Electronics (1) EE 220 First Exam 3/30/04

Time:1hr

Answer all of the following questions

Q1: (5 points)

Given a uniformly doped semiconductor having donor doping of 1015 cm-3 and if $n_t = 4.88 \times 10^{15} \times T^{3/2} e^{-E_g/(2kT)}$.

a) Calculate the electron and hole concentrations and the resistivity of the sample if T=450 °K, E_g=1.02eV, μ_n =400 cm²/V.s, μ_p =150 cm²/V.s, and $k = 8.62 \times 10^{-5}$ eV/K b) If an electric field of (10⁴ V/cm) is applied on the sample, calculate the velocity of the electrons and holes.

For a PN silicon diode has $N_A=3\times10^{17}~cm^{-3}$ and $N_D=1\times10^{18}~cm^{-3}$. Assume the following parameters for Silicon: $n_i=10^{10}$ cm⁻³, $\epsilon_0=8.85 \pm 0^{-14}$ F/cm, $\epsilon_R=K_S=11.8$, $q=1.6\times 10^{-19}$, KT/q=26mV, KT=26meV

Calculate

1) The buil in voltage (Vы)

- 2) Majority and minority carrier concentrations in each side of the junction
- 3) Depletion region width (W) and (x_n)

4) Maximum electric field (ε₀)

5) Find the depletion region width (W) for reverse bias of -1 V.

6) Explain why the diode reverse bias current is much less than the forward bias current?

Q3: (10 points) Given the following energy band diagram for Silicon where $n_i = 10^{10} \text{ cm}^{-3}$ and $E_g=1.15eV$

1) Find n and p at x=0, x1, L/2, x2 and L

2) What is the type of the material at x=0, x1, L/2, x2 and L

-3) Plot electric field $\varepsilon(x)$ and potential V(x)

4) Find the total current at x=L/2 and explain your answer briefly.