (1 + u^{\frac{1}{3}}) \cos^2 x \, du \\
&= \int (1 + u^{\frac{1}{3}}) (1 - \sin^2 x) \, du = \int (1 + u^{\frac{1}{3}}) (1 - u^2) \, du \\
&= \int (1 + u^{\frac{1}{3}}) (1 - u^2) \, du = \int (1 - u^2 + u^{\frac{1}{3}} - u^{\frac{7}{3}}) \, du \\
&= u - \frac{1}{3} u^3 + \frac{3}{4} u^{\frac{4}{3}} - \frac{3}{10} u^{\frac{10}{3}} + C = \sin x - \frac{1}{3} \sin^3 x + \frac{3}{4} \sin^{\frac{4}{3}} x - \frac{3}{10} \sin^{\frac{10}{3}} x + C \end{aligned}$$

$$17$$
 $\int \sin x \sec^5 x \, dx = \int \sin x \cos^{-5} x \, dx$
 $u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$

$$\int \sin x \sec^5 x \, dx = \int \sin x \, u^{-5} \times \frac{du}{-\sin x}$$

$$= -\int u^{-5} du = \frac{1}{4}u^{-4} + C = \frac{1}{4}\cos^{-4} x + C = \frac{1}{4}\sec^4 x + C$$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 870) 12

5) عند وجود اقترانات تتضمَّن الظلَّ، أو ظلَّ التمام، أو القاطع، أو قاطع التمام

$$1) \int \cot^3 x \ dx = \int \cot^2 x \ \cot x \ dx = \int (1 - \csc^2 x) \cot x \ dx$$

$$::: u = \csc x \Rightarrow \frac{du}{dx} = -\csc x \quad \cot x = -u \quad \cot x \Rightarrow \frac{du}{-u \cot x} = dx$$

$$= \int (1 - u^2) \cot x \frac{du}{-u \cot x} = \int (\frac{1}{-u} + u) du = \frac{1}{2}u^2 - \ln|u| + C$$

$$= \frac{1}{2}\csc^{2} x - \ln|\csc x| + C = \frac{1}{2}\csc^{2} x + \ln|\sin x| + C$$

2)
$$\int \tan^6 x \ dx = \int \tan^4 x \ \tan^2 x \ dx = \int \tan^4 x (se \ c^2 x - 1) \ dx$$

= $\int \tan^4 x \ se \ c^2 x \ dx - \int \tan^4 x \ dx$
= $\int \tan^4 x \ se \ c^2 x \ dx - \int (\tan^2 x (se \ c^2 x - 1) \ dx$
= $\int \tan^4 x \ sec^2 x \ dx - \int \tan^2 x \ se \ c^2 x \ dx - \int \tan^2 x \ dx$

$$= \int \tan^4 x \sec^2 x \ dx - \int \tan^2 x \ se \ c^2 x \ dx - \int (1 - se \ c^2 x) \ dx$$

$$= \int \tan^4 x \sec^2 x \ dx - \int \tan^2 x \ se \ c^2 x \ dx - \int dx + \int se \ c^2 x \ dx$$

$$::: u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow \frac{du}{\sec^2 x} = dx$$

$$= \int \mathbf{u}^4 \ se \ \mathbf{c}^2 x \ \frac{du}{\sec^2 x} - \int \mathbf{u}^2 \ se \ \mathbf{c}^2 x \ \frac{du}{\sec^2 x} dx - \int \mathbf{dx} + \int se \ \mathbf{c}^2 x \ \mathbf{dx}$$

$$= \frac{1}{5}u^5 - \frac{1}{3}u^3 - x + \tan x + C = \frac{1}{5}\tan^5 x - \frac{1}{3}\tan^3 x - x + \tan x + C$$

$$3) \int \cot^3 x \ \csc^3 x dx ::: u = c \sec x \Rightarrow \frac{du}{dx} = -\csc x \cot x \Rightarrow \frac{du}{-\cot x \ u} = dx$$

$$\Rightarrow \int \cot^3 x (u^3) \frac{du}{-\cot x u} = -\int \cot^2 x (u^2) du = -\int (u^2 - 1) u^2 du$$

$$= \int (u^2 - u^4) du = \frac{1}{3}u^3 - \frac{1}{5}u^5 + C = \frac{1}{3}c \operatorname{sc}^3 x - \frac{1}{5}c \operatorname{sc}^5 x + C$$

b) $\int \cot^5 x \ dx$ c) $\int \sec^4 x \tan^6 x \ dx$ أجد كُلًّا من التكاملات الآتية: a) $\int \tan^4 x \ dx$

$$\begin{vmatrix}
a & \int \tan^4 x \, dx = \int \tan^2 x \tan^2 x \, dx = \int \tan^2 x (\sec^2 x - 1) dx \\
&= \int \tan^2 x \sec^2 x - \tan^2 x \, dx = \int \tan^2 x \sec^2 x \, dx - \int \tan^2 x \, dx \\
&= \int \tan^2 x \sec^2 x \, dx - \int (\sec^2 x - 1) \, dx \quad u = \tan x \quad \Rightarrow \frac{du}{dx} = \sec^2 x \\
&\Rightarrow \int \tan^4 x \, dx = \int u^2 \sec^2 x \times \frac{du}{\sec^2 x} - \int (\sec^2 x - 1) \, dx \\
&= \int u^2 du - \int (\sec^2 x - 1) \, dx \quad = \int u^2 du - \int (\sec^2 x - 1) \, dx
\end{aligned}$$

$$= \frac{1}{3}u^3 - \tan x + x + C \quad = \frac{1}{3}\tan^3 x - \tan x + x + C$$

$$\int \cot^5 x \ dx = \int \cot^3 x \cot^2 x \ dx = \int \cot^3 x (\csc^2 x - 1) \ dx$$

$$= \int \cot^3 x \csc^2 x \ dx - \int \cot^3 x \ dx = \int \cot^3 x \csc^2 x \ dx - \int \cot x \cot^2 x \ dx$$

$$= \int \cot^3 x \csc^2 x \ dx - \int \cot x (\csc^2 x - 1) \ dx$$

$$= \int (\cot^3 x - \cot x) \csc^2 x \ dx + \int \cot x \ dx$$

$$\Rightarrow \frac{du}{dx} = -\csc^2 x \Rightarrow dx = \frac{du}{-\csc^2 x}$$

$$= \cot^3 x \cot^3 x$$

$$\int \cot^5 x \ dx = \int \cot x \cot^4 x \ dx = \int \cot x (\cot^2 x)^2 dx = \int \cot x (\csc^2 x - 1)^2 \ dx$$

$$u = \csc x \implies \frac{du}{dx} = -\csc x \cot x \implies dx = \frac{du}{-\csc x \cot x}$$

$$\implies \int \cot^5 x \ dx = \int \cot x (u^2 - 1)^2 \times \frac{du}{-\csc x \cot x} = \int (u^2 - 1)^2 \frac{du}{-u}$$

$$= \int \frac{u^4 - 2u^2 + 1}{-u} \ du = \int \left(-u^3 + 2u - \frac{1}{u}\right) \ du = -\frac{1}{4}u^4 + u^2 - \ln|u| + C$$

$$= -\frac{1}{4}\csc^4 x + \csc^2 x - \ln|\csc x| + C$$

$$\frac{du}{dx} = \sec^2 x \implies dx = \frac{du}{\sec^2 x}$$

$$\int \sec^4 x \tan^6 x \, dx = \int \sec^4 x \, u^6 \times \frac{du}{\sec^2 x} = \int \sec^2 x \, u^6 \, du = \int (1 + \tan^2 x) \, u^6 \, du$$

$$= \int (1 + u^2) \, u^6 \, du = \int (u^6 + u^8) \, du = \frac{1}{7} u^7 + \frac{1}{9} u^9 + C = \frac{1}{7} \tan^7 x + \frac{1}{9} \tan^9 x + C$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 879) 14

1)
$$\int \tan^5 x \ dx = ... \frac{1}{4} \tan^3 x - \frac{1}{2} \tan^2 x + \ln|\sec x| + C$$

2)
$$\int \tan^3 x \ se \ c^2 x \ dx = ... \frac{1}{4} \tan^4 x + C$$

$$3) \int \tan^3 x \ dx = ... \frac{1}{2} \tan^2 x + \ln|\cos x| + C$$

اً تحرّب وأخلٌ المسائل
$$\int (\sec^2 \frac{x}{2} \tan^7 \frac{x}{2}) dx$$

15 $\int \frac{\sec^3 x + e^{\sin x}}{\sec x} dx$

18 $\int \frac{\sin x + \tan x}{\cos^3 x} dx$

$$\begin{vmatrix}
14 \\ u = \tan\frac{x}{2} \\
\Rightarrow \frac{du}{dx} = \frac{1}{2}\sec^2\frac{x}{2} \Rightarrow dx = \frac{2du}{\sec^2\frac{x}{2}}$$

$$\int \sec^2\frac{x}{2}\tan^7\frac{x}{2} dx = \int \sec^2\frac{x}{2}u^7 \times \frac{2du}{\sec^2\frac{x}{2}} = 2\int u^7 du = \frac{1}{4}u^8 + C = \frac{1}{4}\tan^8\frac{x}{2} + C$$

$$\int \frac{\sec^3 x + e^{\sin x}}{\sec x} dx = \int (\sec^2 x + \cos x e^{\sin x}) dx = \int \sec^2 x dx + \int \cos x e^{\sin x} dx$$

$$u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$

$$\int \frac{\sec^3 x + e^{\sin x}}{\sec x} dx = \int \sec^2 x dx + \int \cos x e^u \times \frac{du}{\cos x}$$

$$= \tan x + \int e^u du = \tan x + e^u + C = \tan x + e^{\sin x} + C$$

$$\int \frac{\sin x + \tan x}{\cos^3 x} dx = \int (\tan x \sec^2 x + \tan x \sec^3 x) dx$$

$$= \int \tan x \sec x (\sec x + \sec^2 x) dx$$

$$\int \frac{\sin x + \tan x}{\cos^3 x} dx = \int \tan x \sec x (u + u^2) \frac{du}{\tan x \sec x}$$

$$= \int (u + u^2) du = \frac{1}{2}u^2 + \frac{1}{3}u^3 + C = \frac{1}{2}\sec^2 x + \frac{1}{3}\sec^3 x + C$$

6) التكامل بالتعويض للتكاملات المحدودة: هناك طريقتان لإيجاد قيمة تكامل محدود بالتعويض، هما:

لتكامل بالتعويض للتكاملات المحدودة : هناك طريقتان لإيجاد قيمة تكامل محدود بالتعويض، هما: (1) ايجاد التكامل أوَّلًا بدلالة المُتغيِّر الأصلي، ثم تعويض حدود التكام
$$\int_a^b f(g(x)) \, g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$
 . (2) تغيير حدود التكامل عند تغيير مُتغيِّر التكامل .

2) تغيير حدود التكامل عند تغيير مُتغيّر التكامل .

لا يجوز أن تحتوى فترة حدود التكامل على أى صفر من أصفار المقام

$$1)\int_{1}^{2} 2x \ e^{x^{2}-1} dx ::: u = x^{2} - 1 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$x = 1 \Rightarrow u = 0$$
, $x = 2 \Rightarrow u = 3$

$$\int_{0}^{3} 2x \ e^{u} \ \frac{du}{2x} = \int_{0}^{3} e^{u} \ du = e^{u} \Big]_{0}^{3} = e^{3} - e^{0} = e^{3} - 1$$

$$1^{+})\int_{1}^{2} 2x \ e^{x^{2}-1} dx ::: u = x^{2}-1 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$\int 2x \ e^u \ \frac{du}{2x} = \int e^u \ du = e^u + C$$

$$\Rightarrow e^{x^2-1}\Big]_1^2 = e^3 - e^0 = e^3 - 1$$

2)
$$f(10) = -5$$
, $f(2) = -1 \Rightarrow \int_{-1}^{3} 2x f'(x^2 + 1) dx = ?$

$$::: u = x^2 + 1 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$::: x = -1 \Rightarrow u = 2$$
, $x = 3 \Rightarrow u = 10$

$$\int_{2}^{10} 2x \ f'(u) \frac{du}{2x} = f(u) \Big]_{2}^{10} = f(10) - f(2) = -5 - -1 = -4$$

$$1)\int_{0}^{2} 9x^{2} \sqrt{x^{3} + 1} \ dx = ...25$$

$$2)\int_{-1}^{2} (x+1)(2x+x^{2})^{4} dx = ... \frac{33}{10}$$

$$3)\int_{0}^{3} 8\sin 2x \cos 2x \ dx = ...2$$

a)
$$\int_0^2 x(x+1)^3 dx$$

b)
$$\int_0^{\pi/3} \sec x \, \tan x \, \sqrt{\sec x + 2} \, dx$$

$$\begin{vmatrix} a & u = x + 1 \end{vmatrix} \Rightarrow \frac{du}{dx} = 1 \Rightarrow dx = du, x = u - 1$$

$$\int_0^2 x(x+1)^3 dx = \int_1^3 (u-1)u^3 du = \int_1^3 (u^4 - u^3) du$$

$$x = 0 \implies u = 1$$

$$= \left(\frac{1}{5}u^5 - \frac{1}{4}u^4\right)\Big|_1^3 = \frac{1}{5}(3)^5 - \frac{1}{4}(3)^4 - \left(\frac{1}{5}(1)^5 - \frac{1}{4}(1)^4\right) = \frac{142}{5} = 28.4$$

$$\begin{vmatrix} \mathbf{b} \\ \mathbf{u} = \sec x + 2 \\ \pi \end{vmatrix} \Rightarrow \frac{d\mathbf{u}}{dx} = \sec x \tan x \Rightarrow dx = \frac{d\mathbf{u}}{\sec x \tan x} \qquad \begin{vmatrix} x = 0 \\ x = \frac{\pi}{3} \\ x = 0 \end{vmatrix} \Rightarrow \mathbf{u} = \mathbf{u}$$

$$x = 0 \implies u = 3$$

$$\int_0^{\frac{\pi}{3}} \sec x \tan x \sqrt{\sec x + 2} dx = \int_3^4 \sec x \tan x \sqrt{u} \frac{du}{\sec x \tan x}$$

$$= \int_3^4 \sqrt{u} \, du = \frac{2}{3} u^{\frac{3}{2}} \Big|_3^4 = \frac{2}{3} (8 - 3\sqrt{3}) \approx 1.87$$

$$\int_{0}^{1} \frac{x^{3}}{\sqrt{1+x^{2}}} \ dx$$

(23)
$$\int_0^2 (x-1)e^{(x-1)^2} dx$$

$$\int_{1}^{4} \frac{\sqrt{2+\sqrt{x}}}{\sqrt{x}} \ dx$$

$$\int_{0}^{1} \frac{10\sqrt{x}}{(1+\sqrt{x^{3}})^{2}} dx$$

$$\int_0^{\pi/6} 2^{\cos x} \sin x \ dx$$

25
$$\int_0^1 \frac{10\sqrt{x}}{(1+\sqrt{x^3})^2} dx$$
 26 $\int_0^{\pi/6} 2^{\cos x} \sin x \ dx$ 27 $\int_{\pi/4}^{\pi/2} \csc^2 x \cot^5 x \ dx$

19
$$u = \pi \ln x \implies \frac{du}{dx} = \frac{\pi}{x} \implies dx = \frac{x \, du}{\pi}$$
 $x = 1 \Rightarrow u = \pi \ln 1 = 0$

$$x=1\Rightarrow u=\pi\ln 1=0$$

$$x = \sqrt{e} \implies u = \pi \ln \sqrt{e} = \pi \times \frac{1}{2} \ln e = \frac{\pi}{2}$$

$$\int_{1}^{\sqrt{e}} \frac{\sin(\pi \ln x)}{x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin u}{x} \times \frac{x du}{\pi} = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \sin u du$$

$$= \frac{-1}{\pi} \cos u \Big|_{0}^{\frac{\pi}{2}} = \frac{-1}{\pi} (\cos \frac{\pi}{2} - \cos 0) = \frac{-1}{\pi} (0 - 1) = \frac{1}{\pi}$$

$$x = \frac{\pi}{2} \Rightarrow u = \frac{\pi^2}{4}$$

$$\int_0^{\frac{\pi}{2}} x \sin x^2 \, dx = \int_0^{\frac{\pi^2}{4}} x \sin u \, \frac{du}{2x} = \frac{1}{2} \int_0^{\frac{\pi^2}{4}} \sin u \, du$$

$$= -\frac{1}{2} \cos u \Big|_{0}^{\frac{\pi}{4}} = -\frac{1}{2} \left(\cos \frac{\pi^{2}}{4} - 1 \right) \approx 0.891$$

 $u = 1 + x^2$ $\Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$, $x^2 = u - 1$ $\int_{0}^{1} \frac{x^{3}}{\sqrt{1+x^{2}}} dx = \int_{1}^{2} \frac{x^{3}}{\sqrt{u}} \times \frac{du}{2x} = \frac{1}{2} \int_{1}^{2} \frac{x^{2}}{\sqrt{u}} du = \frac{1}{2} \int_{1}^{2} \frac{u-1}{\sqrt{u}} du$ $\left| = \frac{1}{2} \int_{1}^{2} \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}} \right) du = \frac{1}{2} \left(\frac{2}{3} u^{\frac{3}{2}} - 2 u^{\frac{1}{2}} \right) \right|_{1}^{2} = \frac{1}{2} \left(\frac{2}{3} (2)^{\frac{3}{2}} - 2 (2)^{\frac{1}{2}} - (\frac{2}{3} (1) - 2 (1)) \right) = \frac{2 - \sqrt{2}}{3}$ $|u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow dx = \frac{du}{\sec^2 x}$ $\int_{0}^{\frac{\pi}{3}} \sec^{2}x \tan^{5}x \, dx = \int_{0}^{\sqrt{3}} \sec^{2}x \, u^{5} \, \frac{du}{\sec^{2}x} = \int_{0}^{\sqrt{3}} u^{5} \, du = \frac{1}{6} u^{6} \Big|_{0}^{\sqrt{3}} = \frac{9}{2}$ $u = (x-1)^2 \Rightarrow \frac{du}{dx} = 2(x-1) \Rightarrow dx = \frac{du}{2(x-1)}$ $x=2 \implies u=1$ $\int_{0}^{2} (x-1)e^{(x-1)^{2}} dx = \int_{0}^{1} (x-1)e^{u} \frac{du}{2(x-1)} = 0$ $24 u = 2 + \sqrt{x} \implies \frac{du}{dx} = \frac{1}{2\sqrt{x}} \implies dx = 2\sqrt{x} du$ $\int_{3}^{4} \frac{\sqrt{2+\sqrt{x}}}{\sqrt{x}} dx = \int_{3}^{4} \frac{\sqrt{u}}{\sqrt{x}} 2\sqrt{x} du = \int_{3}^{4} 2\sqrt{u} du = \frac{4}{3} u^{\frac{3}{2}} \Big|_{3}^{4} = \frac{4(8-3\sqrt{3})}{3}$ $u = 1 + x^{\frac{3}{2}} \implies \frac{du}{dx} = \frac{3}{2}x^{\frac{1}{2}} \implies dx = \frac{2}{3}\frac{du}{x^{\frac{1}{2}}}$ $\int_0^1 \frac{10\sqrt{x}}{\left(1+\sqrt{x^3}\right)^2} dx = \int_1^2 \frac{10\sqrt{x}}{u^2} \frac{2}{3} \frac{du}{\frac{1}{x^7}} = \frac{20}{3} \int_1^2 u^{-2} du = -\frac{20}{3} u^{-1} \Big|_1^2 = \frac{10}{3}$ $\frac{du}{dx} = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$ $\int_{1}^{\frac{\pi}{6}} 2^{\cos x} \sin x \, dx = \int_{1}^{\frac{\sqrt{3}}{2}} \sin x \, \frac{du}{-\sin x} = -\int_{1}^{\frac{\sqrt{3}}{2}} du = -\frac{2^{u}}{\ln 2} \Big|_{1}^{\frac{\sqrt{3}}{2}} = -\frac{1}{\ln 2} \left(2^{\frac{\sqrt{3}}{2}} - 2 \right) \approx 0.256$

7) متفرقات:

ملاحظة :مسائل المساحة أو المسائل المتعلقة بحركة جسيم في خط مستقيم أو الشرط الأولي ، ... لا جديد فيها سوى أنه يتم إيجاد التكامل بطريقة التعويض

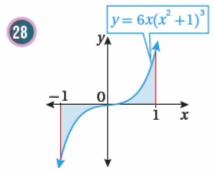
التحقَّق من فهمي $\frac{37}{4}$ أسعار: يُمثِّل الاقتران p(x) سعر قطعة (بالدينار) تُستعمَل في أجهزة الحاسوب، حيث x عدد p(x)، والقطعة منها بالمئات. إذا كان: $\frac{-135x}{\sqrt{9+x^2}}$ هو مُعدَّل تغيُّر سعر هذه القطعة، فأجد $p'(x) = \frac{-135x}{\sqrt{9+x^2}}$ علمًا بأنَّ سعر القطعة الواحدة هـو p(x) عندما يكون عدد القطع المَبيعة منها p(x) قطعة.

$$p(x) = \int \frac{-135x}{\sqrt{9+x^2}} dx \qquad u = 9 + x^2 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x} \quad 37$$

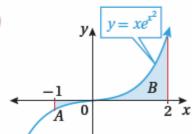
$$p(x) = \int \frac{-135x}{\sqrt{u}} \times \frac{du}{2x} = \frac{-135}{2} \int u^{-\frac{1}{2}} du = -135u^{\frac{1}{2}} + C = -135\sqrt{9+x^2} + C$$

$$p(4) = -135\sqrt{9+16} + C = -135(5) + C \implies 30 = -675 + C \Rightarrow C = 705$$

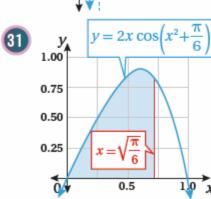
$$p(x) = 705 - 135\sqrt{9+x^2}$$



30



الأستاذ عدالقادر الحسنات



$$\begin{array}{lll}
28 & A = -\int_{-1}^{0} 6x(x^{2} + 1)^{3} dx + \int_{0}^{1} 6x(x^{2} + 1)^{3} dx & u = x^{2} + 1 \\
A = -\int_{1}^{1} 6xu^{3} \frac{du}{2x} + \int_{1}^{2} 6xu^{3} \frac{du}{2x} & \frac{du}{2x} \\
& = \int_{1}^{2} 3u^{3} du + \int_{1}^{2} 3u^{3} du = \int_{1}^{2} 6u^{3} du = \frac{6}{4}u^{4} \Big|_{1}^{2} = \frac{45}{2} & x = 0 \Rightarrow u = 1 \\
x = 1 \Rightarrow u = 2
\end{array}$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 870) 19

$$\begin{vmatrix}
29 \\ A = \int_{2}^{4} \frac{x}{(x-1)^{3}} dx & u = x-1 & \Rightarrow dx = du & , & x = u+1 \\
x = 2 & \Rightarrow u = 1 & x = 4 & \Rightarrow u = 3
\end{vmatrix}$$

$$A = \int_{2}^{4} \frac{x}{(x-1)^{3}} dx = \int_{1}^{3} \frac{u+1}{u^{3}} du = \int_{1}^{3} (u^{-2} + u^{-3}) du = \left(-u^{-1} - \frac{1}{2}u^{-2}\right)\Big|_{1}^{3}$$

$$= -\frac{1}{3} - \frac{1}{2} \left(\frac{1}{9}\right) + 1 + \frac{1}{2} = \frac{10}{9}$$

$$|u = x^{2}| \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$|u = x^{2}| \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$|x = -1| \Rightarrow u = 1 \\ x = 0 \Rightarrow u = 0 \\ x = 2 \Rightarrow u = 4$$

$$|x = -1| \Rightarrow u = 1 \\ x = 0 \Rightarrow u = 0 \\ x = 2 \Rightarrow u = 4$$

$$|x = -1| \Rightarrow u = 1 \\ x = 0 \Rightarrow u = 0 \\ x = 2 \Rightarrow u = 4$$

$$|x = -1| \Rightarrow u = 1 \\ x = 0 \Rightarrow u = 0 \\ x = 2 \Rightarrow u = 4$$

$$|x = -1| \Rightarrow u = 1 \\ x = 0 \Rightarrow u = 0 \\ x = 1 \Rightarrow u = 1$$

$$|x = -1| \Rightarrow u = 1 \\ |x = 0 \Rightarrow u = 0 \\ |x = 1| \Rightarrow u = 1 \\ |x = 0 \Rightarrow u = 1 \\ |x = 0 \Rightarrow u = 0 \\ |x = 1| \Rightarrow u = 1 \\ |x = 0 \Rightarrow$$

31
$$u = x^2 + \frac{\pi}{6} \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$
 $x = 0 \implies u = \frac{\pi}{6} * x = \sqrt{\frac{\pi}{6}} \implies u = \frac{\pi}{3}$

$$A = \int_0^{\sqrt{\frac{\pi}{6}}} 2x \cos\left(x^2 + \frac{\pi}{6}\right) dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 2x \cos u \frac{du}{2x} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos u \, du$$

$$= \sin u |_{\frac{\pi}{6}}^{\frac{\pi}{6}} = \sin \frac{\pi}{3} - \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \approx 0.366$$

في كلِّ ممّا يأتي المشتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحنى y = f(x). أستعمل المعلومات المعطاة لإيجاد

32
$$f'(x) = 2x(4x^2 - 10)^2$$
; $(2, 10)$ 33 $f'(x) = x^2 e^{-0.2x^3}$; $(0, \frac{3}{2})$: $f(x)$ قاعدة الاقتران

$$f(x) = \int f'(x) dx = \int 2x(4x^2 - 10)^2 dx$$

$$f(x) = \int 2xu^2 \frac{du}{8x} = \int u^2 \frac{du}{4} = \frac{1}{4} \int u^2 du = \frac{1}{12}u^3 + C$$

$$f(x) = \int \frac{1}{12}(4x^2 - 10)^3 + C$$

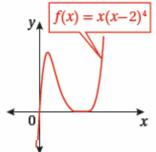
$$f(2) = \frac{1}{12}(216) + C = 10 \Rightarrow C = -8 \Rightarrow f(x) = \frac{1}{12}(4x^2 - 10)^3 - 8$$

$$|f(x)| = \int f'(x) dx = \int x^2 e^{-0.2x^3} dx \qquad u = -0.2x^3 \implies \frac{du}{dx} = -0.6x^2$$

$$|f(x)| = \int x^2 e^u \frac{du}{-0.6x^2} = -\frac{10}{6} \int e^u du = -\frac{5}{3} e^u + C \qquad \implies dx = \frac{du}{-0.6x^2}$$

$$|f(x)| = -\frac{5}{3} e^{-0.2x^3} + C$$

$$|f(0)| = -\frac{5}{3} + C \implies \frac{3}{2} = -\frac{5}{3} + C \implies C = \frac{19}{6} \implies f(x) = -\frac{5}{3} e^{-0.2x^3} + \frac{19}{6}$$



 $f(x) = x(x-2)^4$: يُبيِّن الشكل المجاور جزءًا من منحنى الاقتران

- آجد إحداثيي نقطة تماس الاقتران مع المحور x.
- x أجد مساحة المنطقة المحصورة بين منحنى الاقتران f(x) والمحور f(x)

نجد أصفار الاقتران بحل المعادلة
$$f(x) = 0 \implies x = 0$$
 , $x = 2$ $f(x) = 0$ نقطة التماس $(0,0)$ ، فتكون نقطة التماس $(0,0)$ ، فتكون نقطة التماس $f'(x) = (x-2)^4 + 4x(x-2)^3$: $f'(2)$ بيمكن التحقق بحساب $f'(2) = (2-2)^4 + 4(2)(2-2)^3 = 0$

$$A = \int_0^2 x(x-2)^4 dx$$

$$u = x-2 \implies dx = du , x = u+2$$

$$x = 0 \implies u = -2 \implies x = 2 \implies u = 0$$

$$A = \int_0^2 x(x-2)^4 dx = \int_{-2}^0 (u+2)u^4 du$$

$$= \int_0^0 (u^5 + 2u^4) du = \left(\frac{1}{6}u^6 + \frac{2}{5}u^5\right)\Big|_{-2}^0 = 0 - \left(\frac{1}{6}(-2)^6 + \frac{2}{5}(-2)^5\right) = \frac{32}{15}$$

يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t) = \sin \omega t \cos^2 \omega t$ الزمن بالثواني، $v(t) = \sin \omega t \cos^2 \omega t$ الزمن بالثواني، وv سرعته المتجهة بالمتر لكل ثانية، وv ثابت. إذا انطلق الجُسَيْم من نقطة الأصل، فأجد موقعه بعد v ثانية.

$$s(t) = \int \sin \omega t \, \cos^2 \omega t \, dt$$
 $u = \cos \omega t \Rightarrow \frac{du}{dx} = -\omega \sin \omega t \Rightarrow dt = \frac{du}{-\omega \sin \omega t}$ $s(t) = \int \sin \omega t \, u^2 \frac{du}{-\omega \sin \omega t} = \frac{-1}{\omega} \int u^2 \, du = \frac{-1}{3\omega} u^3 + C =$ $\Rightarrow s(t) = -\frac{1}{3\omega} \cos^3 \omega t + C$ کن $s(t) = -\frac{1}{3\omega} \cos^3 \omega t + C$ کن $s(t) = -\frac{1}{3\omega} \cos^3 \omega t + C$ کن $s(t) = -\frac{1}{3\omega} \cos^3 \omega t + C$ $\Rightarrow s(t) = -\frac{1}{3\omega} \cos^3 \omega t + C$ $\Rightarrow s(t) = -\frac{1}{3\omega} \cos^3 \omega t + \frac{1}{3\omega} \cos^3 \omega t + \frac$

ريض، حيث C(t) تركيز دواء في الدم بعد t دقيقة من حقنه في جسم مريض، حيث C(t) مريض، حيث C(t) مقيسة بالملّيغرام لكل سنتيمتر مُكعَّب (mg/cm³). إذا كان تركيز الدواء لحظة حقنه في جسم المريض C(t)0.5 mg/cm³، وأخذ يتغيَّر بمُعدَّل C(t)1. فأجد C(t)2. فأجد C(t)3. فأجد C(t)3.

$$C(t) = \int C'(t)dt = \int \frac{-0.01e^{-0.01t}}{(1+e^{-0.01t})^2}dt$$

$$C(t) = \int \frac{-0.01e^{-0.01t}}{u^2} \times \frac{du}{-0.01e^{-0.01t}} = \int u^{-2}du = -u^{-1} + K$$

$$C(t) = \int \frac{-0.01e^{-0.01t}}{u^2} \times \frac{du}{-0.01e^{-0.01t}} = \int u^{-2}du = -u^{-1} + K$$

$$C(t) = -(1+e^{-0.01t})^{-1} + K \Rightarrow C(0) = -(2)^{-1} + K = \frac{1}{2} \Rightarrow K = 1$$

$$\Rightarrow C(t) = -(1+e^{-0.01t})^{-1} + 1 = \frac{-1}{1+e^{-0.01t}} + 1$$

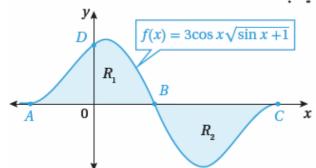
الأستاذ عبدالقادر الحسنات

- . أجد قيمة: $dx: \int_{\ln 3}^{\ln 4} \frac{e^{4x}}{e^x-2} dx$ أنهم أكتب الإجابة بالصيغة الآتية: $a: \frac{a}{b} + c \ln d$ حيث: $a: \frac{a}{b} + c \ln d$
 - $f(x) = \ln \left| \frac{\cos 3}{\cos x} \right| + 5$ إذا كان: f(3) = 5، وكان: $f'(x) = \tan x$ إذا كان: 39

$$\begin{aligned}
39 & f(x) = \int \tan x \, dx = -\int \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| + C \\
f(3) &= -\ln|\cos 3| + C \\
5 &= -\ln|\cos 3| + C \implies C = 5 + \ln|\cos 3| \\
f(x) &= -\ln|\cos x| + 5 + \ln|\cos 3| = \ln\left|\frac{\cos 3}{\cos x}\right| + 5
\end{aligned}$$

■ تبرير: إذا كان الشكل المجاور يُمثِّل منحنى الاقتران:

ناً: باعًا: $f(x) = 3\cos x \sqrt{\sin x + 1}$ فأُجيب عن الأسئلة الآتية تباعًا:



- D، C، وB، وB، وB، وB، وB، وB، وB
 - 41 أجد مساحة المنطقة المُظلَّلة.
- أُبيِّن أنَّ للمنطقة R_1 والمنطقة R_2 المساحة نفسها.

40
$$f(x) = 0 \implies 3\cos x \sqrt{1 + \sin x} = 0$$
 $\cos x = 0 \implies x = \frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}, x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$
 $\sin x = -1 \implies x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$
 $\lim_{x \to \infty} x = 1 \implies x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$
 $\lim_{x \to \infty} x = 1 \implies x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$
 $\lim_{x \to \infty} x = 1 \implies x \implies x = 1 \implies$

$$A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3\cos x \sqrt{1 + \sin x}) \, dx + \left(-\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (3\cos x \sqrt{1 + \sin x}) \, dx\right)$$

$$u = 1 + \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$A = 3 \int_{0}^{2} \cos x \sqrt{u} \, \frac{du}{\cos x} + \left(-3 \int_{2}^{0} \cos x \sqrt{u} \, \frac{du}{\cos x}\right)$$

$$= 3 \int_{0}^{2} \sqrt{u} \, du + 3 \int_{0}^{2} \sqrt{u} \, du$$

$$= 6 \int_{0}^{2} \sqrt{u} \, du = 4 u^{\frac{3}{2}} \Big|_{0}^{2} = 4(2\sqrt{2} - 0) = 8\sqrt{2}$$

$$A(R_1) = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (3\cos x \sqrt{1 + \sin x}) dx = \int_{0}^{2} 3\sqrt{u} du = 4\sqrt{2}$$

$$A(R_2) = -\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (3\cos x \sqrt{1 + \sin x}) dx = -\int_{2}^{0} 3\sqrt{u} du = 4\sqrt{2} \implies A(R_1) = A(R_2)$$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 870) 23

$$u = x^{1/4}$$
 آجد قیمة: $u = 1 + x^{3/4}$ أو أن $u = 1 + x^{3/4}$ أو أن $u = 1 + x^{3/4}$ أو أن $u = 1 + x^{3/4}$ أو أن أن المراه المراه أن أن المراه المراه المراه أن أن المراه المراع المراه المراع المراه المرا

$$\int_{0}^{\pi/2} f(\cos x) \ dx = \int_{0}^{\pi/2} f(\sin x) \ dx$$
: قَرْبِت أَنَّ مِتصلًا، فَأُثْبِت أَنَّ عَلَى اللهُ عَالَ اللهُ عَالَمُ اللهُ عَالَمُ عَلَى اللهُ عَالَمُ عَلَى اللهُ عَالَمُ عَلَى اللهُ عَلَيْكِ عَلَى اللهُ عَلَى اللّهُ عَلَى اللّهُ عَلَى اللّهُ عَلَى اللّهُ عَلَى اللّهُ عَلَى اللّهُ عَلَّهُ عَلَى اللّهُ عَلَى اللّهُ عَلَى

.
$$\int_{0}^{1} x^{a} (1-x)^{b} dx = \int_{0}^{1} x^{b} (1-x)^{a} dx :$$
قبریر : إذا کان a و عددین حقیقیین مو جبین، فأثبِت أنَّ : 45

$$\begin{array}{lll}
43 & u = 1 + x^{\frac{3}{4}} & \Rightarrow \frac{du}{dx} = \frac{3}{4}x^{-\frac{1}{4}} \Rightarrow dx = \frac{4}{3}x^{\frac{1}{4}}du, & x^{\frac{3}{4}} = u - 1 & x = 1 \Rightarrow u = 2 \\
& \int_{1}^{16} \frac{\sqrt{x}}{1 + \sqrt[4]{x^{3}}} dx = \int_{2}^{9} \frac{x^{\frac{1}{2}}}{u} \frac{4}{3}x^{\frac{1}{4}}du = \frac{4}{3} \int_{2}^{9} \frac{x^{\frac{3}{4}}}{u} du = \frac{4}{3} \int_{2}^{9} \frac{u - 1}{u} du \\
& = \frac{4}{3} \int_{2}^{9} \left(1 - \frac{1}{u}\right) du = \frac{4}{3}(u - \ln|u|) \Big|_{2}^{9} = \frac{4}{3}\left(7 - \ln\frac{9}{2}\right)
\end{array}$$

45
$$u = 1 - x \implies dx = -du$$
 , $x = 1 - u$ $x = 0 \implies u = 1$ $x = 1 \implies u = 0$

$$\int_0^1 x^a (1 - x)^b dx = \int_1^0 -(1 - u)^a u^b du = \int_0^1 u^b (1 - u)^a du = \int_0^1 x^b (1 - x)^a dx$$

$$u = \ln(\ln x) \Rightarrow \frac{du}{dx} = \frac{\frac{1}{x}}{\ln x} = \frac{1}{x \ln x} \Rightarrow dx = x \ln x \, du$$

$$\int \frac{dx}{x \ln x \, (\ln(\ln x))} = \int \frac{x \ln x \, du}{ux \ln x} = \ln|u| + C = \ln|\ln(\ln x)| + C$$

تحدِّ: أجد كُلًّا من التكاملات الآتية:

$$\frac{dx}{x \ln x \left(\ln \left(\ln x \right) \right)}$$

$$\int \frac{1}{\sqrt{x} - \sqrt[3]{x}} \ dx$$

ارشاد للسؤال 48: ما المضاعف المشترك الأصغر لدليلي الجذرين؟

46
$$u = \ln(\ln x) \Rightarrow \frac{du}{dx} = \frac{\frac{1}{x}}{\ln x} = \frac{1}{x \ln x} \Rightarrow dx = x \ln x du$$

$$\int \frac{dx}{x \ln x (\ln(\ln x))} = \int \frac{x \ln x du}{ux \ln x} = \ln|u| + C = \ln|\ln(\ln x)| + C$$

47
$$u = 1 + \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$
, $\sin x = u - 1$

$$\int \sin 2x (1 + \sin x)^3 dx = \int 2 \sin x \cos x u^3 \frac{du}{\cos x} = \int 2(u - 1)u^3 du$$

$$= \int (2u^4 - 2u^3) du = \frac{2}{5}u^5 - \frac{1}{2}u^4 + C = \frac{2}{5}(1 + \sin x)^5 - \frac{1}{2}(1 + \sin x)^4 + C$$

Glasanat Samin



$$\mathbf{1} \int \frac{x}{\sqrt{x^2 + 4}} \, dx$$

6
$$\int x^3 (x+2)^7 dx$$

$$\mathbf{O} \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$1 \quad u = x^2 + 4 \Longrightarrow \frac{du}{dx} = 2x \Longrightarrow dx = \frac{du}{2x}$$

$$\int \frac{x}{\sqrt{x^2+4}} dx = \int \frac{x}{\sqrt{u}} \frac{du}{2x} = \int \frac{1}{2} u^{-\frac{1}{2}} du = u^{\frac{1}{2}} + C = \sqrt{x^2+4} + C$$

$$2 u = 1 - \cos \frac{x}{2} \Rightarrow \frac{du}{dx} = \frac{1}{2} \sin \frac{x}{2} \Rightarrow dx = \frac{2}{\sin \frac{x}{2}} du$$

$$= \int u^2 \sin \frac{x}{2} \frac{2}{\sin \frac{x}{2}} du = \int 2u^2 du = \frac{2}{3}u^3 + C = \frac{2}{3} \left(1 - \cos \frac{x}{2}\right)^3 + C$$

$$3 \int \csc^5 x \cos^3 x dx = \int \frac{\cos^3}{\sin^5 x} x dx = \int \cot^3 x \csc^2 x dx$$

$$u = \cot x \Rightarrow \frac{du}{dx} = -\csc^2 x \Rightarrow dx = \frac{du}{-\csc^2 x}$$

$$= \int \cot^3 x \csc^2 x dx = \int u^3 \csc^2 x \frac{du}{-\csc^2 x} = \int -u^3 du = -\frac{1}{4}u^4 + C = -\frac{1}{4}\cot^4 x + C$$

$$4 \quad u = x^2 \Longrightarrow dx = \frac{du}{2x}$$

$$\int x \sin x^2 \, dx = \int \frac{1}{2} \sin u \, du = -\frac{1}{2} \cos u + C = -\frac{1}{2} \cos x^2 + C$$

5
$$u = x + 2 \Rightarrow dx = du$$
 , $x = u - 2$

$$\int x^{3}(x+2)^{7} dx = \int (u-2)^{3} u^{7} du = \int (u^{10} - 6u^{9} + 12u^{8} - 8u^{7}) du$$

$$= \frac{1}{11} u^{11} - \frac{3}{5} u^{10} + \frac{4}{3} u^{9} - u^{8} + C$$

$$= \frac{1}{11} (x+2)^{11} - \frac{3}{5} (x+2)^{10} + \frac{4}{3} (x+2)^{9} - (x+2)^{8} + C$$

$$\begin{cases}
\frac{\ln \sqrt{x}}{x} dx = \int \frac{\frac{1}{2} \ln x}{x} dx \implies u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \Rightarrow dx = x du \\
\int \frac{\ln \sqrt{x}}{x} dx = \int \frac{\frac{1}{2} \ln x}{x} dx = \int \frac{1}{2} u du = \frac{1}{4} u^2 + C = \frac{1}{4} (\ln x)^2 + C
\end{cases}$$

$$7 \quad u = \sqrt{x} \Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}} \Rightarrow dx = 2\sqrt{x} du$$

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int \frac{e^u}{\sqrt{x}} \times 2\sqrt{x} du = 2 \int e^u du = 2e^u + C = 2e^{\sqrt{x}} + C$$

$$\begin{cases}
\frac{\sin(\ln 4x^2)}{x} dx \implies u = \ln 4x^2 \Rightarrow \frac{du}{dx} = \frac{8x}{4x^2} = \frac{2}{x} \Rightarrow dx = \frac{x}{2} du \\
= \int \frac{\sin u}{x} \times \frac{x}{2} du = \frac{1}{2} \int \sin u \, du = -\frac{1}{2} \cos u + C = -\frac{1}{2} \cos(\ln 4x^2) + C
\end{cases}$$

$$u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow \sec^2 x dx = du$$

$$\int \sec^2 x \cos^3(\tan x) dx = \int \cos^3 u \ du = \int \cos u \cos^2 u \ du = \int \cos u \ (1 - \sin^2 u) du$$

$$v = \sin u \Rightarrow \frac{dv}{dx} = \cos u \Rightarrow \cos u \ dx = dv$$

$$\int \cos u \ (1 - \sin^2 u) du = \int (1 - v^2) dv = v - \frac{1}{3} v^3 + C$$

$$= \sin u - \frac{1}{3} \sin^3 u + C = \sin(\tan x) - \frac{1}{3} \sin^3(\tan x) + C$$

$$\int \sec^2 x \cos(\tan x) \left(1 - \sin^2(\tan x)\right) dx$$

$$\int \sec^2 x \cos(\tan x) \left(1 - \sin^2(\tan x)\right) dx$$

$$\int \sec^2 x \cos(\tan x) \left(1 - \sin^2(\tan x)\right) dx$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \sin(\tan x)$$

$$\int \cot^2 x \cos(\tan x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos x) dx = \cos(-\cos x)$$

$$\int \cot^2 x \cos(-\cos$$

أجد قيمة كل من التكاملات الآتية:

13
$$\int_{1}^{4} \frac{\left(1 + \sqrt{x}\right)^{3}}{\sqrt{x}} dx$$
 14 $\int_{0}^{\pi/4} \frac{e^{\tan x}}{\cos^{2} x} dx$ 15 $\int_{0}^{\pi/3} \cos^{2} x \sin^{3} x dx$

$$\int_0^{\pi/4} \frac{e^{\tan x}}{\cos^2 x} \ dx$$

$$\int_0^{\pi/3} \cos^2 x \sin^3 x \, dx$$

$$\begin{vmatrix} u = 4x + 1 \Rightarrow 4dx = du & , & 4x = u - 1 & x = 20 \Rightarrow u = 81 \\ \int_{6}^{20} \frac{8x}{\sqrt{4x + 1}} dx = \int_{25}^{81} \frac{u - 1}{2\sqrt{u}} du = \int_{25}^{81} \left(\frac{1}{2}u^{\frac{1}{2}} - \frac{1}{2}u^{-\frac{1}{2}}\right) du & x = 6 \Rightarrow u = 25 \\ = \left(\frac{1}{3}u^{\frac{3}{2}} - u^{\frac{1}{2}}\right)\Big|_{25}^{81} = (243 - 9) - \left(\frac{125}{3} - 5\right) = \frac{592}{3}$$

11
$$u = \sqrt{x - 1} \Rightarrow u^2 = x - 1 \Rightarrow 2udu = dx$$
 $x = 5 \Rightarrow u = 2$

$$\int_{2}^{5} \frac{1}{1 + \sqrt{x - 1}} dx = \int_{1}^{2} \frac{2u}{1 + u} du = \int_{1}^{2} \left(2 - \frac{2}{u + 1}\right) du$$

$$= (2u - 2\ln|u + 1|)|_{1}^{2} = (4 - 2\ln 3) - (2 - 2\ln 2) = 2 - 2\ln\frac{2}{3}$$

$$\begin{aligned}
12 & u = 1 + \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x} & x = \frac{\pi}{2} \Rightarrow u = 1 \\
& \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \cos x} dx = \int_{2}^{1} \frac{2 \sin x \cos x}{u} \times \frac{du}{-\sin x} = \int_{2}^{1} -\frac{2(u-1)}{u} du \\
& = \int_{2}^{1} \frac{2 - 2u}{u} du = \int_{1}^{2} \frac{2u - 2}{u} du = \int_{1}^{2} \left(2 - \frac{2}{u}\right) du \\
& = (2u - 2 \ln|u|)|_{1}^{2} = (4 - 2 \ln 2) - (2 - 0) = 2 - 2 \ln 2
\end{aligned}$$

$$\begin{aligned}
13 & u = 1 + \sqrt{x} \Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}} \Rightarrow dx = 2\sqrt{x}du & x = 4 \Rightarrow u = 3 \\
& x = 1 \Rightarrow u = 2
\end{aligned}$$

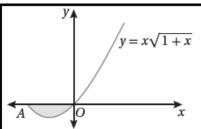
$$\int_{1}^{4} \frac{(1 + \sqrt{x})^{3}}{\sqrt{x}} dx = \int_{2}^{3} \frac{u^{3}}{\sqrt{x}} \times 2\sqrt{x} du = \int_{2}^{3} 2u^{3} du = \frac{1}{2}u^{4}\Big|_{2}^{3} = \frac{81}{2} - \frac{16}{2} = \frac{65}{2}
\end{aligned}$$

14
$$u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow dx = \frac{du}{\sec^2 x} = \cos^2 x \, du \quad x = \frac{\pi}{4} \Rightarrow u = 1$$

$$\int_0^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^2 x} \, dx = \int_0^1 \frac{e^u}{\cos^2 x} \times \cos^2 x \, du = \int_0^{e^u} du = e^u \Big|_0^1 = e - 1$$
15 $u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x} \qquad x = \frac{\pi}{3} \Rightarrow u = \frac{1}{2}$

$$\int_0^{\frac{\pi}{3}} \cos^2 x \sin^3 x \, dx = \int_1^{\frac{1}{2}} u^2 \sin^3 x \, \frac{du}{-\sin x} = \int_{\frac{1}{2}}^1 u^2 (1 - u^2) \, du$$

$$= \int_{\frac{1}{2}}^1 (u^2 - u^4) \, du = \left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right) \Big|_{\frac{1}{2}}^1 = \left(\frac{1}{3} - \frac{1}{5}\right) - \left(\frac{1}{24} - \frac{1}{160}\right) = \frac{47}{480}$$



 $f(x) = x\sqrt{x+1}$ يُبيِّن الشكل المجاور جزءًا من منحنى الاقتران: $f(x) = x\sqrt{x+1}$ أجد مساحة المنطقة المُظلَّلة في هذا الشكل.

في كلُّ ممّا يأتي المشتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحني y=f(x). أستعمل المعلومات المعطاة لإيجاد قاعدة

17
$$f'(x) = 16 \sin x \cos^3 x; (\frac{\pi}{4}, 0)$$

(2, 1)
$$f'(x) = \frac{x}{\sqrt{x^2 + 5}}$$
 (2, 1) $f(x)$ الاقتران

يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته بالاقتران: $\frac{-2t}{\left(1+t^2\right)^{3/2}}$ عيث t الزمن بالثواني، وv سرعته بالمتر v عند v الزمن بالثواني، وv عند v المتر الموقع الابتدائي للجُسَيْم هو v الجُسَيْم وقع الجُسَيْم بعد v ثانية.

$$A = \int_{-1}^{0} -x\sqrt{1+x} \, dx = \int_{0}^{1} -x\sqrt{u} \, du = \int_{0}^{1} (1-u)\sqrt{u} \, du$$
$$= \int_{0}^{1} \left(u^{\frac{1}{2}} - u^{\frac{3}{2}}\right) \, du = \left(\frac{2}{3}u^{\frac{3}{2}} - \frac{2}{5}u^{\frac{5}{2}}\right)\Big|_{0}^{1} = \frac{2}{3} - \frac{2}{5} = \frac{4}{15}$$

17
$$f(x) = \int 16 \sin x \cos^3 x \, dx \qquad u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x}$$

$$f(x) = \int 16 \sin x \, u^3 \frac{du}{-\sin x} = \int -16 \, u^3 \, du = -4u^4 + C = -4\cos^4 x + C$$

$$f\left(\frac{\pi}{4}\right) = -4\left(\frac{1}{\sqrt{2}}\right)^4 + C \Rightarrow 0 = -1 + C \Rightarrow C = 1 \Rightarrow f(x) = -4\cos^4 x + 1$$

18
$$u = x^2 + 5 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$f(x) = \int \frac{x}{\sqrt{u}} \times \frac{du}{2x} = \int \frac{1}{2} u^{-\frac{1}{2}} du = u^{\frac{1}{2}} + C = \sqrt{x^2 + 5} + C$$

$$f(2) = 3 + C \Rightarrow 1 = 3 + C \Rightarrow C = -2 \Rightarrow f(x) = \sqrt{x^2 + 5} - 2$$

19
$$u = 1 + t^2 \Rightarrow \frac{du}{dt} = 2t \Rightarrow dt = \frac{du}{2t}$$

 $s(t) = \int \frac{-2t}{u^{\frac{3}{2}}} \times \frac{du}{2t} = \int -u^{-\frac{3}{2}} du = 2u^{-\frac{1}{2}} + C = \frac{2}{\sqrt{1+t^2}} + C$
 $s(0) = 2 + C \Rightarrow 4 = 2 + C \Rightarrow C = 2 \Rightarrow s(t) = \frac{2}{\sqrt{1+t^2}} + 2$

وزارة علمي 2023

a)
$$\frac{1}{6} \ln x^6 + C$$

c)
$$\frac{1}{6}(\ln x)^6 + C$$

: هو
$$\int \frac{(\ln x)^4}{x} dx$$
 هو

b)
$$\frac{1}{5} \ln x^5 + C$$

d
$$\frac{1}{5}(\ln x)^5 + C$$

a)
$$\cos x - \frac{1}{3}\cos^3 x + C$$

C)
$$\frac{1}{3}\cos^3 x - \cos x + C$$
 : فاتح: $\int \sin^3 x \ dx$ ناتج: (8

b)
$$\frac{1}{3}\sin^3 x - \sin x + C$$

d)
$$\sin x - \frac{1}{3} \sin^3 x + C$$

(ت علامات) من التكاملات الآتية:
$$\int \sec^2 x \tan x \sqrt{1 + \tan x} \ dx$$
 (a) جد كلاً من التكاملات الآتية

وزارة صناعي 2023

(علمات) 1)
$$\int_{1}^{9} \frac{3x}{\sqrt{3x-2}} dx$$

a) جد كلًا من التكاملات الآتية:

وزارة علمى 2023 تكميلى

a)
$$\frac{3\sqrt[3]{(x^2-x)^4}}{4} + C$$

$$-\frac{3\sqrt[3]{(x^2-x)^4}}{4}+C$$

$$-\frac{3\sqrt[3]{(x^2-x)^4}}{4} + C$$
 : $\lim_{x \to \infty} \int (1-2x)\sqrt[3]{x^2-x} dx$ (7)

b)
$$-\frac{3\sqrt[4]{(x^2-x)^3}}{4} + C$$

d)
$$\frac{3\sqrt[4]{(x^2-x)^3}}{4} + C$$

a)
$$-\frac{\sin^4 x}{2} + C$$

c)
$$\frac{\cos^4 x}{2} + C$$

$$\int \sin^2 x \sin 2x \, dx$$
 (8) يساوي:

b)
$$-\frac{\cos^3 x}{3} + C$$

$$\frac{\sin^4 x}{2} + C$$

(מובים) בעמוד)
$$\int (\sec x \tan x)^4 dx$$
 אובים) אונים אלג מי (מובים) אונים אלג מי (מובים) אונים אונים (מובים) אונים אונים (מובים) אונים אונים אונים (מובים) אונים אונים אונים (מובים) אונים אונ

وزارة صناعي 2023 تكميلي

(ا علامات)
$$\int \frac{dx}{x-\sqrt{x}}$$
 (ا علامات) جد كلاً من التكاملات الآنية:

تمارين إضافية على الدرس الثانى:

السؤال الأول: حدد رمز الإجابة الصحيحة فيم يأتى:

1)
$$\int \frac{6(Lnx)^2}{x} dx = a$$
) $2(Lnx)^3 + c$ b) $2Lnx^3 + c$

$$b) 2Lnx^3 + c$$

c)
$$3Lnx + c$$

c)
$$3Lnx + c$$
 d) $3(Lnx)^2 + c$

2)
$$\int 3\cos^3 x \, dx = a$$
) $9\cos^2 x \sin x + c$ b) $3\sin x - \sin^3 x + c$

b)
$$3\sin x - \sin^3 x + c$$

$$c) \frac{3}{4}\cos^4 x + c$$

$$d$$
) $\sin^3 x - 3\sin x + c$

b)
$$e^{\sec x} + a$$

c)
$$\tan x e^{\sec^2 x} + c$$

c)
$$\tan x e^{\sec^2 x} + c$$
 d) $\tan x e^{\sec x} + c$

4)
$$\int \frac{\tan^2(Lnx)}{x} dx = a \tan^2(Lnx) + c$$
 b) $\tan^2(Lnx) - Lnx + c$

$$b$$
) tan²(Lnx) – Lnx + c

$$c)\tan^2(Lnx) + Lnx + c$$
 $d)\sec(Lnx) + c$

$$d$$
) $sec(Lnx) + c$

5)
$$\int \csc^4 x \ dx = a$$
) $\frac{1}{5} \cot^5 x + c$

$$b$$
) $\cot x + c$

c)
$$\frac{1}{3}\cot^3 x - \cot x + c$$

c)
$$\frac{1}{3}\cot^3 x - \cot x + c$$
 d) $\frac{1}{3}\cot^3 x + \cot x + c$

6)
$$\int 4x \ e^{x^2} dx = a \cdot 2x^2 e^{x^3} + c \qquad b \cdot 4x \ e^{x^2} + c$$

b)
$$4x e^{x^2} + c$$

(c)
$$2e^{x^2} + c$$

c)
$$2e^{x^2} + c$$
 d) $2x^2e^{x^2} + c$

7)
$$\int 3\sin 2x \sin 4x \, dx = a$$
) $24\cos 2x \cos 4x + c$ b) $\frac{3}{8}\cos 2x \cos 4x + c$

b)
$$\frac{3}{8}\cos 2x \cos 4x + c$$

$$c)-\sin^3 2x+c$$

$$d$$
) $\sin^3 2x + c$

8)
$$\int \frac{e^{2x}}{e^x - 2} dx = a e^x - 2 + Ln(e^x - 2) + c$$
 b) $e^x - 2 + Ln(e^x - 2)^2 + c$

$$b)e^{x}-2+Ln(e^{x}-2)^{2}+c$$

$$c) x - e^{x} + c$$

$$d$$
) $Ln(e^{2x}-2)+c$

9)
$$\int_{1}^{e} x f(x) dx = 5 \Rightarrow \int_{0}^{2} e^{x} f(\sqrt{e^{x}}) dx =$$

- a) 10 b) 2.5 c) 20 d) e-1

10)
$$f(-8) = 4$$
, $f(1) = -6 \Rightarrow \int_{-2}^{1} 3x^2 f'(x^3) dx =$

- a) 10 b)-2 c)-10
- d)2

11)
$$\int_{8}^{1} f(x) dx = 6 \Rightarrow \int_{1}^{2} 6x^{2} f(x^{3}) dx =$$

- a)-3 b) 3 c) 12 d)-12

12)
$$\int 16(x^5+x)^3 dx = a \cdot 4(x^4+x)^4 + c$$
 $b \cdot (x^5+x)^5 + c$

- $(x^5+1)^4+c$
- d) $(x^4+1)^4+c$

13)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 6 \frac{\sin^2 x}{\sec x} \, dx = a) \, \frac{3\sqrt{3} - 2\sqrt{2}}{4} \qquad b) \, \frac{2\sqrt{3} - 3\sqrt{2}}{4}$$

- c) $3-\sqrt{6}$
- $d) \frac{3\sqrt{3}-\sqrt{2}}{\Delta}$

14)
$$\int_{1}^{e} \frac{Ln(x^{2})}{x} dx = a e$$
 $b \mid 1$ $c \mid -1$ $d \mid 2$

15)

إذا كان $f(x)=a \; x(x-1)^3$ فإن قيمة الثابت (a) التي تجعل مساحة المنطقة المحصورة بين منحنى الاقتران (x) والمحور (x) تساوي وحدة مربعة واحدة هي :

- a) 10 b) 20
- c)-20
- d)2

1 2 3 4 5	6 7 8 9 10	11 12 13 14 15

السؤال الثاني: جد قيمة التكاملات الآتية:

$$1)\int \frac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2} dx$$

$$6) \int (\tan 2x + \cot 2x)^2 dx$$

$$2) \int \sin 2x \ e^{\sin^2 x} \ dx$$

$$7)\int \cos^3\theta \sin\theta d\theta$$

$$3) \int (1 + \frac{1}{x})^3 \frac{1}{x^4} \ dx$$

$$8)\int_{0}^{\frac{\pi}{4}} \frac{\sin t}{\cos^{4} t} dt$$

$$4)\int_{0}^{1}\frac{x}{\sqrt{x+1}}\ dx$$

$$9) \int \frac{dx}{x(\ln x)^2}$$

$$5) \int \sqrt{x} \sqrt{x} \sqrt{x+1} \ dx$$

$$10) \int \ln(\cos^2 x) \tan x \ dx$$

التكامل بالكسور الجزئية Integration by Partial Fractions

هناك عدة طرق للتكامل، منها: 1) الطريقة المباشرة من خلال البحث عن اقتران مشتقته تعطى الاقتران المُكامَل.

3) من خلال المتطابقات المثلثية (

Abdulkadir Hasanat 078 531 88 77

4) طريقة التكامل بالتعويض

5) طريقة الكسور الجزئية

6) طريقة التكامل بالأجزاء



Glasanat

تقوم طريقة التكامل بالكسور الجزئية على تحويل الاقتران النسبي إلى مجموع اقترانات نسبية أبسط،

$$\int \frac{8x+2}{x^2+2x-8} dx = ? \dots \Rightarrow \frac{8x+2}{x^2+2x-8} = \frac{3}{x-2} + \frac{5}{x+4}$$

فيكون تكاملها أسهل:

عادة نستخدم هذه الطريقة ، (الكسور الجزئية) ، عندما نريد مكاملة مقدارا نسبيا (كل من بسطه ومقامه كثير حدود) وأحدهما ليس مشتقة للآخر ، ودرجة البسط أصغر من درجة المقام ، وإلا فالخوارزمية أولا

*)
$$\int \frac{x-1}{x^2-2x-24} dx : (تعبویض أو کسبور جزئیـــة) ... &) $\int \frac{x}{x^2-8x-20} dx : (كسبور جزئيــة)$$$

وهناك عدة حالات للتكامل بالكسور الجزئية (حسب نوع عوامل المقام ودرجته هو والبسط)، نستعرض منها ما يأتي:

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \frac{A_3}{a_3 x + b_3} + \dots + \frac{A_n}{a_n x + b_n}$$
 عوامل المقام كثيرات حدود خطية مختلفة (1

$$1) \int \frac{x+4}{x^2 - 2x - 3} \, dx = \int \frac{x+4}{(x-3)(x+1)} \, dx = \int \frac{a}{x-3} \, dx + \int \frac{b}{x+1} \, dx$$

$$x + 4 = a(x + 1) + b(x - 3)$$

$$x = 3 \Rightarrow 7 = a(3+1) + b(3-3) \Rightarrow a = \frac{7}{4}$$

$$x = -1 \Rightarrow 3 = a(-1+1) + b(-1-3) \Rightarrow b = \frac{-3}{4}$$

$$\Rightarrow \int \frac{x+4}{x^2 - 2x - 3} \, dx = \int \frac{\frac{7}{4}}{x - 3} \, dx + \int \frac{\frac{-3}{4}}{x + 1} \, dx = \frac{7}{4} \ln|x - 3| + \frac{-3}{4} \ln|x + 1| + c$$

ياضيات / علمي - ف 2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 70)

$$2) \int \frac{x+1}{x^2 - x} \, dx = \int \frac{x+1}{x(x-1)} \, dx = \int \frac{a}{x} \, dx + \int \frac{b}{x-1} \, dx$$

$$x + 1 = a(x - 1) + b(x)$$

$$x = 1 \Rightarrow 2 = a(1-1) + b(1) \Rightarrow b = 2$$

$$x = 0 \Rightarrow 1 = a(-1) + b(0) \Rightarrow a = -1$$

$$\Rightarrow \int \frac{x+1}{x^2 - x} dx = \int \frac{-1}{x} dx + \int \frac{2}{x-1} dx = -\ln|x| + 2\ln|x-1| + c$$
$$= \ln(x-1)^2 - \ln|x| + c = \ln\left|\frac{(x-1)^2}{x}\right| + c$$

$$3) \int \frac{x^2 + 2x + 2}{x^3 - 3x^2 + 2x} dx = \int \left(\frac{a}{x} + \frac{b}{x - 2} + \frac{c}{x - 1}\right) dx$$

$$x^{2} + 2x + 2 = a(x-2)(x-1) + b(x)(x-1) + c(x)(x-2)$$

$$x = 0 \Rightarrow 2 = a(-2)(-1) \Rightarrow a = 1$$

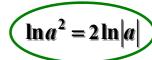
$$x = 2 \Rightarrow 10 = b(2)(1 \Rightarrow b = 5$$

$$x = 1 \Rightarrow 5 = c(1)(-1 \Rightarrow c = -5)$$

$$\Rightarrow \int \frac{x^2 + 2x + 2}{x^3 - 3x^2 + 2x} dx = \int \left(\frac{1}{x} + \frac{5}{x - 2} + \frac{-5}{x - 1}\right) dx$$
$$= -\ln|x| + 5\ln|x - 2| - 5\ln|x - 1| + c = \ln\left|\frac{x(x - 2)^5}{(x - 1)^5}\right| + c$$

$$\ln |a| + \ln |b| = \ln |ab|$$

$$\ln |a| - \ln |b| = \ln \left| \frac{a}{b} \right|$$



a) $\int \frac{x-7}{x^2-x-6} dx$ b) $\int \frac{3x-1}{x^2-1} dx$ نَتِينَ: $\int \frac{49}{x^2-x-6} dx$ b) $\int \frac{3x-1}{x^2-1} dx$ أَتِدرَّب وَأَدُلُّ المِسائل $\int \frac{x-7}{x^2-x-6} dx$ أَتِدرَّب وَأَدُلُّ المِسائل $\int \frac{x-7}{x^2-x-6} dx$ أَجِد كُلًّا مِن التكاملات الآتية:

$$\int \frac{4}{(x-2)(x-4)} dx$$

$$\int \frac{3x+4}{x^2+x} dx$$

$$\int \frac{3x-6}{x^2+x-2} dx$$

$$\int \frac{4x+10}{4x^2-4x-3} \ dx$$

$$\int \frac{3-x}{2-5x-12x^2} dx$$

$$1) \int \frac{12x + 25}{x^2 - x - 6} dx = \dots \frac{61}{5} \ln|x - 3| + \frac{-1}{5} \ln|x + 2| + c$$

$$2) \int \frac{12}{x^2 - 9} dx = ... 2 \ln|x - 3| - 2 \ln|x + 3| + c$$

$$3) \int \frac{5x-3}{(x^2-1)(x+3)} dx = \dots \frac{1}{4} \ln|x-1| + 2\ln|x+1| - \frac{9}{4} \ln|x+3| + c$$
 078 531 8

$$4)\int \frac{x^2+4}{3x^3+4x^2-4x} dx = ... - \ln|x| + \frac{1}{2}\ln|x+2| + \frac{5}{6}\ln|3x-2| + c$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 87) 3

$$\frac{a}{x^{2}-x-6} = \frac{x-7}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2}$$

$$\Rightarrow x-7 = A(x+2) + B(x-3) \Rightarrow x = 3 \Rightarrow A = -\frac{4}{5} \Rightarrow x = -2 \Rightarrow B = \frac{9}{5}$$

$$\int \frac{x-7}{x^{2}-x-6} dx = \int \left(\frac{-\frac{4}{5}}{x-3} + \frac{\frac{9}{5}}{x+2}\right) dx = -\frac{4}{5} \ln|x-3| + \frac{9}{5} \ln|x+2| + C$$

$$\begin{vmatrix} 3x - 1 \\ x^2 - 1 \end{vmatrix} = \frac{3x - 1}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

$$\Rightarrow 3x - 1 = A(x + 1) + B(x - 1) \Rightarrow x = 1 \Rightarrow A = 1 \Rightarrow x = -1 \Rightarrow B = 2$$

$$\int \frac{3x - 1}{x^2 - 1} dx = \int \left(\frac{1}{x - 1} + \frac{2}{x + 1}\right) dx = \ln|x - 1| + 2\ln|x + 1| + C$$

的,我们是有一种,我们是有好的,我们是有好的,我们是有好的,我们是有好的,我们就是我们的,我们就是我的,我们的好好的,我们的好好的的,我们的好好的好的,我们的好 第一位的是是是是一种的好好的的好好的,我们是是是一种的,我们是是一种的,我们是是有一种的好好的,我们是一种的好好的,我们的好好的好好的好好的,我们的我们的好好的

$$\frac{3}{(x-2)(x-4)} = \frac{A}{x-2} + \frac{B}{x-4} \Rightarrow 4 = A(x-4) + B(x-2) \quad \begin{cases} x=2 \Rightarrow A = -2 \\ x=4 \Rightarrow B = 2 \end{cases} \\
\int \frac{4}{(x-2)(x-4)} dx = \int \left(\frac{-2}{x-2} + \frac{2}{x-4}\right) dx = -2 \ln|x-2| + 2 \ln|x-4| + C = 2 \ln\left|\frac{x-4}{x-2}\right| + C \\
4 \frac{3x+4}{x^2+x} = \frac{3x+4}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1} \Rightarrow 3x+4 = A(x+1) + Bx \quad \begin{cases} x=0 \Rightarrow A = 4 \\ x=-1 \Rightarrow B = -1 \end{cases} \\
\int \frac{3x+4}{x^2+x} dx = \int \left(\frac{4}{x} + \frac{-1}{x+1}\right) dx = 4 \ln|x| - \ln|x+1| + C$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 87) 4

$$\frac{3x-6}{x^2+x-2} = \frac{3x-6}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1} \Rightarrow 3x-6 = A(x-1) + B(x+2)$$

$$\int \frac{3x-6}{x^2+x-2} dx = \int \left(\frac{4}{x+2} + \frac{-1}{x-1}\right) dx$$

$$= 4\ln|x+2| - \ln|x-1| + C$$

$$\frac{4x+10}{4x^2-4x-3} = \frac{4x+10}{(2x-3)(2x+1)} = \frac{A}{2x-3} + \frac{B}{2x+1}$$

$$\Rightarrow 4x+10 = A(2x+1) + B(2x-3) \quad x = \frac{3}{2} \Rightarrow A = 4 \quad x = -\frac{1}{2} \Rightarrow B = -2$$

$$\int \frac{4x+10}{4x^2-4x-3} dx = \int \left(\frac{4}{2x-3} + \frac{-2}{2x+1}\right) dx = 2\ln|2x-3| - \ln|2x+1| + C$$

$$\frac{2x^{2} + 9x - 11}{x^{3} + 2x^{2} - 5x - 6} = \frac{2x^{2} + 9x - 11}{(x - 2)(x + 1)(x + 3)} = \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{x + 3}$$

$$\Rightarrow 2x^{2} + 9x - 11 = A(x + 1)(x + 3) + B(x - 2)(x + 3) + C(x - 2)(x + 1)$$

$$x = 2 \Rightarrow A = 1 \quad x = -1 \Rightarrow B = 3 \quad x = -3 \Rightarrow C = -2$$

$$\int \frac{2x^{2} + 9x - 11}{x^{3} + 2x^{2} - 5x - 6} dx = \int \left(\frac{1}{x - 2} + \frac{3}{x + 1} + \frac{-2}{x + 3}\right) dx$$

$$= \ln|x - 2| + 3\ln|x + 1| - 2\ln|x + 3| + C$$

$$\frac{4x}{x^{2}-2x-3} = \frac{4x}{(x-3)(x+1)} = \frac{A}{x-3} + \frac{B}{x+1} \implies 4x = A(x+1) + B(x-3)$$

$$x = 3 \implies A = 3$$

$$x = -1 \implies B = 1$$

$$= 3 \ln|x-3| + \ln|x+1| + C$$

$$\frac{3-x}{2-5x-12x^2} = \frac{x-3}{12x^2+5x-2} = \frac{x-3}{(4x-1)(3x+2)} = \frac{A}{4x-1} + \frac{B}{3x+2}$$

$$\Rightarrow x-3 = A(3x+2) + B(4x-1)$$

$$x = \frac{1}{4} \Rightarrow A = -1$$

$$x = -\frac{2}{3} \Rightarrow B = 1$$

$$x = -\frac{1}{4} \ln|4x-1| + \frac{1}{3} \ln|3x+2| + C$$

2) عوامل المقام كثيرات حدود خطية، أحدها مُكرّر.

$$\frac{3x}{(x-1)(x-2)^2} = \frac{a}{x-1} + \frac{b}{x-2} + \frac{c}{(x-2)^2}$$
: ملاحظة عند وجود جذر مكرر ، نكتب يهذه الطريقة :

$$\frac{A_1}{(ax+b)^1} + \frac{A_2}{(ax+b)^2} + \frac{A_3}{(ax+b)^3} + \dots + \frac{A_n}{(ax+b)^n}$$

$$1) \int \frac{3x}{(x-1)(x-2)^2} \ dx = \int \left(\frac{a}{x-1} + \frac{b}{x-2} + \frac{c}{(x-2)^2}\right) \ dx$$

$$3x = a(x-2)^2 + b(x-1)(x-2) + c(x-1)$$

$$x=1 \Rightarrow 3=a(-1)^2+0+0 \Rightarrow a=3$$

$$x = 2 \Rightarrow 6 = 0 + 0 + c(1) \Rightarrow c = 6$$

$$x = 0 \Rightarrow 0 = a(-2)^2 + b(-1)(-2) + c(-1)$$

$$\Rightarrow$$
 0 = 4a+2b-c \Rightarrow 0 = 12+2b-6 \Rightarrow b = -3

$$= \int \left(\frac{3}{x-1} + \frac{-3}{x-2} + \frac{6}{(x-2)^2}\right) dx$$
$$= 3\ln|x-1| - 3\ln|x-2| - 6\ln(x-2)^{-1} + c$$

لإيجاد فيمه x = 0: x = 1 أو x = 2 في المعادلة لأنَّ ذلك سيحذف قيمة x = 0 المطلوب إيجادها، وإنَّما نعوِّض أيَّ عدد حقيقي آخر، مثلا x = 0:

$$2) \int \frac{x+7}{x^2(x+2)} dx = \int \left(\frac{a}{x} + \frac{b}{x^2} + \frac{c}{x+2}\right) dx$$
$$= \frac{-5}{4} \ln|x| - \frac{7}{2}x^{-1} + \frac{5}{4} \ln|x+2| + c$$

$$3) \int \frac{3x^2 + 1}{(x+1)(x-5)^2} dx = \int \left(\frac{a}{x+1} + \frac{b}{x-5} + \frac{c}{(x-5)^2}\right) dx$$
$$= \frac{1}{9} \ln|x+1| + \frac{26}{9} \ln|x-5| - \frac{38}{3} (x-5)^{-1} + c$$

$$4) \int \frac{18}{x^2(x-3)} dx = \int \left(\frac{a}{x} + \frac{b}{x^2} + \frac{c}{x-3}\right) dx$$
$$= -2\ln|x| - \frac{6}{x} - 2\ln|x-3| + c$$

a) $\int \frac{x+4}{(2x-1)(x-1)^2} dx$ b) $\int \frac{x^2-2x-4}{x^3-4x^2+4x} dx$: أجد كُلًّا من التكاملين الآتيين أتحقَّق من فهمي $\int \frac{x+4}{(2x-1)(x-1)^2} dx$ $\frac{8x^2-19x+1}{(2x+1)(x-2)^2} dx$ (18) $\int \frac{5x-2}{(x-2)^2} dx$ اتدرّب وأحُلُ المسائل أجد كُلًّا من التكاملات الآتية: $\int \frac{8x^2-19x+1}{(2x+1)(x-2)^2} dx$ 1) $\int \frac{4x-11}{x^2(x-9)} dx = ... \frac{-25}{81} \ln|x| - \frac{11}{9x} + \frac{25}{81} \ln|x-9| + c$ $2)\int \frac{3x-2}{(x+1)^2(x+3)} dx = ... \frac{11}{4} \ln|x+1| - \frac{5}{2} (x+1)^{-1} - \frac{11}{4} \ln|x+3| + c$ $\frac{x+4}{(2x-1)(x-1)^2} = \frac{A}{2x-1} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$ $\Rightarrow x + 4 = A(x - 1)^2 + B(2x - 1)(x - 1) + C(2x - 1)$ $\Rightarrow x + 4 = A(x - 1)^{-} + B(2x - 1)(x - 1)(x - 1)^{-} + B(2x = \frac{18}{2} \ln|2x - 1| - 9 \ln|x - 1| - \frac{5}{x - 1} + C = 9 \ln|2x - 1| - 9 \ln|x - 1| - \frac{5}{x - 1} + C$ $\frac{x^2 - 2x - 4}{x^3 - 4x^2 + 4x} = \frac{x^2 - 2x - 4}{x(x - 2)^2} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{x}$ $\Rightarrow x^2 - 2x - 4 = Ax(x - 2) + Bx + C(x - 2)^2$ $\int \frac{x^2 - 2x - 4}{x^3 - 4x^2 + 4x} dx = \int \left(\frac{2}{x - 2} + \frac{-2}{(x - 2)^2} + \frac{-1}{x}\right) dx = 2 \ln|x - 2| + \frac{2}{x + 2} - \ln|x| + C$ $\frac{6x - 19x + 1}{(2x + 1)(x - 2)^2} = \frac{A}{2x + 1} + \frac{B}{x - 2} + \frac{C}{(x - 2)^2}$ $\Rightarrow 8x^2 - 19x + 1 = A(x - 2)^2 + B(2x + 1)(x - 2) + C(2x + 1)$ $x = -\frac{1}{2} \Rightarrow A = 2$ $x = 2 \Rightarrow C = -1$ $x = 0 \Rightarrow B = 3$ $\frac{8x^2 - 19x + 1}{(2x+1)(x-2)^2} = \frac{A}{2x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$ $\left(\frac{8x^2 - 19x + 1}{(2x + 1)(x - 2)^2}dx = \int \left(\frac{2}{2x + 1} + \frac{3}{x - 2} + \frac{-1}{(x - 2)^2}\right)dx = \ln|2x + 1| + 3\ln|x - 2| + \frac{1}{x - 2} + C$ 2 = A(x-2) + B $\frac{5x-2}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2}$ $\int \frac{5x-2}{(x-2)^2} dx = \int \left(\frac{5}{x-2} + \frac{8}{(x-2)^2} \right) dx$ $= 5 \ln |x-2| - \frac{8}{x-2} + C$ u = 5x - 2, $dv = (x - 2)^{-2}$ کما یمکن حله بالأجزاء حیث:

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 7</mark>

3) عوامل المقام كثيرات حدود، أحدها تربيعي غير قابل للتحليل ، (مُميِّزه سالب)، وغيرمُكرَّر.

عند تحليل مقام المقدار النسبي الذي يحوي عاملًا تربيعيًا غير مُكرَّر، ولا يُمكِن تحليله، ينتج من العامل التربيعي كسر جزئي، بسطه كثير حدود خطي في صورة: ax+b ، ومقامه العامل التربيعي نفسه.

1)
$$\int \frac{7x^2 + 4x + 12}{(x+1)(x^2+4)} dx = \int (\frac{a}{x+1} + \frac{bx+c}{x^2+4}) dx$$

$$7x^2 + 4x + 12 = a(x^2+4) + (bx+c)(x+1)$$

$$= (a+b)x^2 + (b+c) + (4a+c)$$

$$\Rightarrow a+b=7, \quad b+c=4, \quad 4a+c=12$$

$$\Rightarrow a=3, \quad b=4, \quad c=0$$

$$\Rightarrow \int (\frac{3}{x+1} + \frac{4x+0}{x^2+4}) dx = 3\ln|x+1| + 2\ln|x^2+4| + c$$
2)
$$\int \frac{x+1}{(x^2+1)(x-1)} dx = \int (\frac{ax+b}{x^2+1} + \frac{c}{x-1}) dx$$

$$x+1 = c(x^2+1) + (ax+b)(x-1)$$

$$= (a+c)x^2 + (b-a)x + (c-b)$$

$$\Rightarrow a+c=0, \quad b-a=1, \quad c-b=1$$

$$\Rightarrow a=-1, \quad b=0, \quad c=1$$

$$\Rightarrow \int (\frac{-x}{x^2+1} + \frac{1}{x-1}) dx = -\frac{1}{2}\ln(x^2+1) + \ln|x-1| + c$$
3)
$$\int \frac{-7x-7}{(x-3)(x^2+x+2)} dx = \int (\frac{a}{x-3} + \frac{bx+c}{x^2+x+2} +) dx$$

$$-7x-7 = a(x^2+x+2) + (bx+c)(x-3)$$

$$= (a+b)x^2 + (a-3b+c)x + (2a-3c)$$

$$\Rightarrow a+b=0, \quad a-3b+c=-7, \quad 2a-3c=-7$$

$$\Rightarrow a=-2, \quad b=2, \quad c=1$$

$$\Rightarrow \int (\frac{-2}{x-3} + \frac{2x+1}{x^2+x+2} +) dx = -2\ln|x-3| + \ln|x^2+x+2| + c$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 07)

a)
$$\int \frac{3x+4}{(x-3)(x^2+4)} dx$$
 b) $\int \frac{7x^2-x+1}{x^3+1} dx$ نتحقُق من فهمي 52 أجد كُلًّا من التكاملين الآتيين: $\int \frac{3x+4}{x^3+1} dx$

$$\frac{2x-4}{(x^2+4)(x+2)} dx$$
 وَأَخُلُّ المسائل أَجْد كُلُّا من التكاملات الآتية: $\frac{3x^3-x^2+12x-6}{x^4+6x^2} dx$

1)
$$\int \frac{x^2 + 4x + 12}{(x - 2)(x^2 + 4)} dx = ... - 3 \ln|x - 2| - \ln|x^2 + 4| + c$$

$$2)\int \frac{x^2 + x - 3}{(x+1)(x^2 - 2x + 3)} dx = \dots - \frac{1}{2} \ln|x+1| + \frac{3}{4} \ln|x^2 - 2x + 3| + c$$

$$3) \int \frac{5x^3 - 6x^2 + 5x - 2}{(x - 1)^2 (x^2 + 1)} dx = ... 3 \ln|x - 1| - \frac{1}{x - 1} + \ln|x^2 + 1| + c$$

$$\frac{3x+4}{(x-3)(x^2+4)} = \frac{A}{x-3} + \frac{Bx+C}{x^2+4}$$

$$\Rightarrow 3x+4 = A(x^2+4) + (Bx+C)(x-3)$$

$$x = 3 \Rightarrow A = 1$$

$$x = 0 \Rightarrow 4 = 4A - 3C \Rightarrow C = 0$$

$$x = 1 \Rightarrow 7 = 5A - 2B - 2C \Rightarrow B = -1$$

$$= \int \left(\frac{1}{x-3} - \frac{1}{2} \times \frac{2x}{x^2+4}\right) dx = \ln|x-3| - \frac{1}{2}\ln|x^2+4| + C$$

$$\begin{vmatrix}
\frac{7x^2 - x + 1}{x^3 + 1} = \frac{7x^2 - x + 1}{(x+1)(x^2 - x + 1)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 - x + 1} \\
\Rightarrow 7x^2 - x + 1 = A(x^2 - x + 1) + (Bx + C)(x + 1) \\
= \frac{7x^2 - x + 1}{x^3 + 1} dx = \int \left(\frac{3}{x+1} + \frac{4x - 2}{x^2 - x + 1}\right) dx \begin{vmatrix}
x = -1 \Rightarrow A = 3 \\
x = 0 \Rightarrow 1 = A + C \Rightarrow C = -2 \\
x = 1 \Rightarrow 7 = A + 2B + 2C \Rightarrow B = 4
\end{vmatrix}$$

$$= \int \left(\frac{3}{x+1} + 2 \times \frac{2x - 1}{x^2 - x + 1}\right) dx = 3\ln|x + 1| + 2\ln|x^2 - x + 1| + C$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 77)

$$\frac{14}{(x^{2}+4)(x+2)} = \frac{A}{x+2} + \frac{Bx+C}{x^{2}+4} \implies 2x-4 = A(x^{2}+4) + (Bx+C)(x+2) \\
 x = -2 \implies A = -1 \\
 \int \frac{2x-4}{(x^{2}+4)(x+2)} dx = \int \left(\frac{-1}{x+2} + \frac{x}{x^{2}+4}\right) dx \qquad x = 1 \implies -2 = 5A + 3B + 3C \implies B = 1 \\
 = -\ln|x+2| + \frac{1}{2}\ln|x^{2}+4| + C$$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 ا<u>لأستاذ عبدالقادر الحسنات (77 88 531 89)</u> 10 4) درجة كثير الحدود في البسط مساوية لدرجة كثير الحدود في المقام، أو أكبر منها في هذه الحالة نستخدم القسمة الخوارزمية أولاً ، ثم حسب الحالة الناتجة...

$$1)\int \frac{x^2 - 1}{x^2 - 16} dx = \int (1 + \frac{15}{(x - 4)(x + 4)}) dx = x + \int (\frac{a}{(x - 4)} + \frac{b}{(x + 4)}) dx$$

$$= x + \int (\frac{15}{8} + \frac{-15}{8}) dx = x + \frac{15}{8} \ln|x - 4| - \frac{15}{8} \ln|x + 4| + c$$

$$1)\int \frac{x^2 - 1}{x^2 - 16} dx = \int (1 + \frac{15}{(x - 4)}) dx = x + \int (\frac{a}{(x - 4)} + \frac{b}{(x + 4)}) dx$$

$$= x + \int (\frac{15}{8} + \frac{-15}{8}) dx = x + \frac{15}{8} \ln|x - 4| - \frac{15}{8} \ln|x + 4| + c$$

$$15$$

$$2) \int \frac{x^4 + x^3 + x^2 + 1}{x^2 + x - 2} dx = \int (x^2 + 3 + \frac{7 - 3x}{(x + 2)(x - 1)}) dx$$

$$= \int (x^2 + 3 + \frac{a}{(x + 2)} + \frac{b}{(x - 1)}) dx = \int (x^2 + 3 + \frac{-\frac{13}{3}}{(x + 2)} + \frac{\frac{13}{3}}{(x - 1)}) dx$$

$$= \frac{1}{3}x^3 + 3x - \frac{13}{3}\ln|x + 2| + \frac{4}{3}\ln|x - 1| + c$$

$$3) \int \frac{x^4 - 5x^3 + 6x^2 - 18}{x^3 - 3x^2} dx = \int (x - 2 - \frac{18}{x^2(x - 3)}) dx$$

$$= \int (x - 2 - \frac{a}{x} - \frac{b}{x^2} + \frac{c}{(x - 3)}) dx = \int (x - 2 - \frac{-2}{x} - \frac{-6}{x^2} + \frac{2}{(x - 3)}) dx$$

$$= \frac{1}{2}x^2 - 2x + 2\ln|x| - \frac{6}{x} + 2\ln|x - 3| + c$$

a)
$$\int \frac{4x^3-5}{2x^2-x-1} dx$$
 b) $\int \frac{x^2+x-1}{x^2-x} dx$ أتحقُّق من فهمي $\int \frac{4x^3-5}{x^2-x-1} dx$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 77) 11

1)
$$\int \frac{x^2 + 1}{x^2 - 5x + 6} dx = \dots x - 5 \ln|x - 2| + 10 \ln|x - 3| + c$$

$$2)\int \frac{x^2 + 3x + 5}{x + 1} dx = \dots \frac{1}{2}x^2 + 2x + 3\ln|x + 1| + c$$

$$3) \int \frac{x-3}{x+2} dx = \dots x - 5 \ln|x+2| + c$$

$$4) \int \frac{x^3}{x^2 - x - 20} dx = \dots x + \frac{1}{2} x^2 + \frac{125}{9} \ln|x - 5| + \frac{64}{9} \ln|x + 4| + c$$

$$5) \int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx = \int (x + 1 + \frac{a}{x - 1} + \frac{b}{(x - 1)^2} +) dx$$
$$= \frac{1}{2}x^2 + x + \ln|x - 1| - \frac{2}{x - 1} - \ln|x + 1| + c$$

$$\int \frac{4x^3 - 5}{2x^2 - x - 1} dx = \int \left(2x + 1 + \frac{3x - 4}{2x^2 - x - 1}\right) dx$$

$$\frac{3x - 4}{2x^2 - x - 1} = \frac{3x - 4}{(2x + 1)(x - 1)} = \frac{A}{2x + 1} + \frac{B}{x - 1}$$

$$b \int \frac{x^2 + x - 1}{x^2 - x} dx = \int \left(1 + \frac{2x - 1}{x^2 - x}\right) dx = x + \ln|x^2 - x| + C$$

$$\int \frac{4x^3 - 5}{2x^2 - x - 1} dx = \int \left(2x + 1 + \frac{3}{2x + 1} + \frac{3}{x - 1}\right) dx = x^2 + x + \frac{11}{6} \ln|2x + 1| - \frac{1}{3} \ln|x - 1| + C$$

$$\int \frac{x^2}{x^2 - 4} dx = \int \left(1 + \frac{4}{x^2 - 4}\right) dx \qquad \begin{bmatrix} x = 2 \Rightarrow A = 1 \\ x = -2 \Rightarrow B = -1 \end{bmatrix} \\
\frac{4}{x^2 - 4} = \frac{4}{(x - 2)(x + 2)} = \frac{A}{x - 2} + \frac{B}{x + 2} \Rightarrow 4 = A(x + 2) + B(x - 2) \\
\int \frac{x^2}{x^2 - 4} dx = \int \left(1 + \frac{1}{x - 2} + \frac{-1}{x + 2}\right) dx = x + \ln|x - 2| - \ln|x + 2| + C = x + \ln\left|\frac{x - 2}{x + 2}\right| + C$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 07) 12

$$\int \frac{9x^2 - 3x + 2}{9x^2 - 4} dx = \int \left(1 + \frac{6 - 3x}{9x^2 - 4}\right) dx$$

$$\frac{6 - 3x}{9x^2 - 4} = \frac{6 - 3x}{(3x - 2)(3x + 2)} = \frac{A}{3x - 2} + \frac{B}{3x + 2}$$

$$\Rightarrow 6 - 3x = A(3x + 2) + B(3x - 2)$$

$$\int \frac{9x^2 - 3x + 2}{9x^2 - 4} dx = \int \left(1 + \frac{1}{3x - 2} + \frac{-2}{3x + 2}\right) dx = x + \frac{1}{3} \ln|3x - 2| - \frac{2}{3} \ln|3x + 2| + C$$

$$\int \frac{x^3 + 2x^2 + 2}{x^2 + x} dx = \int \left(x + 1 + \frac{2 - x}{x^2 + x}\right) dx \qquad x = 0 \implies A = 2$$

$$\frac{2 - x}{x^2 + x} = \frac{2 - x}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1} \implies 2 - x = A(x+1) + Bx$$

$$\int \frac{x^3 + 2x^2 + 2}{x^2 + x} dx = \int \left(x + 1 + \frac{2}{x} + \frac{-3}{x+1}\right) dx = \frac{1}{2}x^2 + x + 2\ln|x| - 3\ln|x+1| + C$$

$$\int \frac{x^2 + x + 2}{3 - 2x - x^2} dx = \int \left(-1 + \frac{5 - x}{-x^2 - 2x + 3}\right) dx$$

$$\frac{5 - x}{-x^2 - 2x + 3} = \frac{x - 5}{(x + 3)(x - 1)} = \frac{A}{x + 3} + \frac{B}{x - 1} \implies x - 5 = A(x - 1) + B(x + 3)$$

$$\int \frac{x^2 + x + 2}{3 - 2x - x^2} dx = \int \left(-1 + \frac{2}{x + 3} + \frac{-1}{x - 1}\right) dx = -x + 2\ln|x + 3| - \ln|x - 1| + C$$

$$\int \frac{x^3 - 4x^2 - 2}{x^3 + x^2} dx = \int \left(1 + \frac{-5x^2 - 2}{x^3 + x^2}\right) dx$$

$$\frac{-5x^2 - 2}{x^3 + x^2} = \frac{-5x^2 - 2}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} \implies -5x^2 - 2 = Ax(x+1) + B(x+1) + Cx^2$$

$$x = 0 \implies B = -2$$

$$x = -1 \implies C = -7$$

$$x$$

5) التكامل بالكسور الجزئية لتكاملات محدودة : لا جديد ، فقط نعوض الحدود بعد إجراء التكامل

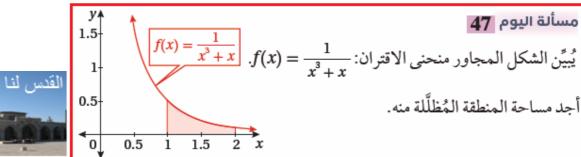
$$1) \int_{2}^{4} \frac{6}{x^{2} - 1} dx = \int_{2}^{4} \left(\frac{a}{(x - 1)} + \frac{b}{(x + 1)} \right) dx = \int_{2}^{4} \left(\frac{3}{(x - 1)} + \frac{-3}{(x + 1)} \right) dx$$
$$= \left(3 \ln|x - 1| - 3 \ln|x + 1| \right) \Big]_{2}^{4}$$

=
$$(3 \ln |3| - 3 \ln |5|) - (3 \ln |1| - 3 \ln |3|) = -3 \ln |5|$$

$$2)\int_{0}^{1} \frac{2x+3}{(x+1)^{2}} dx = \int_{0}^{1} \left(\frac{a}{(x+1)} + \frac{b}{(x+1)^{2}}\right) dx = \int_{0}^{1} \left(\frac{2}{(x+1)} + \frac{1}{(x+1)^{2}}\right) dx$$
$$= \left(2\ln\left|x+1\right| - \frac{1}{x+1}\right)\Big|_{0}^{1} = 2\ln 2 + \frac{1}{2}$$

$$3) \int_{1}^{3} \frac{x^{3}}{x^{2} - 4} dx = \int_{1}^{3} \left(x + \frac{a}{x - 2} + \frac{b}{x + 2} \right) dx = \int_{1}^{3} \left(x + \frac{2}{x - 2} + \frac{2}{x + 2} \right) dx$$
$$= \left(\frac{1}{2} x^{2} + 2 \ln |x - 2| + 2 \ln |x + 2| \right) \Big|_{1}^{3} = 4 + 2 \ln 5 + 2 \ln 3$$

a)
$$\int_{3}^{4} \frac{2x^{3} + x^{2} - 2x - 4}{x^{2} - 4} dx$$
 b)
$$\int_{5}^{6} \frac{3x - 10}{x^{2} - 7x + 12} dx$$
 i. $\int_{5}^{4} \frac{2x^{3} + x^{2} - 2x - 4}{x^{2} - 4} dx$



19
$$\int_{2}^{4} \frac{6+3x-x^{2}}{x^{3}+2x^{2}} dx$$
 20 $\int_{-1/3}^{1/3} \frac{9x^{2}+4}{9x^{2}-4} dx$ 21 $\int_{0}^{1} \frac{17-5x}{(2x+3)(2-x)^{2}} dx$

$$\int_0^1 \frac{17 - 5x}{(2x + 3)(2 - x)^2} \ dx$$

$$\int_{4}^{9} \frac{5x^{2} - 8x + 1}{2x(x - 1)^{2}} dx = \ln\left(\frac{32}{3}\right) - \frac{5}{24} : 0.5$$
 تبریر: أُثبِت أَنَّ!

ياضيات / علمى – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88) 14

$$1) \int_{1}^{5} \frac{2x+8}{x^2+4x+3} dx = \dots 3 \ln 3 - \ln 2$$

$$2)\int_{1}^{2} \frac{x^{2} + 3x + 8}{x^{2} + 4x + 3} dx = (2\ln|x| - \ln|x + 2| + \frac{3}{x+2})\Big]_{1}^{2} = \ln 3 - \frac{1}{4}$$

$$\begin{vmatrix} 1 & \frac{12}{3} & \frac{1$$

b
$$\frac{3x - 10}{x^2 - 7x + 12} = \frac{3x - 10}{(x - 3)(x - 4)} = \frac{A}{x - 3} + \frac{B}{x - 4}$$

$$\Rightarrow 3x - 10 = A(x - 4) + B(x - 3)$$
$$x = 3 \Rightarrow A = 1$$
$$x = 4 \Rightarrow B = 2$$
$$\int_{5}^{6} \frac{3x - 10}{x^2 - 7x + 12} dx = \int_{5}^{6} \left(\frac{1}{x - 3} + \frac{2}{x - 4}\right) dx = (\ln|x - 3| + 2\ln|x - 4|)|_{5}^{6} = \ln 6$$

$$A = \int_{1}^{2} \frac{1}{x^{3} + x} dx$$

$$\frac{1}{x^{3} + x} = \frac{1}{x(x^{2} + 1)} = \frac{A}{x} + \frac{Bx + C}{x^{2} + 1}$$

$$\Rightarrow 1 = A(x^{2} + 1) + (Bx + C)(x)$$

$$x = 0 \Rightarrow A = 1$$

$$x = 1 \Rightarrow 1 = 2A + B + C \Rightarrow 1 = 2 + B + C$$

$$x = -1 \Rightarrow 1 = 2A + B - C \Rightarrow 1 = 2 + B - C$$

$$A = \int_{1}^{2} \frac{1}{x^{3} + x} dx = \int_{1}^{2} \left(\frac{1}{x} + \frac{-x}{x^{2} + 1}\right) dx = \ln|x| - \frac{1}{2}\ln|x^{2} + 1| \int_{1}^{2}$$

$$= \ln 2 - \frac{1}{2}\ln 5 - \ln 1 + \frac{1}{2}\ln 2 = \frac{3}{2}\ln 2 - \frac{1}{2}\ln 5 = \frac{1}{2}\ln \frac{8}{5}$$

$$\frac{19}{x^{3} + 2x^{2}} = \frac{6 + 3x - x^{2}}{x^{2}(x + 2)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 2}$$

$$\Rightarrow 6 + 3x - x^{2} = Ax(x + 2) + B(x + 2) + C(x^{2})$$

$$\Rightarrow 6 + 3x - x^{2} = Ax(x + 2) + B(x + 2) + C(x^{2})$$

$$\Rightarrow 6 + 3x - x^{2} = Ax(x + 2) + B(x + 2) + C(x^{2})$$

$$\Rightarrow 6 + 3x - x^{2} = Ax(x + 2) + B(x + 2) + C(x^{2})$$

$$x = 0 \Rightarrow B = 3$$

$$x = -2 \Rightarrow C = -1$$

$$x = 1 \Rightarrow 8 = 3A + 3B + C \Rightarrow A = 0$$

$$= \left(-\frac{3}{x} - \ln|x + 2|\right)\Big|_{2}^{4} = -\frac{3}{4} - \ln 6 + \frac{3}{2} + \ln 4 = \frac{3}{4} + \ln \frac{2}{3}$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88) 15

$$\frac{9x^{2} + 4}{9x^{2} - 4} = 1 + \frac{8}{9x^{2} - 4}$$

$$\frac{8}{9x^{2} - 4} = \frac{8}{(3x - 2)(3x + 2)} = \frac{A}{3x - 2} + \frac{B}{3x + 2}$$

$$\int_{-\frac{1}{3}}^{\frac{1}{3}} \frac{9x^{2} + 4}{9x^{2} - 4} dx = \int_{-\frac{1}{3}}^{\frac{1}{3}} \left(1 + \frac{2}{3x - 2} + \frac{-2}{3x + 2}\right) dx$$

$$= \left(x + \frac{2}{3} \ln|3x - 2| - \frac{2}{3} \ln|3x + 2|\right) \Big|_{-\frac{1}{3}}^{\frac{1}{3}} = \left(x + \frac{2}{3} \ln\left|\frac{3x - 2}{3x + 2}\right|\right) \Big|_{-\frac{1}{3}}^{\frac{1}{3}}$$

$$= \frac{1}{3} + \frac{2}{3} \ln\frac{1}{3} + \frac{1}{3} - \frac{2}{3} \ln 3 = \frac{2}{3} - \frac{4}{3} \ln 3$$

21
$$\frac{17 - 5x}{(2x+3)(2-x)^2} = \frac{A}{2x+3} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$$

$$\Rightarrow 17 - 5x = A(2-x)^2 + B(2-x)(2x+3) + C(2x+3)$$

$$x = -\frac{3}{2} \Rightarrow A = 2$$

$$x = 2 \Rightarrow C = 1$$

$$x = 0 \Rightarrow 17 = 4A + 6B + 3C \Rightarrow B = 1$$

$$= \int_0^1 \left(\frac{2}{2x+3} + \frac{1}{2-x} + \frac{1}{(2-x)^2}\right) dx = \left(\ln|2x+3| - \ln|2-x| + \frac{1}{2-x}\right)\Big|_0^1$$

$$= \ln 5 + 1 - \ln 3 + \ln 2 - \frac{1}{2} = \frac{1}{2} + \ln \frac{10}{3}$$

$$\frac{4}{16x^{2} + 8x - 3} = \frac{4}{(4x - 1)(4x + 3)} = \frac{A}{4x - 1} + \frac{B}{4x + 3} \Rightarrow 4 = A(4x + 3) + B(4x - 1)$$

$$\int_{1}^{4} \frac{4}{16x^{2} + 8x - 3} dx = \int_{1}^{4} \left(\frac{1}{4x - 1} + \frac{-1}{4x + 3}\right) dx$$

$$x = \frac{1}{4} \Rightarrow A = 1$$

$$x = -\frac{3}{4} \Rightarrow B = -1$$

$$= \left(\frac{1}{4} \ln|4x - 1| - \frac{1}{4} \ln|4x + 3|\right) \Big|_{1}^{4} = \left(\frac{1}{4} \ln\left|\frac{4x - 1}{4x + 3}\right|\right) \Big|_{1}^{4} = \frac{1}{4} \ln\frac{35}{19}$$

$$\frac{5x+5}{x^2+x-6} = \frac{5x+5}{(x-2)(x+3)} = \frac{A}{x-2} + \frac{B}{x+3} \implies 5x+5 = A(x+3) + B(x-2)
x=2 \implies A=3
x=-3 \implies B=2
= (3 ln |x-2| + 2 ln |x+3|)|_3^4 = 3 ln 2 + 2 ln 7 - 2 ln 6 = ln \frac{98}{2}$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 07) 16

$$\frac{24}{x^3 - 4x^2 + 4x} = \frac{4}{x(x - 2)^2} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{(x - 2)^2} \Rightarrow 4 = A(x - 2)^2 + Bx(x - 2) + Cx$$

$$A = \int_3^4 \frac{4}{x^3 - 4x^2 + 4x} dx = \int_3^4 \left(\frac{1}{x} + \frac{-1}{x - 2} + \frac{2}{(x - 2)^2}\right) dx$$

$$= \left(\ln|x| - \ln|x - 2| - \frac{2}{x - 2}\right)\Big|_3^4 = \left(\ln\left|\frac{x}{x - 2}\right| - \frac{2}{x - 2}\right)\Big|_3^4$$

$$= \ln 2 - 1 - \ln 3 + 2 = 1 + \ln\frac{2}{3}$$

$$\frac{5x^{2} - 8x + 1}{2x(x - 1)^{2}} = \frac{A}{2x} + \frac{B}{x - 1} + \frac{C}{(x - 1)^{2}}$$

$$\Rightarrow 5x^{2} - 8x + 1 = A(x - 1)^{2} + B(2x)(x - 1) + C(2x)$$

$$\int_{4}^{9} \frac{5x^{2} - 8x + 1}{2x(x - 1)^{2}} dx = \int_{4}^{9} \left(\frac{1}{2x} + \frac{2}{x - 1} + \frac{-1}{(x - 1)^{2}}\right) dx$$

$$= \left(\frac{1}{2}\ln|x| + 2\ln|x - 1| + \frac{1}{x - 1}\right)\Big|_{4}^{9}$$

$$= \frac{1}{2}\ln 9 + 2\ln 8 + \frac{1}{8} - \frac{1}{2}\ln 4 - 2\ln 3 - \frac{1}{3}$$

$$= \ln 3 + \ln 64 + \frac{1}{8} - \ln 2 - \ln 9 - \frac{1}{3} = \ln \frac{3(64)}{2(9)} - \frac{5}{24} = \ln \frac{32}{3} - \frac{5}{24}$$

$$\frac{4x^{2} + 9x + 4}{2x^{2} + 5x + 3} = 2 - \frac{x + 2}{2x^{2} + 5x + 3}$$

$$\frac{x + 2}{2x^{2} + 5x + 3} = \frac{x + 2}{(x + 1)(2x + 3)} = \frac{A}{x + 1} + \frac{B}{2x + 3} \implies x + 2 = A(2x + 3) + B(x + 1)$$

$$x = -1 \implies A = 1$$

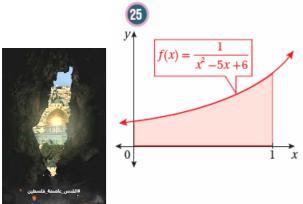
$$x = -\frac{3}{2} \implies B = -1$$

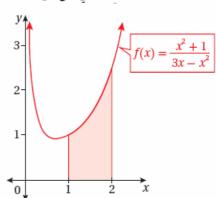
$$= \left(2x - \ln|x + 1| + \frac{1}{2}\ln|2x + 3|\right)\Big|_{0}^{1} = 2 - \ln 2 + \frac{1}{2}\ln 5 - 0 + \ln 1 - \frac{1}{2}\ln 3$$

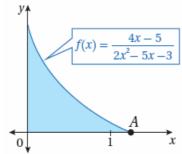
$$= 2 - \frac{1}{2}\ln 4 + \frac{1}{2}\ln 5 - \frac{1}{2}\ln 3 = 2 + \frac{1}{2}(\ln 5 - \ln 4 - \ln 3) = 2 + \frac{1}{2}\ln \frac{5}{12}$$

6) مسائل المساحة المتعلقة بالكسور الجزئية: أيضا لا جديد، فقط التكامل يُحل عن طرق الكسور الجزئية

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين:







- $f(x) = \frac{4x-5}{2x^2-5x-3}$: يُبِيِّن الشكل المجاور جزءًا من منحنى الاقتران
 - 27 أجد إحداثيي النقطة A.
 - 28 أجد مساحة المنطقة المُظلَّلة.

$$\begin{vmatrix}
26 \\ A = \int_{1}^{2} \frac{x^{2} + 1}{3x - x^{2}} dx \Rightarrow \frac{x^{2} + 1}{3x - x^{2}} = -1 + \frac{3x + 1}{3x - x^{2}} \Rightarrow \frac{3x + 1}{3x - x^{2}} = \frac{3x + 1}{x(3 - x)} = \frac{A}{x} + \frac{B}{3 - x}$$

$$A = \int_{1}^{2} \frac{x^{2} + 1}{3x - x^{2}} dx = \int_{1}^{2} \left(-1 + \frac{\frac{1}{3}}{x} + \frac{\frac{10}{3}}{3 - x} \right) dx$$

$$= \left(-x + \frac{1}{3} \ln|x| - \frac{10}{3} \ln|3 - x| \right) \Big|_{1}^{2}$$

$$= -2 + \frac{1}{3} \ln 2 + 1 + \frac{10}{3} \ln = -1 + \frac{11}{3} \ln 2$$

27
$$f(x) = 0 \implies 4x - 5 = 0 \implies x = \frac{5}{4} \implies A\left(\frac{5}{4}, 0\right)$$

28 $A = \int_0^{\frac{5}{4}} \frac{4x - 5}{2x^2 - 5x - 3} dx = \ln|2x^2 - 5x - 3||_0^{\frac{5}{4}} = \ln\frac{49}{8} - \ln 3 = \ln\frac{49}{24}$

Algorithm Algorithm

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 18</mark>

7) التكامل بالكسور الجزئية، والتكامل بالتعويض

طريقة التكامل بالتعويض في بعض المسائل قد تُقْضي إلى اقتران نسبي يُمكِن حلُّه باستعمال الكسور الجزئية.

$$1)\int \frac{e^x}{e^{2x} - 3e^x + 2} dx ::: u = e^x \Rightarrow \frac{du}{dx} = e^x \Rightarrow dx = \frac{du}{e^x} \Rightarrow e^{2x} = u^2$$

$$\Rightarrow \int \frac{e^x}{u^2 - 3u + 2} \frac{du}{e^x} = \int \frac{1}{(u - 2)(u - 1)} du = \int \left(\frac{a}{u - 2} + \frac{b}{u - 1}\right) du$$

$$= \int \left(\frac{1}{u-2} + \frac{-1}{u-1}\right) du = \ln |u-2| - \ln |u-1| + c : \begin{vmatrix} 1 = a(u-2) + b(u-1) \\ u = 2 \Rightarrow b = 1 \\ u = 1 \Rightarrow a = -1 \end{vmatrix}$$

$$\lim_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} = \ln \left| e^x - 2 \right| + \ln \left| e^x - 1 \right| + c = \ln \left| \frac{e^x - 2}{e^x - 1} \right| + c$$

$$2)\int \frac{\sin 2x}{2 - \cos x - \cos^2 x} dx ::: u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x}$$

$$\Rightarrow \int \frac{2\sin x \cos x}{2 - u - u^2} \frac{du}{-\sin x} = \int \frac{2u}{u^2 + u - 2} du = \int \frac{2u}{(u + 2)(u - 1)} du = \int \left(\frac{a}{u + 2} + \frac{b}{u - 1}\right) du$$

$$= \int \left(\frac{\frac{4}{3}}{u+2} + \frac{\frac{2}{3}}{u-1}\right) du = \frac{4}{3} \ln |u+2| - \frac{2}{3} \ln |u-1| + c : \begin{bmatrix} 2u = a(u-1) + b(u+2) \\ u = -2 \Rightarrow a = \frac{4}{3}, u = 1 \Rightarrow b = -\frac{2}{3} \end{bmatrix}$$

$$= \frac{4}{3} \ln \left| \cos x + 2 \right| - \frac{2}{3} \ln \left| \sin x - 1 \right| + c$$

$$3)\int \frac{\sqrt{x+4}}{x} dx ::: u = \sqrt{x+4} \Rightarrow u^2 = x+4 \Rightarrow 2u \ du = dx$$

$$= \int \frac{u^2}{u^2 - 4} 2u \, du = \int \frac{2u^2}{u^2 - 4} \, du = \int (2 + \frac{8}{u^2 - 4}) \, du$$

$$\Rightarrow \int \left(2 + \frac{a}{u - 2} + \frac{b}{u + 2}\right) du \begin{vmatrix} 8 = a(u + 2) + b(u - 2) \\ u = 2 \Rightarrow a = 2, u = -2 \Rightarrow b = -2 \end{vmatrix}$$

$$= \int (2 + \frac{2}{u - 2} + \frac{-2}{u + 2}) du = 2u + 2 \ln |u - 2| + 2 \ln |u + 2| + c$$

$$= 2\sqrt{x+4} + 2\ln\left|\frac{\sqrt{x+4}-2}{\sqrt{x+4}+2}\right| + +c$$

$$19 \frac{(0.785318877)}{(0.785318877)}$$
 الأستاذ عبدالقادر الحسنات (0.785318877) (0.785318877) (0.785318877) علمی (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.785318877) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887) (0.78531887)

$$= \int \frac{\cos x}{1 - \sin^2 x} dx ::: u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$\Rightarrow \int \frac{\cos x}{1 - u^2} \frac{du}{\cos x} = \int \frac{1}{(1 + u)(1 - u)} du = \int \left(\frac{a}{1 + u} + \frac{b}{1 - u}\right) du = \int \frac{1}{u} du = \int \frac{1}{1 + u} du = \int \frac{1}{1 + u$$

$$1 = a(1-u) + b(1+u)$$

$$u = 1 \Rightarrow b = \frac{1}{2}, u = -1 \Rightarrow a = \frac{1}{2}$$

$$= \int \left(\frac{\frac{1}{2}}{1+u} + \frac{\frac{1}{2}}{1-u}\right) du = \frac{1}{2} \ln \left|1+u\right| + \frac{1}{2} \ln \left|1-u\right| + c$$

$$= \frac{1}{2} \ln \left| 1 - \sin x \right| + \frac{1}{2} \ln \left| 1 + \sin x \right| + c = -\frac{1}{2} \ln \left| \sin x - 1 \right| + \frac{1}{2} \ln \left| \sin x + 1 \right| + c = \frac{1}{2} \ln \left| \frac{\sin x + 1}{\sin x - 1} \right| + c$$

a)
$$\int \frac{\sec^2 x}{\tan^2 x - 1} dx$$
 b) $\int \frac{e^x}{(e^x - 1)(e^x + 4)} dx$ أتحقُّق من فهمي $\frac{57}{(e^x - 1)(e^x + 4)}$

$$\frac{\sin x}{\cos x + \cos^2 x} dx$$
 : أجد كُلًّا من التكاملات الآتية أتدرَّب وأحُلُّ المسائل أجد كُلًّا من التكاملات الآتية

30
$$\int \frac{1}{x^2 + x\sqrt{x}} dx$$
 31 $\int \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx$

$$32 \int \frac{\cos x}{\sin x (\sin^2 x - 4)} \ dx$$

. بطريقتين مختلفتين، إحداهما الكسور الجزئية، مُبرِّرًا إجابتي.
$$\int \frac{dx}{1+e^x}$$

$$\int_0^{\ln 2} \frac{1}{1+e^x} dx : \int_0^{\ln 2} \frac{1}{1+e^x} dx$$

$$\int_{9}^{16} \frac{2\sqrt{x}}{x-4} dx = 4\left(1 + \ln\left(\frac{5}{3}\right)\right)$$
: تبریر: أُثْبِت أَنَّ: 36

$$\sqrt{1+\sqrt{x}}$$
 dx $\sqrt{1+\sqrt{x}}$ dx $\sqrt{39}$ $\int \frac{x}{16x^4-1} dx$ $\sqrt{59}$: تحدًّ: أجد كُلًّا من التكاملين الآتيين

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <u>88 531 89)</u> 20

a
$$u = \tan x \implies \frac{du}{dx} = \sec^2 x \implies dx = \frac{du}{\sec^2 x}$$

$$\int \frac{\sec^2 x}{\tan^2 x - 1} dx = \int \frac{\sec^2 x}{u^2 - 1} \frac{du}{\sec^2 x} = \int \frac{1}{u^2 - 1} du$$

$$\frac{1}{u^2 - 1} = \frac{1}{(u - 1)(u + 1)} = \frac{A}{u - 1} + \frac{B}{u + 1} \implies 1 = A(u + 1) + B(u - 1)$$

$$\int \frac{1}{u^2 - 1} du = \int \left(\frac{\frac{1}{2}}{u - 1} + \frac{-\frac{1}{2}}{u + 1}\right) du = \frac{1}{2} \ln|u - 1| - \frac{1}{2} \ln|u + 1| + C = \frac{1}{2} \ln\left|\frac{u - 1}{u + 1}\right| + C$$

$$\implies \int \frac{\sec^2 x}{\tan^2 x - 1} dx = \frac{1}{2} \ln\left|\frac{\tan x - 1}{\tan x + 1}\right| + C$$

b
$$u = e^{x} \Rightarrow \frac{du}{dx} = e^{x} \Rightarrow dx = \frac{du}{e^{x}}$$

$$\int \frac{e^{x}}{(e^{x} - 1)(e^{x} + 4)} dx = \int \frac{e^{x}}{(u - 1)(u + 4)} \frac{du}{e^{x}} = \int \frac{1}{(u - 1)(u + 4)} du$$

$$\frac{1}{(u - 1)(u + 4)} = \frac{A}{u - 1} + \frac{B}{u + 4} \Rightarrow 1 = A(u + 4) + B(u - 1)$$

$$u = 1 \Rightarrow A = \frac{1}{5}$$

$$u = -4 \Rightarrow B = -\frac{1}{5}$$

$$\int \frac{1}{(u - 1)(u + 4)} du = \int \left(\frac{\frac{1}{5}}{u - 1} + \frac{-\frac{1}{5}}{u + 4}\right) du$$

$$= \frac{1}{5} \ln|u - 1| - \frac{1}{5} \ln|u + 4| + C = \frac{1}{5} \ln\left|\frac{u - 1}{u + 4}\right| + C = \frac{1}{5} \ln\left|\frac{e^{x} - 1}{e^{x} + 4}\right| + C$$

$$u = \cos x \quad \Rightarrow \frac{du}{dx} = -\sin x \quad \Rightarrow dx = \frac{du}{-\sin x}$$

$$\int \frac{\sin x}{\cos x + \cos^2 x} dx = \int \frac{\sin x}{u + u^2} \times \frac{du}{-\sin x} = \int \frac{-1}{u + u^2} du$$

$$\frac{-1}{u + u^2} = \frac{-1}{u(1 + u)} = \frac{A}{u} + \frac{B}{1 + u} \Rightarrow -1 = A(1 + u) + Bu$$

$$u = 0 \Rightarrow A = -1$$

$$u = -1 \Rightarrow B = 1$$

$$\int \frac{-1}{u + u^2} du = \int \left(\frac{-1}{u} + \frac{1}{1 + u}\right) du = -\ln|u| + \ln|1 + u| + C$$

$$\Rightarrow \int \frac{\sin x}{\cos x + \cos^2 x} dx = -\ln|\cos x| + \ln|1 + \cos x| + C = \ln|1 + \sec x| + C$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 21</mark>

$$30 \quad u = \sqrt{x} \implies u^{2} = x \implies dx = 2udu$$

$$\int \frac{1}{x^{2} + x\sqrt{x}} dx = \int \frac{1}{u^{4} + u^{3}} 2udu = \int \frac{2}{u^{3} + u^{2}} du$$

$$\frac{2}{u^{3} + u^{2}} = \frac{2}{u^{2}(u+1)} = \frac{A}{u} + \frac{B}{u^{2}} + \frac{C}{u+1} \implies 2 = Au(u+1) + B(u+1) + Cu^{2}$$

$$u = 0 \implies B = 2$$

$$u = 0 \implies B = 2$$

$$u = -1 \implies C = 2$$

$$u = 1 \implies 2 = 2A + 2B + C$$

$$\Rightarrow A = -2$$

$$= -2 \ln|u| - \frac{2}{u} + 2 \ln|u+1| + C = 2 \ln\left|\frac{u+1}{u}\right| - \frac{2}{u} + C = 2 \ln\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right) - \frac{2}{\sqrt{x}} + C$$

$$\frac{1}{\sin x} = \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$\int \frac{\cos x}{\sin x (\sin^{2} x - 4)} dx = \int \frac{\cos x}{u(u^{2} - 4)} \times \frac{du}{\cos x} = \int \frac{1}{u(u^{2} - 4)} du$$

$$\frac{1}{u(u^{2} - 4)} = \frac{1}{u(u - 2)(u + 2)} = \frac{A}{u} + \frac{B}{u - 2} + \frac{C}{u + 2}$$

$$\Rightarrow 1 = A(u - 2)(u + 2) + Bu(u + 2) + Cu(u - 2)$$

$$\int \frac{1}{u(u^{2} - 4)} du = \int \left(-\frac{1}{4} + \frac{1}{8} + \frac{1}{8}$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 22</mark>

$$e^{-x}$$
 الحل الأول بضرب كل من البسط والمقام ب e^{-x} $\int \frac{1}{1+e^{x}} dx = \int \frac{e^{-x}}{e^{-x}+1} dx = -\int \frac{-e^{-x}}{e^{-x}+1} dx = -\ln(e^{-x}+1) + C$ $\lim_{u \to \infty} \frac{du}{dx} = e^{x} = u \Rightarrow dx = \frac{du}{u}$ $\lim_{u \to \infty} \frac{1}{u(1+u)} = \frac{A}{u} + \frac{B}{u+1}$ $\lim_{u \to \infty} \frac{1}{u(1+u)} = \frac{A}{u} + \frac{B}{u} + \frac{B}{u+1}$ $\lim_{u \to \infty} \frac{1}{u} + \frac{B}{u} + \frac{B$

$$\begin{vmatrix} 34 \\ \int_0^{\ln 2} \frac{1}{1 + e^x} dx = \ln e^x - \ln(e^x + 1)|_0^{\ln 2} \end{vmatrix}$$

$$= \ln e^{\ln 2} - \ln(e^{\ln 2} + 1) - (\ln e^0 - \ln(e^0 + 1)) = \ln 2 - \ln 3 - 0 + \ln 2 = \ln 4 - \ln 3 = \ln \frac{4}{3}$$

$$36 \quad u = \sqrt{x} \implies u^{2} = x \implies dx = 2udu \implies x = 9 \implies u = 3 \implies x = 16 \implies u = 4$$

$$\int_{9}^{16} \frac{2\sqrt{x}}{x - 4} dx = \int_{3}^{4} \frac{2u}{u^{2} - 4} 2udu = \int_{3}^{4} \frac{4u^{2}}{u^{2} - 4} du = \int_{3}^{4} \left(4 + \frac{16}{u^{2} - 4}\right) du$$

$$\frac{16}{u^{2} - 4} = \frac{16}{(u - 2)(u + 2)} = \frac{A}{u - 2} + \frac{B}{u + 2} \implies 16 = A(u + 2) + B(u - 2)$$

$$u = 2 \implies A = 4$$

$$u = -2 \implies B = -4$$

$$= (4u + 4\ln|u - 2| - 4\ln|u + 2|)|_{3}^{4} = 16 + 4\ln 2 - 4\ln 6 - 12 - 4\ln 1 + 4\ln 5$$

$$= 4 + 4\ln\frac{5}{3} = 4(1 + \ln\frac{5}{3}) \implies \int_{9}^{16} \frac{2\sqrt{x}}{x - 4} dx = 4\left(1 + \ln\frac{5}{3}\right)$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 078) 23</mark>

$$\int \frac{\sqrt{1+\sqrt{x}}}{x} dx \implies u = \sqrt{1+\sqrt{x}} \implies \frac{du}{dx} = \frac{1}{4\sqrt{x}\sqrt{1+\sqrt{x}}}, 1+\sqrt{x} = u^2 \Rightarrow \sqrt{x} = u^2 - 1$$

$$\Rightarrow dx = 4\sqrt{x}\sqrt{1+\sqrt{x}} du = 4u(u^2 - 1)du$$

$$\int \frac{\sqrt{1+\sqrt{x}}}{x} dx = \int \frac{u}{(u^2-1)^2} 4u(u^2 - 1)du = \int \frac{4u^2}{u^2-1} du$$

$$\frac{4}{u^2-1} = \frac{4}{(u-1)(u+1)} = \frac{A}{u-1} + \frac{B}{u+1}$$

$$\Rightarrow 4 = A(u+1) + B(u-1)$$

$$\int \frac{4u^2}{u^2-1} du = \int \left(4 + \frac{2}{u-1} + \frac{-2}{u+1}\right) du$$

$$= 4u + 2\ln|u-1| - 2\ln|u+1| + C = 4u + 2\ln\left|\frac{u-1}{u+1}\right| + C$$

$$\Rightarrow \int \frac{\sqrt{1+\sqrt{x}}}{x} dx = 4\sqrt{1+\sqrt{x}} + 2\ln\left|\frac{\sqrt{1+\sqrt{x}}-1}{\sqrt{1+\sqrt{x}}+1}\right| + C$$

$$\frac{x}{16x^{4} - 1} = \frac{x}{(4x^{2} + 1)(2x - 1)(2x + 1)} = \frac{Ax + B}{4x^{2} + 1} + \frac{C}{2x - 1} + \frac{D}{2x + 1}$$

$$\Rightarrow x = (Ax + B)(2x - 1)(2x + 1) + C(4x^{2} + 1)(2x + 1) + D(4x^{2} + 1)(2x - 1)$$

$$x = \frac{1}{2} \Rightarrow C = \frac{1}{8} \qquad x = 0 \Rightarrow 0 = -B + C - D \Rightarrow B = 0$$

$$x = -\frac{1}{2} \Rightarrow D = \frac{1}{8} \qquad x = 1 \Rightarrow 1 = 3A + 3B + 15C + 5D \Rightarrow A = -\frac{1}{2}$$

$$\int \frac{x}{16x^{4} - 1} dx = \int \left(\frac{-\frac{1}{2}x}{4x^{2} + 1} + \frac{\frac{1}{8}}{2x - 1} + \frac{\frac{1}{8}}{2x + 1}\right) dx$$

$$= -\frac{1}{16}\ln(4x^{2} + 1) + \frac{1}{16}\ln|2x - 1| + \frac{1}{16}\ln|2x + 1| + C = \frac{1}{16}\ln\left|\frac{4x^{2} - 1}{4x^{2} + 1}\right| + C$$

أحد كُلًّا من التكاملات الآتية:

$$\mathbf{1} \int \frac{4}{x^2 + 4x} dx$$

$$2 \int \frac{6}{x^2 - 9} dx$$

$$\oint \frac{x-10}{x^2-2x-8} dx$$

$$\int \frac{2x^2 + 6x - 2}{2x^2 + x - 1} dx$$

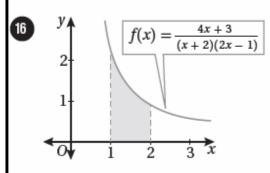
أجد قيمة كلِّ من التكاملات الآتية:

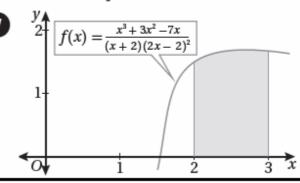
$$\int_{1}^{2} \frac{10x^{2} - 26x + 10}{2x^{2} - 5x} dx$$

$$\int_{2}^{5} \frac{25}{(x+1)(2x-3)^{2}} dx$$

$$\int_0^2 \frac{x^2 - 3x + 10}{x^2 - x - 6} \ dx$$

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين:





أحد كُلًّا من التكاملات الآتية:

$$\int \frac{e^{2x} + e^x}{(e^{2x} + 1)(e^x - 1)} \ dx$$

$$\int \frac{5 \cos x}{\sin^2 x + 3 \sin x - 4} \ dx$$

$$\int \frac{\sec^2 x}{\tan^2 x + 5 \tan x + 6} \ dx$$

$$p > 1$$
 : حيث: $\int_{1}^{p} \frac{1}{2x^{2} + x - 1} dx = \frac{1}{3} \ln \frac{4p - 2}{p + 1}$: أثبِت أَنَّ $\frac{4p - 2}{2x^{2} + x - 1}$ عيث: $\frac{1}{2}$ حيث: $\frac{1}{2}$

$$\int_{0}^{1} \frac{4x}{x^{2} - 2x - 3} dx = \ln\left(\frac{16}{27}\right) : \hat{\mathbb{D}}_{0}^{1}$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 25</mark>

1
$$\frac{4}{x^{2} + 4x} = \frac{4}{x(x+4)} = \frac{A}{x} + \frac{B}{x+4}$$

$$x = 0 \Rightarrow A = 1$$

$$x = -4 \Rightarrow B = -1$$

$$A(x+4) + B(x) = 4$$

$$= \int \left(\frac{1}{x} - \frac{1}{x+4}\right) dx = \ln|x| - \ln|x+4| + C = \ln\left|\frac{x}{x+4}\right| + C$$
2
$$\frac{6}{x^{2} - 9} = \frac{6}{(x-3)(x+3)} = \frac{A}{x-3} + \frac{B}{x+3}$$

$$x = 3 \Rightarrow A = 1$$

$$x = -3 \Rightarrow B = -1$$

$$A(x+3) + B(x-3) = 6$$

$$= \int \left(\frac{1}{x-3} - \frac{1}{x+3}\right) dx = \ln|x-3| - \ln|x+3| + C = \ln\left|\frac{x-3}{x+3}\right| + C$$

3
$$\frac{x^2 - 3x + 8}{x^3 - 3x - 2} = \frac{x^2 - 3x + 8}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2}$$

$$A(x + 1)^2 + B(x - 2)(x + 1) + C(x - 2) = x^2 - 3x + 8$$

$$x = 0 \Rightarrow A - 2B - 2C = 8 \Rightarrow \frac{2}{3} - 2B + 8 = 8 \Rightarrow B = \frac{1}{3}$$

$$= \int \left(\frac{2}{3} + \frac{1}{x + 1} - \frac{4}{(x + 1)^2}\right) dx = \frac{2}{3} \ln|x - 2| + \frac{1}{3} \ln|x + 1| + \frac{4}{x + 1} + C$$

$$4 \frac{x-10}{x^2-2x-8} = \frac{x-10}{(x-4)(x+2)} = \frac{A}{x-4} + \frac{B}{x+2} \qquad x = 4 \Rightarrow A = -1
x = -2 \Rightarrow B = 2$$

$$A(x+2) + B(x-4) = x - 10$$

$$= \int \left(-\frac{1}{x-4} + \frac{2}{x+2}\right) dx = -\ln|x-4| + 2\ln|x+2| + C$$

$$5 \frac{2x^{2} + 6x - 2}{2x^{2} + x - 1} = 1 + \frac{5x - 1}{2x^{2} + x - 1} = 1 + \frac{5x - 1}{(x + 1)(2x - 1)} = 1 + \frac{A}{x + 1} + \frac{B}{2x - 1}$$

$$A(2x - 1) + B(x + 1) = 5x - 1$$

$$= \int \left(1 + \frac{2}{x + 1} + \frac{1}{2x - 1}\right) dx = x + 2\ln|x + 1| + \frac{1}{2}\ln|2x - 1| + C$$

$$x = \frac{1}{2} \Rightarrow B = 1$$

$$6 \frac{2x^2 - x + 6}{(x^2 + 2)(x + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 2}$$

$$A(x^2 + 2) + (Bx + C)(x + 1) = 2x^2 - x + 6$$

$$x = -1 \Rightarrow A = 3$$

$$x = 0 \Rightarrow 2A + C = 6 \Rightarrow 6 + C = 6 \Rightarrow C = 0$$

$$x = 1 \Rightarrow 3A + 2B + 2C = 7 \Rightarrow 9 + 2B = 7 \Rightarrow B = -1$$

$$= \int \left(\frac{3}{x + 1} + \frac{-x}{x^2 + 2}\right) dx = 3\ln|x + 1| - \frac{1}{2}\ln(x^2 + 2) + C$$

$$7 \frac{8x+24}{(x+1)(x-3)^2} = \frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2} \qquad \begin{cases} x = -1 \implies A = 1 \\ x = 3 \implies C = 12 \end{cases}$$

$$A(x-3)^2 + B(x+1)(x-3) + C(x+1) = 8x + 24$$

$$x = 0 \implies 9A - 3B + C = 24 \implies 9 - 3B + 12 = 24 \implies B = -1$$

$$= \int \left(\frac{1}{x+1} + \frac{-1}{x-3} + \frac{12}{(x-3)^2}\right) dx = \ln|x+1| - \ln|x-3| - \frac{12}{x-3} + C$$

$$\frac{8x}{x^{3} + x^{2} - x - 1} = \frac{8x}{x^{2}(x+1) - (x+1)} = \frac{8x}{(x^{2} - 1)(x+1)} = \frac{8x}{(x-1)(x+1)^{2}} \\
= \frac{A}{x+1} + \frac{B}{(x+1)^{2}} + \frac{C}{x-1} \\
A(x+1)(x-1) + B(x-1) + C(x+1)^{2} = 8x \\
x = 0 \Rightarrow -A - B + C = 0 \Rightarrow -A - 4 + 2 = 0 \Rightarrow A = -2 \\
\int \frac{8x}{x^{3} + x^{2} - x - 1} dx = \int \left(\frac{-2}{x+1} + \frac{4}{(x+1)^{2}} + \frac{2}{x-1}\right) dx \\
= -2\ln|x+1| - \frac{4}{x+1} + 2\ln|x-1| + C = 2\ln\left|\frac{x-1}{x+1}\right| - \frac{4}{x+1} + C$$

9
$$\frac{4}{x^{3} - 2x^{2}} = \frac{4}{x^{2}(x - 2)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x - 2}$$

$$x = 0 \Rightarrow B = -2$$

$$x = 2 \Rightarrow C = 1$$

$$A(x)(x - 2) + B(x - 2) + C(x^{2}) = 4$$

$$x = 1 \Rightarrow -A - B + C = 4 \Rightarrow -A + 2 + 1 = 4 \Rightarrow A = -1$$

$$= \int \left(\frac{-1}{x} + \frac{-2}{x^{2}} + \frac{1}{x - 2}\right) dx = -\ln|x| + \frac{2}{x} + \ln|x - 2| + C = \ln\left|\frac{x - 2}{x}\right| + \frac{2}{x} + C$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 87) 27</mark>

$$10 \frac{x-1}{x^{2}(x+1)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x+1} \qquad A(x)(x+1) + B(x+1) + C(x^{2}) = x-1$$

$$x = 0 \Rightarrow B = -1$$

$$x = -1 \Rightarrow C = -2$$

$$x = 1 \Rightarrow 2A + 2B + C = 0 \Rightarrow 2A - 2 - 2 = 0 \Rightarrow A = 2$$

$$\int_{1}^{5} \frac{x-1}{x^{2}(x+1)} dx = \int_{1}^{5} \left(\frac{2}{x} + \frac{-1}{x^{2}} + \frac{-2}{x+1}\right) dx$$

$$= \left(2\ln|x| + \frac{1}{x} - 2\ln|x-2|\right)\Big|_{1}^{5} = \left(\frac{1}{x} + 2\ln\left|\frac{x}{x-2}\right|\right)\Big|_{1}^{5} = 2\ln\frac{5}{3} - \frac{4}{5}$$

$$\begin{array}{lll}
\mathbf{11} & \frac{4-x}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2} \\
& A(x-2) + B = 4 - x & x = 2 \Rightarrow B = 2 \\
& x = 0 \Rightarrow -2A + B = 4 \Rightarrow -2A + 2 = 4 \Rightarrow A = -1
\end{array}$$

$$\int_{7}^{12} \frac{4-x}{(x-2)^2} dx = \int_{7}^{12} \left(\frac{-1}{x-2} + \frac{2}{(x-2)^2}\right) dx$$

$$= \left(-\ln|x-2| - \frac{2}{x-2}\right)\Big|_{7}^{12} = -\ln 10 - \frac{1}{5} + \ln 5 + \frac{2}{5} = \frac{1}{5} + \ln \frac{1}{2}$$

$$12 \begin{vmatrix} \frac{4}{x^2 + 8x + 15} = \frac{4}{(x+5)(x+3)} = \frac{A}{x+5} + \frac{B}{x+3} \\ A(x+3) + B(x+5) = 4 \end{vmatrix}$$

$$\int_{1}^{2} \frac{4}{x^2 + 8x + 15} dx = \int_{1}^{2} \left(\frac{-2}{x+5} + \frac{2}{x+3} \right) dx$$

$$= (-2 \ln|x+5| + 2 \ln|x+3|) \Big|_{1}^{2} = \left(2 \ln\left| \frac{x+3}{x+5} \right| \right) \Big|_{1}^{2} = 2 \ln\frac{5}{7} - 2 \ln\frac{2}{3} = 2 \ln\frac{15}{14}$$

13
$$\frac{10x^2 - 26x + 10}{2x^2 - 5x} = 5 + \frac{-x + 10}{2x^2 - 5x} = 5 + \frac{10 - x}{x(2x - 5)} = 5 + \frac{A}{x} + \frac{B}{2x - 5}$$

$$A(2x - 5) + B(x) = 10 - x \qquad x = 0 \Rightarrow A = -2$$

$$\int_{1}^{2} \frac{10x^2 - 26x + 10}{2x^2 - 5x} dx = \int_{1}^{2} \left(5 + \frac{-2}{x} + \frac{3}{2x - 5}\right) dx$$

$$= \left(5x - 2\ln|x| + \frac{3}{2}\ln|2x - 5|\right)\Big|_{1}^{2} = 10 - 2\ln 2 - 5 - \frac{3}{2}\ln 3 = 5 - \ln 12\sqrt{3}$$

$$14 \frac{25}{(x+1)(2x-3)^2} = \frac{A}{x+1} + \frac{B}{2x-3} + \frac{C}{(2x-3)^2} \qquad x = -1 \Rightarrow A = 1$$

$$A(2x-3)^2 + B(x+1)(2x-3) + C(x+1) = 25$$

$$x = 0 \Rightarrow 9A - 3B + C = 25 \Rightarrow 9 - 3B + 10 = 25 \Rightarrow B = -2$$

$$\int_2^5 \frac{25}{(x+1)(2x-3)^2} dx = \int_2^5 \left(\frac{1}{x+1} + \frac{-2}{2x-3} + \frac{10}{(2x-3)^2}\right) dx$$

$$= \left(\ln|x+1| - \ln|2x-3| - \frac{5}{2x-3}\right)\Big|_2^5 = \left(\ln\left|\frac{x+1}{2x-3}\right| - \frac{5}{2x-3}\right)\Big|_2^5$$

$$= \left(\ln\frac{6}{7} - \frac{5}{7}\right) - (\ln 3 - 5) = \frac{30}{7} + \ln\frac{2}{7}$$

15
$$\frac{x^2 - 3x + 10}{x^2 - x - 6} = 1 + \frac{16 - 2x}{x^2 - x - 6} = 1 + \frac{16 - 2x}{(x - 3)(x + 2)} = 1 + \frac{A}{x - 3} + \frac{B}{x + 2}$$

$$A(x + 2) + B(x - 3) = 16 - 2x$$

$$\int_0^2 \frac{x^2 - 3x + 10}{x^2 - x - 6} dx = \int_0^2 \left(1 + \frac{2}{x - 3} + \frac{-4}{x + 2}\right) dx$$

$$= (x + 2\ln|x - 3| - 4\ln|x + 2|)|_0^2$$

$$= 2 - 4\ln 4 - 2\ln 3 + 4\ln 2 = 2 - 2\ln 12$$

16
$$A = \int_{1}^{2} \frac{4x+3}{(x+2)(2x-1)} dx \implies \frac{4x+3}{(x+2)(2x-1)} = \frac{A}{x+2} + \frac{B}{2x-1}$$

 $A(2x-1) + B(x+2) = 4x+3$
 $= \int_{1}^{2} \left(\frac{1}{x+2} + \frac{2}{2x-1}\right) dx = (\ln|x+2| + \ln|2x-1|)|_{1}^{2}$
 $= (\ln 4 + \ln 3) - (\ln 3 + 0) = \ln 4$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 89) 29

$$\begin{array}{l}
17 \quad A = \int_{2}^{3} \frac{x^{3} + 3x^{2} - 7x}{(x+2)(2x-2)^{2}} dx \\
\frac{x^{3} + 3x^{2} - 7x}{(x+2)(2x-2)^{2}} = \frac{x^{3} + 3x^{2} - 7x}{4x^{3} - 12x + 8} = \frac{1}{4} + \frac{3x^{2} - 4x - 2}{4x^{3} - 12x + 8} \\
= \frac{1}{4} + \frac{3x^{2} - 4x - 2}{(x+2)(2x-2)^{2}} = \frac{1}{4} + \frac{A}{x+2} + \frac{B}{2x-2} + \frac{C}{(2x-2)^{2}} \\
A(2x-2)^{2} + B(x+2)(2x-2) + C(x+2) = 3x^{2} - 4x - 2 \\
x = 0 \Rightarrow 4A - 4B + 2C = -2 \Rightarrow 2 - 4B - 2 = -2 \Rightarrow B = \frac{1}{2} \\
A = \int_{2}^{3} \frac{x^{3} + 3x^{2} - 7x}{(x+2)(2x-2)^{2}} dx = \int_{2}^{3} \left(\frac{1}{4} + \frac{\frac{1}{2}}{\frac{1}{2}} + \frac{\frac{1}{2}}{2x-2} + \frac{-1}{(2x-2)^{2}}\right) dx \\
= \left(\frac{1}{4}x + \frac{1}{2}\ln|x+2| + \frac{1}{4}\ln|2x-2| + \frac{1}{2(2x-2)}\right)\Big|_{2}^{3} \\
= \left(\frac{3}{4} + \frac{1}{2}\ln 5 + \frac{1}{4}\ln 4 + \frac{1}{8}\right) - \left(\frac{1}{2} + \frac{1}{2}\ln 4 + \frac{1}{4}\ln 2 + \frac{1}{4}\right) = \frac{1}{8} + \frac{1}{4}\ln \frac{25}{8}
\end{array}$$

18
$$u = e^{x} \Rightarrow du = e^{x} dx \Rightarrow dx = \frac{du}{e^{x}}$$

$$\int \frac{e^{2x} + e^{x}}{(e^{2x} + 1)(e^{x} - 1)} dx = \int \frac{e^{x}(u + 1)}{(u^{2} + 1)(u - 1)} \times \frac{du}{e^{x}} = \int \frac{u + 1}{(u^{2} + 1)(u - 1)} du$$

$$\frac{u + 1}{(u^{2} + 1)(u - 1)} = \frac{Au + B}{u^{2} + 1} + \frac{C}{u - 1}$$

$$(Au + B)(u - 1) + C(u^{2} + 1) = u + 1$$

$$u = 1 \Rightarrow C = 1$$

$$u = 0 \Rightarrow -B + C = 1 \Rightarrow -B + 1 = 1 \Rightarrow B = 0$$

$$u = -1 \Rightarrow 2A - 2B + 2C = 0 \Rightarrow 2A + 2 = 0 \Rightarrow A = -1$$

$$\int \frac{e^{2x} + e^{x}}{(e^{2x} + 1)(e^{x} - 1)} dx = \int \left(\frac{-u}{u^{2} + 1} + \frac{1}{u - 1}\right) du$$

$$= -\frac{1}{2}\ln(u^{2} + 1) + \ln|u - 1| + C = -\frac{1}{2}\ln(e^{2x} + 1) + \ln|e^{x} - 1| + C$$

19
$$u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$\int \frac{5\cos x}{\sin^2 x + 3\sin x - 4} dx = \int \frac{5\cos x}{u^2 + 3u - 4} \times \frac{du}{\cos x} = \int \frac{5}{u^2 + 3u - 4} du$$

$$\frac{5}{u^2 + 3u - 4} = \frac{5}{(u + 4)(u - 1)} = \frac{A}{u + 4} + \frac{B}{u - 1}$$

$$\frac{u = 1 \Rightarrow B = 1}{u = -4 \Rightarrow A = -1}$$

$$A(u - 1) + B(u + 4) = 5$$

$$\int \frac{5}{u^2 + 3u - 4} du = \int \left(\frac{-1}{u + 4} + \frac{1}{u - 1}\right) du = -\ln|u + 4| + \ln|u - 1| + C$$

$$= -\ln(4 + \sin x) + \ln|-1 + \sin x| + C = \ln\left|\frac{-1 + \sin x}{4 + \sin x}\right| + C$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 89) 30</mark>

$$20 \quad u = \tan x \Rightarrow \frac{du}{dx} = \sec^{2} x \Rightarrow du = \sec^{2} x \, dx$$

$$\int \frac{\sec^{2} x}{\tan^{2} x + 5 \tan x + 6} \, dx = \int \frac{1}{u^{2} + 5u + 6} \, du$$

$$\frac{1}{u^{2} + 5u + 6} = \frac{1}{(u + 3)(u + 2)} = \frac{A}{u + 3} + \frac{B}{u + 2}$$

$$A(u + 2) + B(u + 3) = 1$$

$$\Rightarrow \int \frac{1}{u^{2} + 5u + 6} \, du = \int \left(\frac{-1}{u + 3} + \frac{1}{u + 2}\right) du = \ln|u + 2| - \ln|u + 3| + C$$

$$\Rightarrow \int \frac{\sec^{2} x}{\tan^{2} x + 5 \tan x + 6} \, dx = \ln\left|\frac{2 + \tan x}{3 + \tan x}\right| + C$$

21
$$\frac{4x}{x^2 - 2x - 3} = \frac{4x}{(x - 3)(x + 1)} = \frac{A}{x - 3} + \frac{B}{x + 1}$$
$$A(x + 1) + B(x - 3) = 4x$$
$$\int_0^1 \frac{4x}{x^2 - 2x - 3} dx = \int_0^1 \left(\frac{3}{x - 3} + \frac{1}{x + 1}\right) dx = (3\ln|x - 3| + \ln|x + 1|)|_0^1$$
$$= (3\ln 2 + \ln 2) - (3\ln 3) = \ln 8 + \ln 2 - \ln 27 = \ln \frac{16}{27}$$

$$\begin{array}{lll}
22 & \frac{1}{2x^2 + x - 1} = \frac{1}{(2x - 1)(x + 1)} = \frac{A}{2x - 1} + \frac{B}{x + 1} \\
& A(x + 1) + B(2x - 1) = 1 \Longrightarrow x = -1 \Longrightarrow B = -\frac{1}{3} \Longrightarrow x = \frac{1}{2} \Longrightarrow A = \frac{2}{3} \\
& = \int_{1}^{p} \left(\frac{\frac{2}{3}}{2x - 1} + \frac{-\frac{1}{3}}{x + 1} \right) dx = \left(\frac{1}{3} \ln|2x - 1| - \frac{1}{3} \ln|x + 1| \right) \Big|_{1}^{p} & p > 1 \\
& = \left(\frac{1}{3} \ln|2p - 1| - \frac{1}{3} \ln|p + 1| \right) - \left(-\frac{1}{3} \ln 2 \right) = \frac{1}{3} \ln \left| \frac{2(2p - 1)}{p + 1} \right| = \frac{1}{3} \ln \left(\frac{4p - 2}{p + 1} \right)
\end{array}$$

أسئلة الوزارة

2)
$$\int \frac{7x^2 - 16x - 2}{(x^2 + 2)(x - 2)} dx$$
 (2023)

2)
$$\int \frac{x^2 - x + 1}{x^4 + x^2} dx$$
 (2023 تكميلي علامات)

تمارين إضافية

1)
$$\int \frac{x+6}{x^2-2x} dx = a \int Ln \left| x^2-2x \right| + c$$
 b) $Ln \frac{\left| (x-1)^3 \right|}{x^4} + c$

c)
$$\frac{3}{4}Ln\left|\frac{x-1}{x}\right|+c$$
 d) $Ln\left|x^4(x-1)^3\right|+c$

2)
$$\int \frac{x^2 + 1}{x^3 - x^2} dx = a$$
 $\int Ln \left| \frac{x(x+1)}{(x-1)} \right| + c$ $\int Ln \left| \frac{x+1}{x(x-1)} \right| + c$

c)
$$Ln \left| \frac{x(x-1)}{x+1} \right| + c$$
 d) $Ln \left| \frac{x-1}{x(x+1)} \right| + c$

3)
$$\int_{k}^{2} \frac{4}{x^{2}-1} dx = Ln(\frac{4}{9})$$
, $k > 0 \implies k = ?$
a) 3 b) 2 c) 1 b) 4

4)
$$\int \frac{4}{4-x^2} dx = a \int Ln \left| \frac{2-x}{2+x} \right| + c$$
 b) $Ln \left| 4-x^2 \right| + c$
c) $Ln(4-x)^2 + c$ d) $Ln \left| \frac{2+x}{2-x} \right| + c$

5)
$$\int \frac{x^2}{4-x^2} dx = a \cdot x + Ln \frac{|2+x|}{|2-x|} + c \qquad b \cdot x + Ln \frac{|2-x|}{|2+x|} + c$$
$$c \cdot Ln \frac{|2+x|}{|2-x|} - x + c \qquad d \cdot Ln \frac{|2-x|}{|2+x|} - x + c$$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2023 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 88 77) 32

6)
$$\int \frac{4x}{x^2-4} dx = a \int Ln(\frac{x+2}{x-2})^2 + c$$
 b) $Ln(x^2-4)+c$

c)
$$Ln(\frac{x-2}{x+2})+c$$
 d) $2Ln(\frac{x-2}{x+2})+c$

7)
$$\int \frac{\cos x}{\sin^3 x - \sin x} dx = a \int Ln \left| \frac{\sin x - 1}{\sin^3 x} \right| + c \qquad b \int Ln \left| \sin^3 x - \sin x \right| + c$$

$$c \int 3Ln \left| \frac{\sin x - 1}{\sin x} \right| + c \qquad d \int Ln \left| \frac{\sin x - 1}{3\sin x} \right| + c$$

8)
$$\int_{0}^{1} \frac{2x+3}{(x+1)^{2}} dx =$$
a) $Ln4$ b) $Ln4+2$ c) $Ln4+\frac{1}{2}$ b) $Ln\frac{9}{2}$

9)
$$\int \frac{5x^2 - x + 2}{(x^2 + 1)(x - 1)} dx = a \int Ln |(x^2 + 1)(x - 1)| + c$$

$$b) Ln |(x^2 + 1)(x - 1)^3| + c$$

$$c) 3Ln |(x^2 + 1)(x - 1)| + c$$

$$d) Ln |5x^2 - x + 2| + c$$

$$10) \int \frac{3x^2 + 4x + 2}{(x^2 + 3x + 5)(x - 1)} dx = a) Ln \left| (x^2 + 3x + 5)(x - 1) \right| + c$$

$$b) Ln \left| (3x^2 + 4x + 2)(x) \right| + c$$

$$c) Ln \left| (x^2 + 3x + 5)(x + 1) \right| + c$$

$$d) Ln \left| 3x^2 + 4x + 2 \right| + c$$

12345	6 7 8 9 10

التكامل بالأجزاء Integration by Parts

لدرس **4**

هناك عدة طرق للتكامل، منها:1) الطريقة المباشرة من خلال البحث عن اقتران مشتقته تعطي الاقتران المُكامَل.

3) من خلال المتطابقات المثلثية

Abdulkadir Hasanat 078 531 88 77

4) طريقة التكامل بالتعويض

5) طريقة الكسور الجزئية

6) طريقة التكامل بالأجزاء

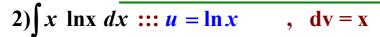
 $\int x \sin(x^2+1) dx$: استعملنا طریقة التکامل بالتعویض لحل مسائل تتمیز باحتوانها مقدارا ومشتقته مثل du: $\int \sin(u) du$ جیث کنا نکتب جزءا من المسألة بدلالة (u) فتصبح $\int x \sin(u) du$ حیث لا یوجد (مقدار ومشتقته) أما طریقة الأجزاء فنستعملها لحل مسائل مثل $\int x \sin(u) dx$ حیث لا یوجد (مقدار ومشتقته) وتقوم الطریقة علی تجزئة المُکامَل إلی جزئین : نسمی الأول (u) والثانی (dv) $\int u dv = uv - \int v du$

 $\int e^x \sin x \ dx$, $\int x^2 \cos 6 x \ dx$, $\int x^2 \ln 3 x \ dx$: ويمكن استعمال طريقة الأجزاء لإيجاد تكاملات مثل

1)
$$\int x \cos x \, dx ::: u = x$$
, $dv = \cos x$

$$du = dx$$
 , $v = \sin x$

$$\Rightarrow uv - \int v du = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + c$$



$$du = \frac{1}{x}dx \quad , \quad v = \frac{1}{2}x^2$$

$$= \frac{1}{2}x^{2} \ln x - \int \frac{1}{2}x^{2} \frac{1}{x} dx = \frac{1}{2}x^{2} \ln x - \int \frac{1}{2}x dx = \frac{1}{2}x^{2} \ln x - \frac{1}{4}x^{2} + c$$

/ مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات

طريقة الأجزاء: نستعمل هذه الطريقة عندما يكون هناك حاصل ضرب أو قسمة مقدارين وأحدهما ليس مشتقة للآخر والتحدى الذي يواجهنا في هذه الطريقة هو تحديد (u) و(dv)

ولتسهيل ذلك قمتُ بتبسيط هذه القاعدة : ((لكما)) أو (ل ك م أ] قاعدة : (لكما) Liate

L	لوغاريتمي	Logarithmic functions	log x, ln x	
I	غير منهج <i>ي</i> غير مطلوب	Inverse trigonometric functions	sin ⁻¹ x, cos ⁻¹ x	
Α	كسري/حقيقي	Algebraic functions	x², √x	
T	مثلثي	Trigonometric functions	sin x, cos x	
E	اقتران أسى	Exponential functions	e ^x , 2 ^x	
		Abdulkadir Hasanat		

حیث ل: اقتران لوغاریتمی

ك : كثير حدود أو حقيقي a

م: اقتران مثلثی (دائری)

أ: اقتران أسى

Integration by Parts

 $udv = uv - \int vdu$

Choose u in this order: LIATE

Algebraic Exponential

علماً بأن المثلثى العكسى (مثل sin-1x) غير مطلوب في التوجيهي

عند وجود مقدارين : فالذي يكون حرفه أولاً في ((لكما أو Liate)) نفرضه (u) والآخر (dv)

$$1) \int x^2 \ln x \, dx ::: u = \ln x \quad \boxed{L \ i \ a \ t \ e}$$

اللوغاريتمي قبل كثير الحدود (الحقيقي)

$$2) \int e^{2x} \sin x \, dx ::: u = \sin x \left[L \, i \, a \, t \, e \right]$$

المثلثى قبل الأسى

$$3)\int \frac{4x}{3x+1} \sec^2 x \ dx ::: u = \frac{4x}{3x+1} \left[\underline{L \ i \ a \ t \ e} \right]$$

الحقيقي قبل المثلثي

4)
$$\int \sin x \cos 2x \, dx ::: u = \sin x$$
, or $u = \cos 2x \, L \, i \, a \, t \, e$

$$5) \int e^x \ln(x^2+7) dx ::: u = \ln(x^2+7) L i a t e$$

للوغاريتمي قبل الأسي

$$1) \int \ln x \ dx ::: u = \ln x \qquad , \quad dv = dx$$

وقد تم تقسيم الدرس إلى الأجزاء الآتية:

$$du = \frac{1}{x}dx \quad , \quad v = x$$

1) طريقة التكامل بالأجزاء:

$$= x \ln x - \int x \frac{1}{x} dx = x \ln x - \int dx = x \ln x - x + c$$

2)
$$\int 12x \sin 2x \, dx ::: u = 12x$$
, $dv = \sin 2x$

$$du = 12dx \qquad , \quad v = -\frac{1}{2}\cos 2x$$

$$= 12 x(-\frac{1}{2}\cos 2x) - \int (-\frac{1}{2}\cos 2x)(12x) dx$$

 $= -6x \cos 2x + 3 \sin 2x + c$

$$3)\int 8x e^{2x+5} dx ::: u = 8x$$
, $dv=e^{2x+5}$

$$du = 8dx$$
 , $v = \frac{1}{2}e^{2x+5}$

$$= 4 \times e^{2x+5} - \int (\frac{1}{2}e^{2x+5})(8) dx$$
$$= 4 \times e^{2x+5} - 2e^{2x+5} + c$$

4)
$$\int \sin x \ln(\cos x) dx ::: u = \ln(\cos x)$$
, $dv = \sin x$

$$du = \frac{-\sin x}{\cos x} dx$$
 , $v = -\cos x$

$$=-\cos x \ln(\cos x) - \int (\cos x) \frac{\sin x}{\cos x} dx$$

$$=-\cos x \ln(\cos x) - \int \sin x \, dx = -\cos x \ln(\cos x) + \cos x + \cos x$$

5)
$$\int \frac{\ln x}{x^2} dx ::: u = \ln x$$
, $dv = x^{-2}$

$$du = \frac{1}{x}dx = x^{-1}$$
, $v = -x^{-1}$

$$= -x^{-1} \ln x + \int (x^{-1})(x^{-1}) dx = -x^{-1} \ln x + \int x^{-2} dx$$
$$= -x^{-1} \ln x - x^{-1} + c$$

- a) $\int x \sin x \, dx$ b) $\int x^2 \ln x \, dx$ c) $\int 2x \sqrt{7-3x} \, dx$ d) $\int 3x \, e^{4x} \, dx$

$$(x+1)\cos x \ dx$$
 (2) $\int xe^{x/2} \ dx$ اتدرّب وأحُلُ المسائل $-$ أجد كُلًّا من التكاملات الآتية:

$$\int e^x \ln \left(1 + e^x\right) dx$$

$$1) \int x e^x dx = \dots x e^x - e^x + c$$

$$2) \int 15x \sqrt{x+1} dx = ...10x \sqrt{(x+1)^3} - 4\sqrt{(x+1)^5} + c$$

$$3)\int 2e^{x}\cos x \ dx = ... - e^{x}\cos x - e^{x}\sin x + c$$


```
du = dx
               du = \frac{1}{x} dx \qquad v = \frac{1}{3}x^3 \qquad dv = x^2 dx
\int x^2 \ln x \, dx = \frac{1}{3} x^3 \ln x - \int \frac{1}{3} x^2 \, dx = \frac{1}{3} x^3 \ln x - \frac{1}{9} x^3 + C
                                                                       الحظة: يمكن حل هذه المسالة بطريقة التعويض
                                                                         u = 7 - 3x ) u = \sqrt{7 - 3x}
\int x\sqrt{7-3x} \, dx = -\frac{2}{9}x(7-3x)^{\frac{3}{2}} - \int -\frac{2}{9}(7-3x)^{\frac{3}{2}} \, dx = -\frac{2}{9}x(7-3x)^{\frac{3}{2}} - \frac{4}{135}(7-3x)^{\frac{5}{2}} + 6x
              du = 3dx \quad dv = e^{4x} dx \quad v = \frac{1}{2}e^{4x}
  3xe^{4x} dx = \frac{3}{4}xe^{4x} - \int \frac{3}{4}e^{4x} dx = \frac{3}{4}xe^{4x} - \frac{3}{16}e^{4x} + C
                                                                                 u=x+1
  (x+1)\cos x \ dx = (x+1)\sin x - \int \sin x \ dx
                                                                                  du = dx
                                                                                                        v = \sin x
                               = (x+1)\sin x + \cos x + C
  xe^{\frac{1}{2}x} dx = 2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} dx = 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} + C \quad u = x
                                                                                                            v=2e^{\frac{1}{2}x}
 \int \ln \sqrt{x} \ dx = \int \frac{1}{2} \ln x \ dx
                                                                                          u = \ln x
                                                                                         du = \frac{1}{x} dx \quad v = \frac{1}{2}x
  \frac{1}{2}\ln x \, dx = \frac{1}{2}x\ln x - \int \frac{1}{2} \, dx = \frac{1}{2}x\ln x - \frac{1}{2}x + C
   x\sin x\cos x \ dx = \int \frac{1}{2}x\sin 2x \ dx
                                                                                                 dv = \sin 2x \ dx
  x \sin x \cos x \ dx = -\frac{1}{4}x \cos 2x + \int \frac{1}{4} \cos 2x \ dx \ du = \frac{1}{2} \ dx \ v = -\frac{1}{2} \cos 2x
                |a|\cos 2x + \frac{1}{8}\sin 2x + C
x \sec x \tan x \, dx = x \sec x - |\sec x \, dx|
                                                                        du = dx
                   \sec x \times \frac{\sec x + \tan x}{\sec x + \tan x} dx = x \sec x - \int \frac{\sec^2 x}{\sec^2 x}
```

 $-\ln|\sec x + \tan x| + C$

ياضيات / علمى - ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 77)

$$7 \int \frac{x}{\sin^2 x} dx = \int x \csc^2 x \, dx$$

$$\int x \csc^2 x \, dx = -x \cot x + \int \cot x \, dx$$

$$= -x \cot x + \int \frac{\cos x}{\sin x} \, dx = -x \cot x + \ln|\sin x| + C$$

$$u = x \qquad dv = \csc^2 x \, dx$$

$$du = dx \qquad v = -\cot x$$

$$\int x^{-3} \ln x \, dx = -\frac{1}{2} x^{-2} \ln x - \int -\frac{1}{2} x^{-2} \frac{1}{x} \, dx$$

$$= -\frac{1}{2} x^{-2} \ln x + \int \frac{1}{2} x^{-3} \, dx = -\frac{1}{2} x^{-2} \ln x - \frac{1}{4} x^{-2} + C = -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C$$

$$\int (x-2)\sqrt{8-x}dx = (x-2) \times -\frac{2}{3}(8-x)^{\frac{3}{2}} - \int -\frac{2}{3}(8-x)^{\frac{3}{2}}dx$$

$$= -\frac{2}{3}(x-2)(8-x)^{\frac{3}{2}} - \frac{4}{15}(8-x)^{\frac{5}{2}} + C$$

$$u = x-2$$

$$dv = (8-x)^{\frac{1}{2}}dx$$

$$du = dx$$

$$v = -\frac{2}{3}(8-x)^{\frac{3}{2}}$$

$$\int \frac{x}{6^{x}} dx = \int x6^{-x} dx$$

$$\int x6^{-x} dx = -x \frac{6^{-x}}{\ln 6} + \int \frac{6^{-x}}{\ln 6} dx = -x \frac{6^{-x}}{\ln 6} - \frac{6^{-x}}{(\ln 6)^{2}} + C$$

$$u = x dv = 6^{-x} dx$$

$$du = dx v = -\frac{6^{-x}}{\ln 6}$$

$$\int \frac{\cos x \ln \sin x \, dx}{\sin x \ln \sin x - \sin x + C} = \frac{u = \ln \sin x}{du = \frac{\cos x}{\sin x}} \frac{dv}{dx} = \frac{\cos x}{\sin x} \frac{dx}{dx}$$

$$\int e^{x} \ln(1 + e^{x}) dx = e^{x} \ln(1 + e^{x}) - \int \frac{e^{2x}}{1 + e^{x}} dx \qquad u = \ln(1 + e^{x}) \quad dv = e^{x} dx \\
= e^{x} \ln(1 + e^{x}) - \int \left(e^{x} + \frac{-1}{1 + e^{x}}\right) dx \\
= e^{x} \ln(1 + e^{x}) - \int \left(e^{x} + \frac{-e^{-x}}{e^{-x} + 1}\right) dx = e^{x} \ln(1 + e^{x}) - e^{x} - \ln(1 + e^{-x}) + C$$

/ مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 878

2) الشرط الأولى:

$$f(x)$$
 الشرط الأوتي : مثال : إذا كان الاقتران $f'(x) = \frac{2x e^x}{(x+1)^2}$ مثال : إذا كان الاقتران $f(x) = \frac{2x e^x}{(x+1)^2}$ جد قاعدة الاقتران علماً بأن منحناه يمر بالنقطة (1، 2e

$$f(x) = \int f'(x)dx = \int \frac{2x e^x}{(x+1)^2} dx :::$$

$$u = 2x e^x \qquad , \quad dv = (x+1)^{-2}$$

$$du = 2e^x + 2xe^x \qquad , \quad v = -(x+1)^{-1}$$

$$= (2x e^x)(-(x+1)^{-1}) + \int \frac{2e^x + 2xe^x}{x+1} dx$$

$$= \frac{-2x e^x}{x+1} + \int \frac{2e^x(1+x)}{x+1} dx$$

$$f(x) = \frac{-2x e^x}{x+1} + 2e^x + c \Rightarrow f(1) = -e + 2e + c = 2e$$

$$\Rightarrow c = e \Rightarrow f(x) = -2x e^x(x+1)^{-1} + 2e^x + e$$

﴾ أتحقُّق من فهمي 69 التكلفة الحدِّية: يُمثِّل الاقتــران: $C'(x) = (0.1x+1)e^{0.03x}$ التكلفة الحدِّية لكل قطعة (بالدينار تُنتَج في إحدى الشركات، حيث xعدد القطع المُنتَجة، و C(x) تكلفة إنتاج x قطعة بالدينار.

C(10) = 200 أجد اقتر ان التكلفة C(x)، علمًا بأنَّ

- مسألة اليوم يُمثِّل الاقتران: $S'(t) = 350 \ln(t+1)$ مُعــدَّل تغيُّر المبيعات الشهرية لكرة قدم جديدة، حيث t عدد الأشهر منذ طرح الكرة في الأسواق، وS(t) عدد الكرات المَبيعة شهريًّا. أجد S(t)، علمًا بأنَّ S(0)=0.
- vيتحرَّك جُسَـيْم في مسار مستقيم، وتعطى سـرعته المتجهة بالاقتران: $v(t)=t~e^{-t/2}$ ، حيث t الزمن بالثواني، و vسرعته المتجهة بالمتر لكل ثانية. إذا بدأ الجُسَيْم الحركة من نقطة الأصل، فأجد موقعه بعد t ثانية.

في كلِّ ممّا يأتي المشتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحني y = f(x). أستعمل المعلومات المعطاة لإيجاد 34) $f'(x) = (x+2) \sin x$; (0,2) $f'(x) = 2xe^{-x}; (0,3): f(x)$ قاعدة الاقتران

🚳 دورة تدريبية: تقدَّمـت دعاء لدورة تدريبية مُتقدِّمـة في الطباعة. إذا كان عــدد الكلمات التــي تطبعها دعاء فـي الدقيقة يــزداد بمُعدَّل: ميث N(t) = N(t) عدد الكلمات التي تطبعها دعاء في الدقيقة بعد t أسبوعًا من التحاقها بالدورة، $N'(t) = (t+6)e^{-0.25t}$ فأجد (N(t)، علمًا بـــأنَّ دعاء كانت تطبع 40 كلمة في الدقيقة عند بَدْء الدورة.

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 77) 7

$$C(x) = \int (0.1x+1)e^{0.03x} dx$$

$$= (0.1x+1)\left(\frac{1}{0.03}e^{0.03x}\right) - \int \frac{0.1}{0.03}e^{0.03x} dx$$

$$= \frac{10}{3}(x+10)e^{0.03x} - \frac{1000}{9}e^{0.03x} + C$$

$$C(10) = \frac{200}{3}e^{0.3} - \frac{1000}{9}e^{0.3} + C = 200 \implies C \approx 260 \implies C(x) = \frac{10}{3}e^{0.03x}\left(x - \frac{70}{3}\right) + 260$$

$$S(t) = \int 350 \ln(t+1) dt$$

$$\int 350 \ln(1+t) dt = 350t \ln(t+1) - \int \frac{350t}{t+1} dt$$

$$= 350t \ln(t+1) - \int (350 - \frac{350}{t+1}) dt$$

$$= 350t \ln(t+1) - 350t + 350 \ln(t+1) + C$$

$$S(t) = 0 - 0 + 0 + C = 0 \Rightarrow C = 0 \implies S(t) = 350t \ln(t+1) - 350t + 350 \ln(t+1)$$

$$\begin{aligned}
& u = x + 2 & dv = \sin x \, dx \\
& f(x) = -(x+2)\cos x + \int \cos x \, dx = -(x+2)\cos x + \sin x + C \\
& f(0) = -2 + 0 + C = 2 \Rightarrow C = 4 & \Rightarrow f(x) = -(x+2)\cos x + \sin x + 4
\end{aligned}$$

$$\begin{aligned}
& u = x + 2 & dv = \sin x \, dx \\
& v = -\cos x \\
& f(x) = -\cos x + \sin x + C
\end{aligned}$$

$$f(0) = -2 + 0 + C = 2 \Rightarrow C = 4 & \Rightarrow f(x) = -(x+2)\cos x + \sin x + 4$$

$$\begin{aligned}
& u = 2x & dv = e^{-x} \, dx \\
& du = 2dx & v = -e^{-x}
\end{aligned}$$

$$f(x) = -2xe^{-x} + \int 2e^{-x} \, dx = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\begin{aligned}
& f(0) = 0 - 2 + C = 3 \Rightarrow C = 5 \Rightarrow f(x) = -2xe^{-x} - 2e^{-x} + 5
\end{aligned}$$

$$\begin{aligned}
& 0 & = -2xe^{-x} + \int 2e^{-x} \, dx \\
& 0 & = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\begin{aligned}
& 0 & = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\begin{aligned}
& 0 & = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\begin{aligned}
& 0 & = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\begin{aligned}
& 0 & = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
& 0 & = -2xe^{-x} - 2e^{-x} + C
\end{aligned}$$

$$\end{aligned}$$

رياضيات / علمى – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 <mark>88 531</mark> 3) تكرار التكامل بالأجزاء: في بعض التكاملات قد نضطر إلى استعمال التكامل بالأجزاء أكثر من مَرَّة.

Abdulkadir Hasanat

$$=6x^{2}(\frac{1}{2}\sin 2x)-\int (12x)(\frac{1}{2}\sin 2x) \ dx$$

$$=3x^{2} \sin 2x - \int (6x)(\sin 2x) dx$$
 ::: $u = 6x$, $dv = \sin 2x$
 $du = 6 dx$, $v = -\frac{1}{2} \cos 2x$

$$=3x^{2} \sin 2x - (-3x \cos 2x + \int (-3\cos 2x) dx)$$

$$= 3x^{2} \sin 2x + 3x \cos 2x + \frac{3}{2} \sin 2x + c$$

$$2) \int x^{2} \sqrt{3x-2} \, dx ::: u = x^{2}, \, dv = \sqrt{3x-2}, \, du = 2x \, dx, \, v = \frac{2}{9} (3x-2)^{\frac{3}{2}}$$

$$= (x^{2}) \frac{2}{9} (3x-2)^{\frac{3}{2}} - \int (2x) (\frac{2}{9} (3x-2)^{\frac{3}{2}}) \, dx$$

$$= \frac{2}{9} (x^{2}) (3x-2)^{\frac{3}{2}} - \frac{4}{9} (\int (x) (3x-2)^{\frac{3}{2}}) dx ::: u = x, \, du = dx, \, dv = (3x-2)^{\frac{3}{2}}, v = \frac{2}{15} (3x-2)^{\frac{5}{2}}$$

$$= \frac{2}{9} (x^{2}) (3x-2)^{\frac{3}{2}} - \frac{4}{9} ((x) \frac{2}{15} (3x-2)^{\frac{5}{2}} - \int (3x-2)^{\frac{5}{2}}) dx$$

$$= \frac{2}{9} (x^{2}) (3x-2)^{\frac{3}{2}} - \frac{4}{9} ((x) \frac{2}{15} (3x-2)^{\frac{5}{2}} - \frac{2}{15} \times \frac{2}{21} (3x-2)^{\frac{7}{2}}) + c$$

$$3) \int x^{2} \times 5^{x} dx ::: u = x^{2} \Rightarrow du = 2x , dv = 5^{x} , v = \frac{5^{x}}{\ln 5}$$

$$\Rightarrow = \frac{(x^{2})5^{x}}{\ln 5} - \int \frac{(2x)5^{x}}{\ln 5} dx ::: u = 2x , du = 2 , dv = 5^{x} , v = \frac{5^{x}}{\ln 5}$$

$$= \frac{(x^{2})5^{x}}{\ln 5} - \frac{(2x)5^{x}}{\ln^{2} 5} + \int \frac{(2)5^{x}}{\ln^{2} 5} dx = \frac{(x^{2})5^{x}}{\ln 5} - \frac{(2x)5^{x}}{\ln^{2} 5} + \frac{(2)5^{x}}{\ln^{3} 5} + c$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 9) 9

a)
$$\int x^2 \sin x \ dx$$
 b) $\int x^3 e^{4x} \ dx$ نتحقّق من فهمي 64 أجد كُلًّا من التكاملين الآتيين:

3
$$\int (2x^2-1) e^{-x} dx$$

$$1) \int 20x^2 \sin 2x \ dx = ... - 5x^2 \cos 2x + 10x \sin 2x + 5 \cos 2x + c$$

$$2) \int x^5 \sqrt{x^3 + 1} \ dx = ... \frac{2}{9} x^3 \sqrt{(x^3 + 1)^3} - \frac{4}{45} \sqrt{(x^3 + 1)^5} + c$$

$$3) \int 4x^2 e^{2x} dx = ...2x^2 e^{2x} - 2x e^{2x} + 2 e^{2x} + c$$

a
$$u = x^2$$
 $dv = \sin x \, dx$ $v = -\cos x$

$$\int x^2 \sin x \, dx = -x^2 \cos x - \int -2x \cos x \, dx$$

$$\int x^2 \sin x \, dx = -x^2 \cos x + \int 2x \cos x \, dx$$

$$\int x^2 \sin x \, dx = -x^2 \cos x + \int 2x \cos x \, dx$$

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x - \int 2\sin x \, dx = -x^2 \cos x + 2x \sin x + 2\cos x + C$$
b $u = x^3$ $du = 3x^2 dx$ $dv = e^{4x} dx$ $v = \frac{1}{4}e^{4x}$

$$\int x^3 e^{4x} \, dx = \frac{1}{4}x^3 e^{4x} - \int \frac{3}{4}x^2 e^{4x} \, dx$$

$$\int x^3 e^{4x} \, dx = \frac{1}{4}x^3 e^{4x} - \frac{3}{16}x^2 e^{4x} + \int \frac{3}{8}x e^{4x} \, dx$$

$$u = \frac{3}{4}x^2 \quad du = \frac{3}{2}x \, dx$$

$$dv = e^{4x} dx \quad v = \frac{1}{4}e^{4x}$$

$$dv = e^{4x} dx \quad v = \frac{1}{4}e^{4x}$$

$$\int x^3 e^{4x} \, dx = \frac{1}{4}x^3 e^{4x} - \frac{3}{16}x^2 e^{4x} + \int \frac{3}{8}x e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = e^{4x} \, dx$$

$$u = \frac{3}{8}x \quad dv = \frac{1}{4}e^{4x}$$

$$\int (2x^{2} - 1)e^{-x} dx = -(2x^{2} - 1)e^{-x} + \int 4xe^{-x} dx
\int (2x^{2} - 1)e^{-x} dx = -(2x^{2} - 1)e^{-x} - 4xe^{-x} + \int 4e^{-x} dx
= -(2x^{2} - 1)e^{-x} - 4xe^{-x} - 4e^{-x} + C
= -e^{-x}(2x^{2} + 4x + 3) + C$$

$$u = 2x^{2} - 1 \quad dv = e^{-x} dx
du = 4x dx \quad v = -e^{-x}$$

$$u = 4x \quad dv = e^{-x} dx
du = 4x \quad dv = e^{-x} dx$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 30 10</mark> (

$$u = 2x^2$$
 $dv = \sec^2 x \tan x \, dx$ $du = 4x \, dx$ $v = \frac{1}{2} \tan^2 x$ $v = \frac{1}{2} \tan^2 x$ $v = \frac{1}{2} \tan^2 x$ $v = \int \sec^2 x \tan x \, dx = \int \sec^2 x \, y \, \frac{dy}{\sec^2 x} = \int y \, dy = \frac{1}{2} y^2 = \frac{1}{2} \tan^2 x$ $\int 2x^2 \sec^2 x \, \tan x \, dx = 2x^2 \left(\frac{1}{2} \tan^2 x\right) - \int 2x \tan^2 x \, dx$ $u = 2x$ $dv = \tan^2 x \, dx = (\sec^2 x - 1) \, dx$ $v = \tan x - x$ $\int 2x^2 \sec^2 x \, \tan x \, dx = x^2 \tan^2 x - \left(2x(\tan x - x) - \int 2(\tan x - x) \, dx\right)$ $v = x^2 \tan^2 x - 2x \tan x + 2x^2 + 2 \int \left(\frac{\sin x}{\cos x} - x\right) \, dx$ $v = x^2 \tan^2 x - 2x \tan x + 2x^2 - 2 \ln|\cos x| - x^2 + C$ $v = x^2 \tan^2 x - 2x \tan x + x^2 - 2 \ln|\cos x| + C$

13
$$u = e^{3x}$$
 $dv = \cos x \, dx$ $du = 3e^{3x} \, dx$ $v = \sin x$
$$\int e^{3x} \cos x \, dx = e^{3x} \sin x - \int 3e^{3x} \sin x \, dx$$

$$u = 3e^{3x} \qquad dv = \sin x \, dx$$

$$u = 9e^{3x} \, dx \qquad v = -\cos x$$

$$\int e^{3x} \cos x \, dx = e^{3x} \sin x - 3e^{3x} (-\cos x) - 9 \int e^{3x} \cos x \, dx$$

$$10 \int e^{3x} \cos x \, dx = e^{3x} \sin x + 3e^{3x} \cos x$$

$$\int e^{3x} \cos x \, dx = \frac{1}{10} e^{3x} (\sin x + 3\cos x) + C$$

4) التكاملات الدورية: قد ينتج من تكرار التكامل بالأجزاء تكاملٌ مُطابق للتكامل الأصلي (ويُسمى دوريًّا). عندها يُمكِن إيجاد التكامل جبريًا بطريقة مُشابِهَة لحلِّ المعادلات. 1) $\int e^{2x} \sin x \, dx ::: u = \sin x \Rightarrow du = \cos x \, dx$, $dv = e^{2x}$, $v = \frac{1}{2}e^{2x}$ $= \sin x (\frac{1}{2}e^{2x}) - \int (\frac{1}{2}e^{2x})(\cos x) \ dx = \frac{1}{2}e^{2x}\sin x - \frac{1}{2}\int e^{2x}\cos x \ dx$::: u = co sx, du = -sin x, $dv=e^{2x}$, $v = \frac{1}{2}e^{2x}$ $\int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{2} (\frac{1}{2} e^{2x} \cos x - \int \frac{-1}{2} e^{2x} \sin x \, dx)$ $\Rightarrow \int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x - \frac{1}{4} \int e^{2x} \sin x \, dx$ $\Rightarrow \int e^{2x} \sin x \, dx + \frac{1}{4} \int e^{2x} \sin x \, dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x + c$ $\Rightarrow \frac{5}{4} \int e^{2x} \sin x \ dx = \frac{1}{2} e^{2x} \sin x - \frac{1}{4} e^{2x} \cos x + c$ $\Rightarrow \int e^{2x} \sin x \, dx = \frac{2}{5} e^{2x} \sin x - \frac{1}{5} e^{2x} \cos x + c$ 2) $\int 3^x \cos x \, dx ::: u = \cos x \Rightarrow du = -\sin x \, dx$, $dv = 3^x$, $v = \frac{3^x}{1-3^x}$ $\int 3^{x} \cos x \, dx = \frac{3^{x}}{\ln^{3}} \cos x + \int \frac{3^{x}}{\ln^{3}} (\sin x) \, dx$::: $u = \sin x$, $du = \cos x$, $dv = \frac{3^x}{\ln 3^2}$, $v = \frac{3^x}{\ln^2 3}$ $\int 3^x \cos x \, dx = \frac{3^x}{\ln^2 3} \cos x + (\frac{3^x}{\ln^2 3} (\sin x) - \int \frac{3^x}{\ln^2 3} \cos x \, dx)$ $\int 3^x \cos x \, dx = \frac{3^x}{\ln^2 3} \cos x + \frac{3^x}{\ln^2 3} \sin x - \int \frac{3^x}{\ln^2 3} \cos x \, dx$ $\int 3^{x} \cos x \, dx + \frac{1}{\ln^{2} 3} \int 3^{x} \cos x \, dx = \frac{3^{x}}{\ln^{2} 3} \cos x + \frac{3^{x}}{\ln^{2} 3} \sin x$

 $\Rightarrow \int 3^{x} \cos x \, dx = \frac{3^{x} \ln 3}{1 + \ln^{2} 3} \cos x + \frac{3^{x}}{1 + \ln^{2} 3} \sin x$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 12 078 1</mark>2

$$3) \int \sin x \cos x \, dx ::: u = \sin x, \quad dv = \cos x$$

$$\Rightarrow du = \cos x, \quad v = \sin x$$

$$\int \sin x \cos x \, dx = (\sin x)(\sin x) - \int \sin x \cos x \, dx$$

$$\int \sin x \cos x \, dx + \int \sin x \cos x \, dx = (\sin x)(\sin x)$$

$$\Rightarrow \int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + c$$

$$a)$$
 $\int \frac{\sin x}{e^x} dx$ $\int \sec^3 x \, dx$ اُجد كُلًّا من التكاملين الآتيين: $\int \frac{\sin x}{e^x} dx$

$$\int \frac{\sin x}{e^x} dx = \int \sin x e^{-x} dx \qquad u = \sin x \qquad dv = e^{-x} dx du = \cos x dx \qquad v = -e^{-x}$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} - \int -e^{-x} \cos x dx$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} + \int e^{-x} \cos x dx \qquad u = \cos x \qquad dv = e^{-x} dx du = -\sin x dx \qquad v = -e^{-x}$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} - e^{-x} \cos x - \int e^{-x} \sin x dx \qquad v = -e^{-x}$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} - e^{-x} \cos x - \int e^{-x} \sin x dx \qquad v = -e^{-x}$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} - e^{-x} \cos x - \int e^{-x} \sin x dx \qquad v = -e^{-x}$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} - e^{-x} \cos x - \int e^{-x} \sin x dx \qquad v = -e^{-x}$$

$$\int \sin x e^{-x} dx = -\sin x e^{-x} - e^{-x} \cos x - \int e^{-x} \sin x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x - \int e^{-x} \cos x dx \qquad v = -e^{-x} \cos x dx$$

b
$$u = \sec x$$
 $dv = \sec^2 x \, dx$
 $du = \sec x \tan x \, dx$ $v = \tan x$

$$\int \sec^3 x \, dx = \sec x \tan x - \int \sec x \tan^2 x \, dx = \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx$$

$$= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx$$

$$2 \int \sec^3 x \, dx = \sec x \tan x + \int \sec x \, dx = \sec x \tan x + \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \, dx$$

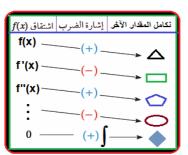
$$= \sec x \tan x + \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx = \sec x \tan x + \ln|\sec x + \tan x|$$

$$\int \sec^3 x \, dx = \frac{1}{2} (\sec x \tan x + \ln|\sec x + \tan x|) + C$$

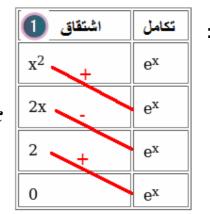
ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 879 13 مرسة

5) تكرار التكامل بالأجزاء باستعمال طريقة الجدول

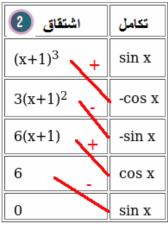
يُمكِن استعمال طريقة الجدول لإيجاد التكاملات التي صورها:
$$f(x)$$
 كثير حدود $\int f(x) \sin ax \, dx \int f(x) \cos ax \, dx \int f(x) (ax+b)^n \, dx$



عندما يتكون المُكامَل من جزئين أحدهما دوري ، وتكرار اشتقاق الآخر يصبح صفرا: نستخدم طريقة الجدول



1)
$$\int x^2 e^x dx = x^2 e^x - 2x e^x + 2e^x + c$$



$$2) \int (x+1)^3 \sin x \, dx = -(x+1)^3 \cos x + 3(x+1)^2 \sin x + 6(x+1) \cos x - 6 \sin x + c$$

$3)\int (x^3 + 2x - 1)\cos x dx = \frac{1}{4}(x^3 + 2x - 1)\sin 4x + \frac{1}{16}(3x^2 + 2)\cos 4x$
$-\frac{3x}{32}\sin 4x - \frac{3}{128}\cos 4x + c$

اشتقاق (4	تكامل
x ²	$+ (x-2)^{3/2}$
2x	$\frac{2}{5}(x-2)^{5/2}$
2	$+\frac{4}{35}(x-2)^{7/2}$
0	$-\frac{8}{315}(x-2)^{9/2}$

$$4) \int x^{2} (x-2)^{\frac{3}{2}} dx = \frac{2}{5} x^{2} (x-2)^{\frac{5}{2}}$$
$$-\frac{8}{35} x (x-2)^{\frac{7}{2}} + \frac{16}{315} (x-2)^{\frac{9}{2}} + c$$

a)
$$\int x^4 \cos 4x \; dx \; b$$
) $\int x^5 e^x \; dx$ اُجد كُلَّا من التكاملين الآتيين: $\int x^4 \cos 4x \; dx \; dx$

$$11$$
 أتدرّب وأحُلُّ المسائل $lacktriangledown$ أجد كُلًّا من التكاملات الآتية: $x^3\cos 2x\ dx$

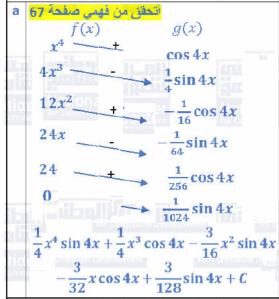
1)
$$\int 6x^2 \sin x \cos x \, dx = ... \frac{-3}{2} x^2 \cos 2x - \frac{6}{4} x \sin 2x + \frac{3}{4} \cos 2x + c$$

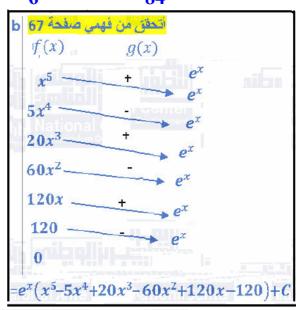
$$2) \int x^3 \cos 2x \ dx = \dots \frac{1}{2} x^3 \sin 2x + \frac{3}{4} x^2 \cos 2x - \frac{3}{4} x \sin 2x - \frac{3}{2} \cos 2x + c$$

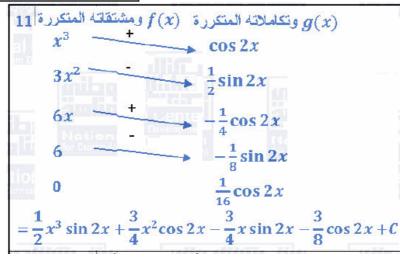
$$3) \int x^3 e^{-x} dx = \dots - x^3 e^{-x} - 3x^2 e^{-x} - 6x e^{-x} - 6e^{-x} + c$$

$$4) \int x^{2} \sqrt{(x-2)^{3}} dx = ... \frac{2}{5} x^{2} \sqrt{(x-2)^{5}} - \frac{8x}{35} \sqrt{(x-2)^{7}} + \frac{16}{315} \sqrt{(x-2)^{9}} + c$$

$$5) \int 10x^{2} (2x-1)^{4} dx = ...x^{2} (2x-1)^{5} - \frac{x}{6} (2x-1)^{6} + \frac{1}{84} (2x-1)^{7} + c$$







1) $\int \ln x \ dx ::: u = \ln x \ , \ du = \frac{1}{x} dx \ , v = x \ , dv = dx$ $\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du$ $\Rightarrow \int \ln x \ dx = x \ln x \Big]_{1}^{e} - x \Big]_{1}^{e} = (e \ln e - 1 \ln 1) - (e - 1) = 1$ a) $\int_{1}^{e} \frac{\ln x}{r^2} dx$ b) $\int_{0}^{1} xe^{-2x} dx$ أتحقُّق من فهمي 70 أجد كُلَّا من التكاملين الآتيين \mathscr{L} $\int_{0}^{\pi/2} e^{x} \cos x \ dx$ **17** $\int_{1}^{e} \ln x^{2} \ dx$ **18** $\int_{1}^{2} \ln(xe^{x}) \ dx$ 19 $\int_{\pi/12}^{\pi/9} x \sec^2 3x \ dx$ 20 $\int_{1}^{e} x^4 \ln x \ dx$ 21 $\int_{0}^{\pi/2} x^2 \sin x \ dx$ 22 $\int_0^1 x(e^{-2x} + e^{-x}) dx$ 23 $\int_0^1 \frac{xe^x}{(1+x)^2} dx$ 24 $\int_0^1 x \, 3^x dx$ $\begin{vmatrix} \mathbf{a} & \mathbf{u} = \ln x & d\mathbf{v} = x^{-2} dx \\ d\mathbf{u} = \frac{1}{x} dx & \mathbf{v} = -\frac{1}{x} \end{vmatrix}$ $\int_{1}^{e} \frac{\ln x}{x^{2}} dx = -\frac{\ln x}{x} \Big|_{1}^{e} + \int_{1}^{e} x^{-2} dx = -\frac{\ln x}{x} \Big|_{1}^{e} + \left(-\frac{1}{x}\right) \Big|_{1}^{e} = -\frac{1}{e} - \frac{1}{e} + 1 = 1 - \frac{2}{e}$ $du = dx v = -\frac{1}{2}e^{-2x}$ $\int_0^1 x e^{-2x} dx = -\frac{1}{2} x e^{-2x} \Big|_0^1 + \int_0^1 \frac{1}{2} e^{-2x} dx = -\frac{1}{2} x e^{-2x} \Big|_0^1 + -\frac{1}{4} e^{-2x} \Big|_0^1$ $\frac{e^{-2}}{2} - \frac{e^{-2}}{4} + \frac{1}{4} = \frac{1}{4} - \frac{3}{4e^2}$ $\int e^x \cos x \, dx = \frac{1}{2} e^x (\sin x + \cos x) + C$ وجننا في المثال 3 أنَ: $\int e^x \cos x \, dx = \frac{1}{2} e^x (\sin x + \cos x) + C$ $\Rightarrow \int_{0}^{\frac{\pi}{2}} e^{x} \cos x \, dx = \frac{1}{2} e^{x} (\sin x + \cos x) \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^{0} = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^{0}$ 17 $\int_{1}^{e} \ln x^{2} dx = \int_{1}^{e} 2 \ln x dx$ $u = 2 \ln x$ $du = \frac{2}{x} dx$ $=2x\ln x|_{1}^{e}-\int_{1}^{2}dx=2x\ln x|_{1}^{e}-2x|_{1}^{e}=2e\ln e-2\ln 1-2e+2=2e-0-2e+2=2$ $\frac{18}{\int_{1}^{2} \ln(xe^{x}) dx} = \int_{1}^{2} (\ln x + \ln e^{x}) dx = \int_{1}^{2} (\ln x + x) dx = \int_{1}^{2} \ln x dx + \int_{1}^{2} x dx$ $\int_1^2 \ln x \, dx = x \ln x |_1^2 - x|_1^2 = 2 \ln 2 - \ln 1 - 2 + 1 = 2 \ln 2 - 1$ بطريقة الأجزاء: $\int_{0}^{2} x dx = \frac{1}{2} x^{2} \Big|_{0}^{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \Rightarrow \int_{1}^{2} \ln(x e^{x}) dx = 2 \ln 2 - 1 + \frac{3}{2} = 2 \ln 2 + \frac{1}{2}$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 76)16

$$\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} x \sec^{2} 3x \, dx = \frac{1}{3} x \tan 3x \Big|_{\frac{\pi}{12}}^{\frac{\pi}{9}} - \int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \frac{1}{3} \tan 3x \, dx \Big|_{\frac{\pi}{12}}^{\frac{\pi}{9}} - \int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \frac{1}{3} \tan 3x \, dx \Big|_{\frac{\pi}{12}}^{\frac{\pi}{9}} + \frac{1}{9} \ln \cos 3x \Big|_{\frac{\pi}$$

$$\begin{vmatrix} 20 \\ = \frac{1}{5}x^{5} \ln x \Big|_{1}^{e} - \int_{1}^{e} \frac{1}{5}x^{4} dx = \frac{1}{5}x^{5} \ln x \Big|_{1}^{e} - \frac{1}{25}x^{5} \Big|_{1}^{e}$$

$$= \frac{1}{5}e^{5} - 0 - \frac{1}{25}e^{5} + \frac{1}{25} = \frac{4e^{5} + 1}{25}$$

21
$$\int x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x + C$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x \Big|_{0}^{\frac{\pi}{2}} = \pi - 2$$

$$\Rightarrow \int_{0}^{2\pi} x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x \Big|_{0}^{\frac{\pi}{2}} = \pi - 2$$

$$\Rightarrow \int_{0}^{2\pi} x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x \Big|_{0}^{\frac{\pi}{2}} = \pi - 2$$

$$\Rightarrow \int_{0}^{2\pi} x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x \Big|_{0}^{\frac{\pi}{2}} = \pi - 2$$

$$\Rightarrow \int_{0}^{2\pi} x^{2} \sin x \, dx = -x^{2} \cos x + 2x \sin x + 2 \cos x \Big|_{0}^{\frac{\pi}{2}} = \pi - 2$$

$$\begin{vmatrix} 22 \\ = -\frac{1}{2}xe^{-2x} - xe^{-x} \Big|_{0}^{1} - \int_{0}^{1} \left(-\frac{1}{2}e^{-2x} - e^{-x} \right) dx \qquad \begin{vmatrix} u = x & dv = (e^{-2x} + e^{-x}) dx \\ du = dx & v = -\frac{1}{2}e^{-2x} - e^{-x} \end{vmatrix}$$

$$= -\frac{1}{2}xe^{-2x} - xe^{-x} \Big|_{0}^{1} - \left(\frac{1}{4}e^{-2x} + e^{-x} \right) \Big|_{0}^{1} = -\frac{1}{2}e^{-2} - e^{-1} - \frac{1}{4}e^{-2} - e^{-1} + \frac{1}{4} + 1$$

$$= -\frac{3}{4}e^{-2} - 2e^{-1} + \frac{5}{4}$$

$$\begin{aligned} & = -xe^{x}(1+x)^{-1} \Big|_{0}^{1} + \int_{0}^{1} \frac{e^{x}(x+1)}{(1+x)} dx \\ & = -\frac{xe^{x}}{1+x} \Big|_{0}^{1} + e^{x} \Big|_{0}^{1} = -\frac{e}{2} + e - 1 = \frac{1}{2}e - 1 \end{aligned}$$

$$\begin{aligned} & = xe^{x} & dv = (1+x)^{-2} dx \\ du = (xe^{x} + e^{x}) dx & v = -(1+x)^{-1} \\ & = e^{x}(x+1) dx \end{aligned}$$

$$\int_{0}^{1} x 3^{x} dx = x \frac{3^{x}}{\ln 3} \Big|_{0}^{1} - \int_{0}^{1} \frac{3^{x}}{\ln 3} dx - x \frac{3^{x}}{\ln 3} \Big|_{0}^{1} - \frac{3^{x}}{(\ln 3)^{2}} \Big|_{0}^{1} \qquad u = x \quad dv = 3^{x} dx \\
= \frac{3}{\ln 3} - \frac{3}{(\ln 3)^{2}} + \frac{1}{(\ln 3)^{2}} = \frac{3 \ln 3 - 2}{(\ln 3)^{2}}$$

<u> / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 78 078 </u>

7) التكامل بالأجزاء، والتكامل بالتعويض

أحياناً لحُلُّ بعض التكاملات نحتاج إلى استعمال طريقة التعويض وطريقة الأجزاء معًا.

وهناك قاعدة (شبه عامة):عند وجود زاوية غير خطية ، أس غير خطي، أو ما بداخل اللوغاريتم غير خطي : غالبا نبدأ بالتعويض (بفرض المقدار غير الخطي y) ثم نلاحظ الناتج ونحدد الطريقة التالية ، أجزاء أم كسور

1)
$$\int \sec \sqrt{x} \ dx ::: y = \sqrt{x} \Rightarrow y^2 = x \Rightarrow 2y \ dy = dx$$

=
$$\int \sec y \ 2y dy = \int 2y \sec y \ dy ::: u = 2y$$
, $dv = \sec y$

$$du = 2dy$$
, $v = \tan y$

$$= 2y \tan y - \int 2\tan y \, dy = 2y \tan y - 2\ln\left|\cos y\right| + c$$
$$= 2\sqrt{x} \tan \sqrt{x} + 2\ln\left|\cos \sqrt{x}\right| + c$$

$$2) \int \sin 2x \, e^{\sin x} dx \, ::: y = \sin x \Rightarrow dy = \cos x \, dx$$

$$= \int 2\sin x \cos x \ e^{\sin x} \frac{dy}{\cos x} = \int 2\sin x \ e^{\sin x} \ dy = \int 2y \ e^{y} dy$$

$$::: u = 2y$$
, $dv=e^y$

$$du = 2dy$$
 , $v = e^{y}$

$$= 2y e^{y} - \int 2 e^{y} dy = 2y e^{y} - 2 e^{y} + c$$

$$=2\sin x e^{\sin x} - 2 e^{\sin x} + c$$

3)
$$\int 6x \ln(x^2+4) dx ::: y = x^2 + 4 \Rightarrow dy = 2x dx$$

= $\int 6x \ln(y) \frac{dy}{2x} = 3 \int \ln(y) dy$
::: $u = \ln y$, $dv = dy$

$$du = \frac{1}{y}$$
, $v = y$
= $3(y \ln y - \int y \frac{1}{y} dy) = 3y \ln y - 3y + c$
= $3(x^2+4) \ln(x^2+4) - 3(x^2+4) + c$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 18

a)
$$\int (x^3 + x^5) \sin x^2 dx$$
 b) $\int x^5 e^{x^2} dx$ نتحقًق من فهمي 71 أجد قيمة كلِّ من التكاملين الآتيين: ℓ

$$\cos (\ln x) \ dx$$

$$\int \sin \sqrt{x} \ dx$$

$$\int (x^3 + x^5) \sin x^2 \, dx = \int x^3 \sin x^2 \, dx + \int x^5 \sin x^2 \, dx$$

$$y = x^2 \implies \frac{dy}{dx} = 2x \implies dx = \frac{dy}{2x} \implies \frac{dx}{2x} = \frac{1}{2} \int x^2 \sin y \, dy = \frac{1}{2} \int y \sin y \, dy$$

$$\int x^3 \sin x^2 \, dx = \int x^3 \sin y \, \frac{dy}{2x} = \frac{1}{2} \int x^2 \sin y \, dy = \frac{1}{2} \int y \sin y \, dy$$

$$\int y \sin y \, dy = -y \cos y - \int -\cos y \, dy \qquad u = y \qquad dv = \sin y$$

$$= -y \cos y + \sin y \qquad du = dy \qquad v = -\cos y$$

$$\int x^3 \sin x^2 \, dx = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 + C$$

$$\int x^5 \sin x^2 \, dx = \int x^5 \sin y \, \frac{dy}{2x} = \frac{1}{2} \int x^4 \sin y \, dy = \frac{1}{2} \int y^2 \sin y \, dy$$

$$\int y^2 \sin y \, dy = -y^2 \cos y - \int -2y \cos y \, dy \qquad u = y^2 \qquad dv = \sin y$$

$$= -y^2 \cos y + 2y \sin y - 2 \int \sin y \, dy$$

$$= -y^2 \cos y + 2y \sin y + 2 \cos y$$

$$\int x^5 \sin x^2 \, dx = \frac{-1}{2} x^4 \cos x^2 + x^2 \sin x^2 + \cos x^2 + C$$

$$\int (x^3 + x^5) \sin x^2 \, dx = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 - \frac{1}{2} x^4 \cos x^2 + C$$

$$\int (x^3 + x^5) \sin x^2 \, dx = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 - \frac{1}{2} x^4 \cos x^2 + C$$

$$\int (x^3 + x^5) \sin x^2 \, dx = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 - \frac{1}{2} x^4 \cos x^2 + C$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 19 190

b
$$y = x^2$$
 $\Rightarrow \frac{dy}{dx} = 2x \Rightarrow dx = \frac{dy}{2x}$

$$\int x^5 e^{x^2} dx = \int x^5 e^y \frac{dy}{2x} = \int \frac{1}{2} x^4 e^y dy = \frac{1}{2} \int y^2 e^y dy$$

$$\int y^2 e^y dy = y^2 e^y - \int 2y e^y dy = y^2 e^y - 2y e^y + \int 2e^y dy$$

$$= y^2 e^y - 2y e^y + 2e^y = (y^2 - 2y + 2)e^y = (\frac{1}{2} x^4 - x^2 + 1)e^{x^2} + C$$

$$\int x^{3}e^{x^{2}}dx = \int x^{3}e^{y}\frac{dy}{2x} = \int \frac{1}{2}x^{2}e^{y}dy = \int \frac{1}{2}ye^{y}dy \qquad y = x^{2} \Rightarrow dx = \frac{dy}{2x}$$

$$\int \frac{1}{2}ye^{y}dy = \frac{1}{2}ye^{y} - \int \frac{1}{2}e^{y}dy \qquad u = \frac{1}{2}y \qquad du = \frac{1}{2}dy \qquad dv = e^{y}dy \quad v = e^{y}$$

$$= \frac{1}{2}ye^{y} - \frac{1}{2}e^{y} + C \implies \int x^{3}e^{x^{2}}dx = \frac{1}{2}x^{2}e^{x^{2}} - \frac{1}{2}e^{x^{2}} + C$$

$$\frac{26}{\sqrt{3}}$$
 $y = \ln x \Rightarrow \frac{dy}{dx} = \frac{1}{x} \Rightarrow dx = xdy$, $x = e^y$
$$\int \cos(\ln x) \, dx = \int x \cos y \, dy = \int e^y \cos y \, dy$$

$$\int e^y \cos y \, dy = \frac{1}{2} e^y (\sin y + \cos y) + C$$
 من المثال محلول الصفحات 55و 55و قي كتاب الطالب
$$\Rightarrow \int \cos(\ln x) \, dx = \frac{1}{2} e^{\ln x} (\sin \ln x + \cos \ln x) + C = \frac{1}{2} x (\sin \ln x + \cos \ln x) + C$$

$$\int x^{3} \sin x^{2} dx = \int x^{3} \sin y \frac{dy}{2x} = \int \frac{1}{2} x^{2} \sin y \, dy = \int \frac{1}{2} y \sin y \, dy \qquad y = x^{2} \Rightarrow dx = \frac{dy}{2x}$$

$$u = \frac{1}{2} y \qquad du = \frac{1}{2} dy \qquad v = -\cos y \qquad dv = \sin y \, dy$$

$$\int \frac{1}{2} y \sin y \, dy = -\frac{1}{2} y \cos y + \int \frac{1}{2} \cos y \, dy = -\frac{1}{2} y \cos y + \frac{1}{2} \sin y + C$$

$$\int x^{3} \sin x^{2} \, dx = -\frac{1}{2} x^{2} \cos x^{2} + \frac{1}{2} \sin x^{2} + C$$

$$\begin{cases}
e^{\cos x} \sin 2x \, dx = \int e^y (2 \sin x \cos x) \frac{dy}{-\sin x} = \int -2y e^y dy & y = \cos x \Rightarrow dx = \frac{dy}{-\sin x} \\
\int -2y e^y dy = -2y e^y + \int 2e^y dy = -2y e^y + 2e^y + C & u = -2y & dv = e^y dy \\
\Rightarrow \int e^{\cos x} \sin 2x \, dx = -2 \cos x \, e^{\cos x} + 2e^{\cos x} + C
\end{cases}$$

$$\int \sin \sqrt{x} \, dx = \int 2y \sin y \, dy$$

$$\int y = \sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2y} \Rightarrow dx = 2y dy$$

$$\int 2y \sin y \, dy = -2y \cos y + \int 2\cos y \, dy$$

$$u = 2y$$

$$du = 2 dy$$

$$du = 2 dy$$

$$v = -\cos y$$

$$= -2y \cos y + 2 \sin y + C \Rightarrow \int \sin \sqrt{x} \, dx = -2\sqrt{x} \cos \sqrt{x} + 2 \sin \sqrt{x} + C$$

$$\int \frac{x^3 e^{x^2}}{(x^2+1)^2} dx = \int \frac{x^3 e^y}{(y+1)^2} \frac{dy}{2x}$$

$$= \int \frac{1}{2} x^2 \frac{e^y}{(y+1)^2} dy$$

$$\int \frac{1}{2} y e^y dy = \frac{-y e^y}{2(y+1)} + \int \frac{1}{y+1} \times \frac{1}{2} e^y (y+1) dy = \frac{-y e^y}{2(y+1)} + \frac{1}{2} \int e^y dy$$

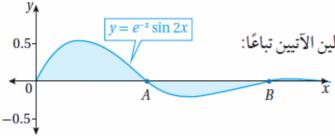
$$= \frac{-y e^y}{2(y+1)} + \frac{1}{2} e^y + C = \frac{-x^2 e^{x^2}}{2(x^2+1)} + \frac{1}{2} e^{x^2} + C = \frac{e^{x^2}}{2(x^2+1)} + C$$

8) التكامل بالأجزاء ، والمساحة ومتفرقات



ناعًا:
$$x \ge 0$$
، حيث: $x \ge 0$ ، فأُجيب عن السؤالين الآتيين تباعًا: $f(x) = e^{-x} \sin 2x$

- (31 أجد إحداثيي كلِّ من النقطة A، والنقطة B.
 - 32 أجد مساحة المنطقة المُظلَّلة.



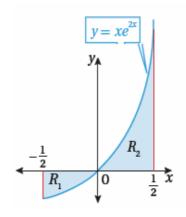
الأسالة عبدالقادر الحسنات

🗫 مهارات التفكير العليا

$$\int_{0}^{\pi/4} x \sin 5x \sin 3x \ dx = \frac{\pi-2}{16} : 0$$
 تبرير: أُثبِت أَنَّ: $\int_{1/2}^{\pi/4} x \sin 5x \sin 3x \ dx = 9 \ln 6 - \frac{215}{72} : 0$ تبرير: أُثبِت أَنَّ: 37

$$x = 2 + e^{-x/2}$$
: تبرير: إذا كان: $\int_{0}^{a} x e^{x/2} dx = 6$ ، فأُثبِت أنَّ a يُحقِّق المعادلة: 39

. بطریقتین مختلفتین، مُبرِّرًا إجابتي
$$\int (\ln x)^2 dx$$
 تبریر: أجد: $\int (\ln x)^2 dx$



تبريس: إذا كان الشكل المجاور يُمثِّل منحنى الاقتران: $y = x e^{2x}$ ، حيث: $\frac{1}{2} \le x \le \frac{1}{2}$

- R_2 أجد مساحة كلِّ من المنطقة R_1 ، والمنطقة أجد مساحة كلِّ من المنطقة أجد مساحة كلُّ من المنطقة المنطقة أ
- (e-2): e تساوي R_2 أُثْبِت أَنَّ مساحة المنطقة R_1 إلى مساحة المنطقة و R_2 تساوي R_2

 $a \neq 0$ عدد صحيح موجب، و $a \neq 0$ ممّا يأتي، حيث: $a \neq 0$ عدد صحيح موجب، و $a \neq 0$

$$43 \int x^n \ln x \, dx = \frac{x^{n+1}}{(n+1)^2} \left(-1 + (n+1) \ln x \right) + C \quad 44 \int x^n \, e^{ax} \, dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} \, e^{ax} \, dx$$

ياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 87 20

$$f(x)=e^{-x}\sin 2x=0$$
 الإحداثيان x النقطتين A و B هما أصغر حلين موجبين المعاللة: $f(x)=e^{-x}\sin 2x=0 \Rightarrow 2x=\pi,2\pi,... \Rightarrow x=rac{\pi}{2},\pi,... \Rightarrow A\left(rac{\pi}{2},0
ight),B(\pi,0)$

$$A = \int_0^{\frac{\pi}{2}} e^{-x} \sin 2x \ dx + \left(-\int_{\frac{\pi}{2}}^{\pi} e^{-x} \sin 2x \ dx\right)$$

التبسيط سنجد أو لا: e-x sin 2x dx (التكامل غير المحدود)

$$u = e^{-x}$$
 $dn = \sin 2x dx$

$$du = -e^{-x}dx \qquad v = -\frac{1}{2}\cos 2x$$

$$\int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \int \frac{1}{2} e^{-x} \cos 2x \ dx$$

بالأجزاء مرة لفرى:

$$u = \frac{1}{2}e^{-x} \qquad dv = \cos 2x \, dx$$

$$du = -\frac{1}{2}e^{-x}dx \qquad v = \frac{1}{2}\sin 2x$$

$$\int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \frac{1}{4} e^{-x} \sin 2x - \frac{1}{4} \int e^{-x} \sin 2x \ dx$$

$$\int e^{-x} \sin 2x \ dx + \frac{1}{4} \int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \frac{1}{4} e^{-x} \sin 2x$$

$$\frac{5}{4} \int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \frac{1}{4} e^{-x} \sin 2x + C$$

$$\int e^{-x} \sin 2x \ dx = -\frac{1}{5} e^{-x} (2 \cos 2x + \sin 2x) + C$$

$$\Rightarrow A = -\frac{1}{5}e^{-x}(2\cos 2x + \sin 2x)\Big|_{0}^{\frac{x}{2}} + \frac{1}{5}e^{-x}(2\cos 2x + \sin 2x)\Big|_{\frac{x}{2}}^{\frac{x}{2}}$$

$$= \frac{2}{5}e^{-\frac{\pi}{2}} + \frac{2}{5} + \frac{2}{5}e^{-\pi} + \frac{2}{5}e^{-\frac{\pi}{2}}$$

$$=\frac{2}{5}\left(1+e^{-\pi}+2e^{-\frac{\pi}{2}}\right)$$

ياضيات / علمي - ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 88 531 88 77)

$$\int_{\frac{1}{2}}^{3} x^{2} \ln 2x \, dx = \frac{1}{3} x^{3} \ln 2x \Big|_{\frac{1}{2}}^{3} - \int_{\frac{1}{2}}^{3} \frac{1}{3} x^{2} \, dx \qquad u = \ln 2x \quad dv = x^{2} dx \\
du = \frac{1}{x} dx \qquad v = \frac{1}{3} x^{3} \\
= \frac{1}{3} x^{3} \ln 2x \Big|_{\frac{1}{2}}^{3} - \frac{1}{9} x^{3} \Big|_{\frac{1}{2}}^{3} = 9 \ln 6 - 3 + \frac{1}{72} = 9 \ln 6 - \frac{215}{72}$$

$$\int_{0}^{a} x e^{\frac{1}{2}x} dx = 2x e^{\frac{1}{2}x} \Big|_{0}^{a} - \int_{0}^{a} 2 e^{\frac{1}{2}x} dx = 2x e^{\frac{1}{2}x} \Big|_{0}^{a} - 4 e^{\frac{1}{2}x} \Big|_{0}^{a} = 4 e^{\frac{1}{2}x} dx$$

$$= 2a e^{\frac{1}{2}a} - 4 e^{\frac{1}{2}a} + 4 \Rightarrow 2a e^{\frac{1}{2}a} - 4 e^{\frac{1}{2}a} + 4 = 6 \qquad 2a e^{\frac{1}{2}a} = 4 e^{\frac{1}{2}a} + 2$$

$$= 2 + e^{-\frac{1}{2}a} \Rightarrow 2 e^{\frac{1}{2}a} \Rightarrow$$

$$\int x^{n} \ln x \, dx = \frac{x^{n+1} \ln x}{n+1} - \int \frac{1}{n+1} x^{n} dx \qquad u = \ln x \qquad dv = x^{n} dx$$

$$du = \frac{1}{x} dx \qquad v = \frac{1}{n+1} x^{n+1}$$

$$= \frac{x^{n+1} \ln x}{n+1} - \frac{1}{(n+1)^{2}} x^{n+1} + C = \frac{x^{n+1}}{(n+1)^{2}} (-1 + (n+1) \ln x) + C$$

$$\int x^{n}e^{ax}dx = \frac{1}{\alpha}x^{n}e^{ax} - \frac{n}{\alpha}\int x^{n-1}e^{ax}dx$$

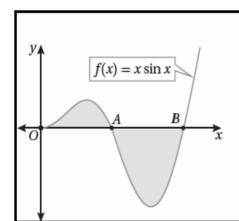
$$u = x^{n} \qquad dv = e^{ax}dx$$

$$du = nx^{n-1}dx \qquad v = \frac{1}{\alpha}e^{ax}$$

من كتاب التمارين

أجد كُلًّا من التكاملات الآتية:

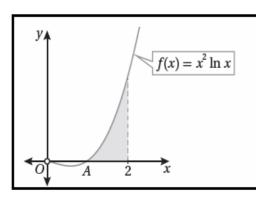
أجد قيمة كلِّ من التكاملات الآتية:



 $\int_{0}^{4} \ln x \, dx = 6 \ln 2 - 2$ أُثْنِت أَنَّ 13

 $x \ge 0$: ميث: $f(x) = x \sin x$ إذا كان الشكل المجاور يُمثِّل منحنى الاقتران فأُجيب عن السؤالين الآتيين تباعًا:

- 4 أجد إحداثيي كلِّ من النقطة A، والنقطة B.
 - 15 أجد مساحة المنطقة المُظلَّلة.



x > 0: ميث: $f(x) = x^2 \ln x$ إذا كان الشكل المجاور يُمثِّل منحنى الاقتران فأُجيب عن السؤالين الآتيين تباعًا:

- 6 أجد إحداثيي النقطة A.
- 17 أجد مساحة المنطقة المُظلَّلة.

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 36 96</mark>)

1
$$u = x$$
 $dv = \cos 4x \, dx$
 $du = dx$ $v = \frac{1}{4} \sin 4x$
 $= \frac{1}{4} x \sin 4x - \int \frac{1}{4} \sin 4x \, dx = \frac{1}{4} x \sin 4x + \frac{1}{16} \cos 4x + C$
2 $u = x$ $dv = (x+1)^{\frac{1}{2}} dx$
 $du = dx$ $v = \frac{2}{3} (x+1)^{\frac{3}{2}}$
 $= \frac{2}{3} x (x+1)^{\frac{3}{2}} - \int \frac{2}{3} (x+1)^{\frac{3}{2}} dx = \frac{2}{3} x (x+1)^{\frac{3}{2}} - \frac{4}{15} (x+1)^{\frac{5}{2}} + C$
3 $u = x$ $dv = e^{-x} dx$
 $du = dx$ $v = -e^{-x}$
 $\int xe^{-x} dx = -xe^{-x} - \int -e^{-x} dx = -xe^{-x} - e^{-x} + C$

رياضيات / علمي – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ عبدالقادر الحسنات (77 <mark>88 531 370)27</mark>

$$6 \quad u = e^{2x} \quad du = 2e^{2x} dx \qquad dv = \sin x \, dx \qquad v = -\cos x$$

$$\int e^{2x} \sin x \, dx = -e^{2x} \cos x + \int 2e^{2x} \cos x \, dx \qquad u = 2e^{2x} \quad dv = \cos x \, dx$$

$$du = 4e^{2x} dx \qquad v = \sin x$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x - \int 4e^{2x} \sin x \, dx$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x - 4 \int e^{2x} \sin x \, dx$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x - 4 \int e^{2x} \sin x \, dx$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x + C$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -\frac{1}{5} e^{2x} \cos x + \frac{2}{5} e^{2x} \sin x + C$$

$$\Rightarrow \int e^{2x} \sin x \, dx = \frac{1}{5} e^{2x} (2 \sin x - \cos x) + C$$

$$\begin{aligned} u &= e^{3x} & dv &= \cos 2x \, dx \\ du &= 3e^{3x} dx & v &= \frac{1}{2}\sin 2x \\ \int e^{3x}\cos 2x \, dx &= \frac{1}{2}e^{3x}\sin 2x - \int \frac{3}{2}e^{3x}\sin 2x \, dx \\ u &= \frac{3}{2}e^{3x} & dv &= \sin 2x \, dx \\ du &= \frac{9}{2}e^{3x} dx & v &= -\frac{1}{2}\cos 2x \\ 10 &\Rightarrow \int e^{3x}\cos 2x \, dx &= \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x - \int \frac{9}{4}e^{3x}\cos 2x \, dx \\ &\Rightarrow \int e^{3x}\cos 2x \, dx &= \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x - \frac{9}{4}\int e^{3x}\cos 2x \, dx \\ &\Rightarrow \frac{13}{4}\int e^{3x}\cos 2x \, dx &= \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x + C \\ &\Rightarrow \int e^{3x}\cos 2x \, dx &= \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x + C \\ &\Rightarrow \int e^{3x}\cos 2x \, dx &= \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x + C \\ &\Rightarrow \int_0^{\pi} e^{3x}\cos 2x \, dx &= \frac{1}{13}(2e^{3x}\sin 2x + 3e^{3x}\cos 2x)\Big|_0^{\pi} &= \frac{1}{13}\left(2e^{\frac{3\pi}{4}} - 3\right) \end{aligned}$$

11
$$u = \ln(x+1)$$
 $du = \frac{1}{x+1} dx$ $dv = dx$ $v = x$

$$\int_{1}^{e} \ln(x+1) dx = x \ln(x+1)|_{1}^{e} - \int_{1}^{e} \frac{x}{x+1} dx$$

$$= x \ln(x+1)|_{1}^{e} - \int_{1}^{e} \left(1 + \frac{-1}{x+1}\right) dx = x \ln(x+1)|_{1}^{e} - (x - \ln(x+1))|_{1}^{e}$$

$$= e \ln(e+1) - \ln 2 - (e - \ln(e+1)) + (1 - \ln 2) = (1 + e) \ln(e+1) - 2 \ln 2 - e + 1$$

$$12$$
 $\int x^2 e^x dx$ وتكاملاته المتكررة $f(x)$ ومشتقاته المتكررة $g(x)$ e^x e^x

باضيات / علمي - ف2 / مدرسة اليقعة الثانوية للبنين 2024 / 2023 الأستاذ عيدالقادر الحسنات (77 88 531 88 79 و

13
$$u = \ln x$$
 $du = \frac{1}{x} dx$ $dv = dx$ $v = x$

$$\int_{2}^{4} \ln x \ dx = x \ln x |_{2}^{4} - \int_{2}^{4} dx = x \ln x |_{2}^{4} - x |_{2}^{4}$$

$$= 4 \ln 4 - 2 \ln 2 - 2 = 8 \ln 2 - 2 \ln 2 - 2 = 6 \ln 2 - 2$$

14
$$x \sin x = 0 \Rightarrow x = 0$$
, $x = \pi$, $x = 2\pi$, ... $A(\pi, 0)$, $B(2\pi, 0)$ ومنه: $A(\pi, 0)$ ومنه: $A(\pi, 0)$ ومنه: $A(\pi, 0)$ ومنه: $A(\pi, 0)$ $A(\pi, 0)$

17
$$Area = \int_{1}^{2} x^{2} \ln x \ dx$$
 $u = \ln x \ du = \frac{1}{x} dx$ $dv = x^{2} dx$ $v = \frac{1}{3}x^{3}$

$$Area = \int_{1}^{2} x^{2} \ln x \ dx = \frac{1}{3}x^{3} \ln x \Big|_{1}^{2} - \int_{1}^{2} \frac{1}{3}x^{2} \ dx$$

$$= \frac{1}{3}x^{3} \ln x \Big|_{1}^{2} - \frac{1}{9}x^{3} \Big|_{1}^{2} = \frac{8}{3}\ln 2 - \frac{8}{9} + \frac{1}{9} = \frac{8}{3}\ln 2 - \frac{7}{9}$$

بات / علمى - ف2 / مدرسة البقعة الثانوية للبنين أسئلة الوزارة

علمي 2023

a)
$$3x^2 \ln x - \frac{3}{2}x^2 + C$$

a)
$$3x^2 \ln x - \frac{3}{2}x^2 + C$$
 c) $3x^2 \ln x + \frac{3}{2}x^2 + C$ هو: $\int 6x \ln x \ dx$

b)
$$3x \ln x - \frac{3}{2}x^2 + C$$
 d) $3x \ln x + \frac{3}{2}x^2 + C$

d)
$$3x \ln x + \frac{3}{2}x^2 + C$$

10) ناتج: 5x cos(5x) dx هو:

a)
$$x \cos(5x) + \frac{1}{5}\sin(5x) + C$$

a)
$$x\cos(5x) + \frac{1}{5}\sin(5x) + C$$
 c) $x\cos(5x) - \frac{1}{5}\sin(5x) + C$

b)
$$x \sin(5x) + \frac{1}{5}\cos(5x) + C$$
 d) $x \sin(5x) - \frac{1}{5}\cos(5x) + C$

d)
$$x \sin(5x) - \frac{1}{5}\cos(5x) + C$$

a)
$$\frac{4 \ln 4 - 4}{(\ln 4)^2}$$

b)
$$\frac{4 \ln 4 + 4}{(\ln 4)^2}$$

c)
$$\frac{4 \ln 4 + 3}{(\ln 4)^2}$$

d
$$\frac{4 \ln 4 - 3}{(\ln 4)^2}$$

b)
$$\frac{4 \ln 4+4}{(\ln 4)^2}$$
 c) $\frac{4 \ln 4+3}{(\ln 4)^2}$ d) $\frac{4 \ln 4-3}{(\ln 4)^2}$ $\frac{1}{2} \times \int_0^1 x 4^x dx$

صناعي 2023

2)
$$\int x^2 e^x dx$$
 (علمات)

علمي 2023 تكميلي

c)
$$4 \ln 2 - 4$$

:ساوي مناوي آ
$$\int_1^2 \ln x^2 dx$$
 نساوي (9

b)
$$4 \ln 2 - 6$$

d)
$$2 \ln 2 - 1$$

a)
$$-x \cot x + \ln|\cos x| + C$$

$$-x \cot x + \ln|\sin x| + C$$
 يساوي: $\int x \csc^2 x \, dx$ (10)

b)
$$x \cot x - \ln|\cos x| + C$$

d)
$$x \cot x + \ln|\sin x| + C$$

(11) إذا كان: 5 =
$$\int_0^1 x f'(x) dx$$
 فإنّ قيمة $\int_0^1 f(x) dx = 1$, $f(1) = 8$, $f(0) = 5$ تساوي:

- a) 2
- b) 3

صناعي 2023 تكميلي

2)
$$\int_0^{\frac{\pi}{2}} (x+1) \cos x \, dx$$

/ علمي - ف2 / مدرسة البقعة الثانوية للبنين تمارين إضافية : هي $\int_{0}^{1} \ln x \ dx$ اهي a) 2 b) 1 c) -1 d) e-1a) Ln4-3 b) Ln16-3: هي $\int 4x \; Lnx \; dx$ عي (2 c) Ln 256-3 d) 4Ln 4+3a) $x e^{x} - e^{x} + c$ b) $x e^{x} + e^{x} + c$: هي $\int x e^x dx$ هي (3 c) $2x e^{x} + c$ d) $2e^{x} + c$ a) $\sin x - x \cos x + c$ b) $\sin x + x \cos x + c$: هي $\int x \sin x \ dx$ قيمة $c) x \cos x$ d) $\cos x - x \sin x + c$: هي $\int_{0}^{2} \frac{x}{\sqrt{e^{x}}} dx$ هي (5 a) $\frac{4e+8}{a}$ b) $\frac{e+4}{8}$ c) 4 d) $\frac{4e-8}{a}$ $a) x \tan x - Ln \left|\cos x\right| + c$ $b) \frac{1}{2}x^2 \tan x + c$: هي $\int x \sec^2 x \ dx$ قيمة $\int x \sec^2 x \ dx$ c) $x \tan x + Ln |\cos x| + c$ d) $x \tan x + Ln |\sin x| + c$: هی $\int 2x^3 \csc^2 x^2 dx$ هی (7 a) $x^2 \cot x^2 + Ln |\sin x^2| + c$ b) $-x^2 \cot x^2 + Ln |\sin x^2| + c$ $c) x^4 \cot x^2 + c$ $d) x^{2} \cot^{2} x^{2} + Ln |\sin x^{2}| + c$ $= \int f(x)dx \quad فين , \int x f'(x)dx = 10, f(2) = 3, f(5) = 8$ الذا كان (8) a) 14 b) 24 c) -24 d) 44 =(a)اذا كان $\int_{0}^{1} (x \cos x - 1) dx = \int_{0}^{1} (3ax^{2} + 2x) dx$ إذا كان (9) a) $\frac{\pi}{2} - 3$ b) -1 c) -3d) 3 $=f(\frac{3\pi}{4})$ اِذَا كَان $\int \sin x \ f'(x) \ dx = -3\sqrt{2} \ , \ \int \cos x \ f(x) \ dx = \sqrt{2}$ اِذَا كَان (10) a) 8 b) -8 c) -2 d) $2\sqrt{2}$ 1 2 3 4 5 6 7 8 9 10

	رياضيات / علمى - ف 2 / مدرسة البقعة الثانوية للبنين 2024 / 2023 الأستاذ خلاصة طرائق التكامل	
	كما لاحظنا هناك عدة طرق للتكامل، منها: 1) الطريقة المباشرة من خلال البحث عن اق	
	2) من خلال التحليل إلى العوامل والاختصار 3) من خلال المتطابقات المثلثية	
Abdulkadir Hasanat	4) طريقة التكامل بالتعويض (4) طريقة التكامل بالتعويض	
078 531 88 77	شاه المسلم (5) طريقة الكسور الجزئية (5) طريقة التكامل بالأجزاء (6)	
عمل ؟؟؟ أو بأيها أبدأ ؟	والتحدي الأبرز الذي يواجه الطالب هو: أي طريقة أست	
, مسألة لها ظروفها ، ، ومن المهم أن يحل الطالب صحيحة وعدم إضاعة الوقت في البحث	والحقيقة أنه لا توجد قاعدة ثابتة لتحديد طريقة الحل أو البداية ، فكل ولكن هناك إرشادات قد تساعد الطالب على اختيار الطريقة المناسبة . الكثير من المسائل ليمتلك الخبرة التي تساعده على اختيار الطريقة الع	
	ومن هذه الإرشادات:	
1) إذا كانت الزاوية في الاقترانات المثلثية غير خطية ، أو قوة غير خطية في اقتران أسي ، أو جذور مختلفة و الله الله الله عالى الأغلب الله على الأغلب الله على الأغلب الله على الأغلب الله على الأغلب الله الله الله الله الله الله الله ال		
$\int e^{\sqrt{x}} dx , \int e^{\frac{1}{x}+3} dx , \int \sin(x^2) dx , \int \tan^2(\frac{3}{x+1}) dx , \int Ln(\cos x) dx , \int \frac{x}{\sqrt{x+1}} dx$		
	2) عند وجود مقدارين أحدهما مشتقة للآخر نستخدم التعويض	
$\int x e^{x^2+3} dx , \int \sec^2(2x) e^{\tan x}$	$\int \sin x \ Ln(1+\cos x) dx \ , \int x^2 \sqrt{x^3+1} dx$	
$\int x e^{x} dx , \int x \sin x dx , \int Ln(5x+4) dx , \int \sin x \cos x dx$		
 ه نبدأ بالقسمة الخوارزمية قم ملاحظ الناتج 	4) عند وجود مقدار كسري درجة بسطه أكبر من أو تساوي درجة مقاما	
$\int \frac{x^2 - 4}{x^2 - 9} dx , \int \frac{x^2 - 2x + 1}{x^2 + x - 2} dx , \int \frac{x^3 - x + 1}{x^2 + 2x - 3} dx$		
<u></u>	5) عند وجود sinx أو cosx بقوى زوجية نستخدم المكتطابقات فق	
$\int (\sin^4 x - \cos^4 x) dx , \int \sin^2 x$	$\cos^4 x dx$, $\int (\sin x + \cos x)^2 dx$, $\int \sin^4 x \cos^6 x dx$	

 $\int (\sin^4 x - \cos^4 x) dx , \int \sin^2 x \cos^4 x dx , \int (\sin x + \cos x)^2 dx , \int \sin^4 x \cos^6 x dx$

كما أن هناك مسائل تُحل بأكثر من طريقة وقد تجد مسألة واحدة تجتمع فيها أكثر من طريقة

$$\int \sin x \cos x \, dx = \frac{1}{2} \int 2 \sin x \cos x \, dx : \frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} (\frac{-1}{2} \cos 2x) + c = \frac{-1}{4} \cos 2x + c$$

$$\int \sin x \cos x \, dx ::: \int \sin x \cos x \, dx ::: \int \sin x \cos x \, dx = \cos x$$

$$\Rightarrow du = \cos x \quad , \quad v = \sin x$$

$$\int \sin x \cos x \, dx = (\sin x)(\sin x) - \int \sin x \cos x \, dx$$

$$\int \sin x \cos x \, dx + \int \sin x \cos x \, dx = (\sin x)(\sin x)$$

$$\Rightarrow \int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + c$$

والاختلاف بين الإجابتين (الأولى) و (الثانية أو الثالثة) يعود لوجود جزء من المقدار في الثابت (c)

$$\int \sin x \, \cos x \, e^{\sin x} dx \, \dots \, y = \sin x \Rightarrow dy = \cos x \, dx$$
1)
$$= \int \sin x \, \cos x \, e^y \, \frac{dy}{\cos x} = \int \sin x \, e^y \, dy = \int y \, e^y \, dy$$

$$\dots \, u = y \qquad , \, dv = e^y$$

$$du = dy \qquad , \, v = e^y$$

$$= y \, e^y - \int e^y \, dy = y \, e^y - e^y + c = \sin x \, e^{\sin x} - e^{\sin x} + c$$

هناك أيضا مسائل نستعمل فيه أكثر من طريقة المسائل تعويض ثم أجزاء

$$\int \sec x \, dx = \int \frac{1}{\cos x} dx = \int \frac{1}{\cos x} \times \frac{\cos x}{\cos x} dx = \int \frac{\cos x}{\cos^2 x} dx = \int \frac{\cos x}{1 - \sin^2 x} dx$$

$$::: u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$= \int \frac{\cos x}{1 - u^2} \frac{du}{\cos x} dx = \int \frac{a}{1 - u} du + \int \frac{b}{1 + u} du = \int \frac{\frac{1}{2} du}{1 - u} + \int \frac{\frac{-1}{2} du}{1 + u} = \frac{1}{2} Ln \frac{1 - \sin x}{1 + \sin x} + c$$

2) متطابقات + تعويض + كسور جزئية

على على – ف2 / مدرسة البقعة الثانوية للبنين 2024 / 2024 الأستاذ عبدالقادر الحسنات (77 88 531 078 <u>078) 3</u>

وفيما يأتي مجموعة من التكاملات المهمة (مع جوابها النهائي) ... حاول أن تحلها للتأكد من فهمك للمادة والهدف الأساسي من ذلك هو زيادة الخبرة والقدرة على تحديد الطريقة المناسبة لحل كل مسألة

1)
$$\int \frac{\cot(Lnx)}{x} dx \dots Ln \left| \sin(Lnx) + c \right|$$

2)
$$\int \frac{(1+x)^5}{x^7} dx \dots -\frac{1}{6}(1+\frac{1}{x}) + c$$

$$\int \frac{x + \sin x}{1 + \cos x} dx \dots \frac{1}{2} x \tan x + \frac{1}{2} Ln \left| \cos x \right| + Ln \left| 1 + \cos x \right| + c$$

$$\int \frac{2-\sqrt[3]{x}}{9-\sqrt[3]{x^2}} dx \dots \frac{3}{2} \sqrt[3]{x^2} - 6\sqrt[3]{x} + \frac{9}{2} Ln \left| 3 - \sqrt[3]{x} \right| + \frac{45}{2} Ln \left| 3 + \sqrt[3]{x} \right| + c$$

5)
$$\int \frac{x + 4 \tan x}{\cos^2 x} dx \dots x \tan x + Ln \left| \cos x \right| + 2 \tan^2 x + c$$

$$\frac{2\sin^3 x \cos x - \sin 2x + 4\cos x}{\sin^2 x - 4} dx$$

$$\frac{\sin^2 x - 4}{\sin^2 x + 3Ln |\sin x - 2| + Ln |\sin x + 2| + c}$$

$$\int \frac{2x^2 + 1}{x(x^2 + 1)} dx \dots Ln |x| + Ln \sqrt{x^2 + 1} + c$$

8)
$$\int 9\sec^4 x \ Ln(\tan x) \ dx$$
.... (3\tan x + \tan^3 x) Ln(\tan x) - 9\tan x - \tan^3 x + c

9)
$$\int \frac{4\tan x \sec x}{3-\tan^4 x} dx \dots Ln |2+\sec x|-Ln |2-\sec x|+c$$

$$\int_{1}^{8} \frac{x}{(x+1)-\sqrt{x+1}} dx \dots ((x+1)+2\sqrt{x+1}) \Big]_{1}^{0} = 1-2\sqrt{2}$$

11)
$$\int \frac{6e^x}{e^{2x}-9} dx \dots 2Ln \left| e^x - 3 \right| - 2Ln \left| e^x + 3 \right| + c$$

12)
$$\int \frac{\sin 2x}{2\cos x - \sin 2x} dx \dots \sec x + \tan x - x + c$$

13)
$$\int \frac{2x-x^2+4}{x(x-2)^2} dx \dots Ln|x|+2Ln|x-2|-2(x-2)^{-1}+c$$

$$\int \frac{2}{1 + \cos 2x} dx \dots \cot 2x - \csc 2x + c$$

15)
$$f(1) = 1$$
, $f(2) = 4$ $\Rightarrow \int_{1}^{2} 3f'(x) \sqrt{f(x)} dx = ?... 2\sqrt{(f(x))^{3}} \Big]_{1}^{2} = 14$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin 2x \cos x \ dx \ \dots \ \frac{2}{3} \cos^3 x \Big]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{\sqrt{2}}{6}$$

(17)
$$\int e^x \sin x \ dx \dots \frac{1}{2} e^x \sin x - \frac{1}{2} e^x \cos x + c$$

18)
$$\int \frac{\cos 3x}{\cos x} dx \dots \sin 2x - x + c$$

(19)
$$\int \sin 2x \cos^2 x \ dx \dots -\cos^4 x + c$$

20)
$$\int Ln(x^2-9) dx$$

...
$$xLn|x^2-9|-2x-3Ln|x-3|+Ln|x+3|+c$$

