EE204 - Applied Linear Algebra Exam 2, Form: A

Name:	
Student Number:	
Section:	
Date:	

The exam contains only short answer questi	ons.
Total number of points in this exam = 100	

Section 1. Short Answers-A-10 questions, 100 points, 10 points each

1. For which right side \vec{b} does the system have a solution?

$$A = \begin{bmatrix} 1 & 3\\ 2 & 10\\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} b_1\\ b_2\\ b_3 \end{bmatrix}$$

- 2. Find the projection matrix P that takes any vector \vec{b} into C(A) the column space of the matrix A. Take $A = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. If $\vec{b} = \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix}$ find its projection onto C(A) and the distance from the vector \vec{b} to the subspace C(A).
- 3. Find the reduced row echelon form R for the 3 by 4 matrix A, having $a_{ij} = 2i + j 1$
- 4. Suppose S is spanned by the vectors (1,1,1,1) and (-2,0,0,-2). Find two vectors that span S^{\perp} .
- 5. Construct a matrix whose column space contains (1,2,2), (2,1,1) and (3,3,4) and whose nullspace contains the vector (-23/3,-17/3,5,1).
- 6. Given the vectors $\vec{v_1} = (1, 2, 2, -3), \vec{v_2} = (2, 1, 1, 1), \vec{v_3} = (3, 3, 4, 4)$ and $\vec{v_4} = (2, 10, 13, -2)$. Test them for being linearly independent or not? Show all your work.
- 7. The LU decomposition of the matrix A is given by:

	1	0	0]	Γ	-2	1	5	
A =	-2	1	0		0	3	2	
	3	2	1	L	0	0	6	

Without finding A, write down a basis for the column space of A and a basis for the row space of A. Explain your answers.

8. Find the complete solution $(\vec{x_c} = \vec{x_p} + \text{any multiple of the special solutions } \vec{s})$ to the system

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ 2 & 0 & 4 & 9 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ 5 \\ 10 \end{bmatrix}$$

given that

9. Find values for a, b so that the following matrix has orthogonal columns:

$$A = \begin{bmatrix} -1 & +1 & a \\ 1 & 3 & 1 \\ -2 & 1 & b \end{bmatrix}$$

10. Find the LU factorization of the rectangular matrix A:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{array} \right]$$

Answer Key for Exam \blacksquare

Section 1. Short Answers-A-10 questions, 100 points, 10 points each

1. For which right side \vec{b} does the system have a solution?

$$A = \begin{bmatrix} 1 & 3\\ 2 & 10\\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} b_1\\ b_2\\ b_3 \end{bmatrix}$$
Answer: $aug = [Ab] = \begin{bmatrix} 1 & 3 & b_1\\ 2 & 10 & b_2\\ -3 & -9 & b_3 \end{bmatrix} \Rightarrow U = \begin{bmatrix} 1 & 3 & b_1\\ 0 & 4 & b_2 - 2b_1\\ 0 & 0 & b_3 + 3b_1 \end{bmatrix}$ and the condition $b_3 + 3b_1 = 0$.
 $RHS = \begin{bmatrix} b_1\\ b_2\\ -3b_1 \end{bmatrix}$

2. Find the projection matrix P that takes any vector \vec{b} into C(A) the column space of the matrix A. Take $A = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. If $\vec{b} = \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix}$ find its projection onto C(A) and the distance from the vector \vec{b} to the subspace C(A).

Answer:
$$P = A * inv(A' * A) * A', \vec{p} = P * \vec{b}, \vec{e} = \vec{b} - \vec{p}.$$

 $A' * A = 3, inv(A' * A) = \frac{1}{3}. P = \frac{1}{3} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$
 $\vec{p} = PA = [-2; 2; -2]$
 $\vec{e} = \vec{b} - \vec{p} = [0; 3; 3]$

3. Find the reduced row echelon form R for the 3 by 4 matrix A, having $a_{ij} = 2i + j - 1$

Answer:

$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7 \\ 6 & 7 & 8 & 9 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & -2 & -4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$R = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

4. Suppose S is spanned by the vectors (1,1,1,1) and (-2,0,0,-2). Find two vectors that span S^{\perp} .

Answer: S^{\perp} is in the nullspace of $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -2 & 0 & 0 & -2 \end{bmatrix} \Rightarrow R = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$. The vectors $\vec{s_1} = (-1, 0, 0, 1)$ and $\vec{s_2} = (0, -1, 1, 0)$ span S^{\perp} .

5. Construct a matrix whose column space contains (1,2,2), (2,1,1) and (3,3,4) and whose nullspace contains the vector (-23/3,-17/3,5,1).

Answer: Let this matrix be $A = \begin{bmatrix} 1 & 2 & 3 & a \\ 2 & 1 & 3 & b \\ 2 & 1 & 4 & c \end{bmatrix}$. $A\vec{x} = \vec{0}, \ \vec{x} = \begin{bmatrix} -23/3 \\ -17/3 \\ 5 \\ 1 \end{bmatrix}$.

Form the equations: $-23/3 - 34/3 + 15 + x = 0, \Rightarrow a = 4$ $-46/3 - 17/3 + 15 + b = 0, \Rightarrow b = 6$ $-46/3 - 17/3 + 20 + c = 0, \Rightarrow c = 1$ Then $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 6 \\ 2 & 1 & 4 & 1 \end{bmatrix}$

41

6. Given the vectors $\vec{v_1} = (1, 2, 2, -3), \vec{v_2} = (2, 1, 1, 1), \vec{v_3} = (3, 3, 4, 4)$ and $\vec{v_4} = (2, 10, 13, -2)$. Test them for being linearly independent or not? Show all your work.

Answer: Form the matrix A from the four vectors as its columns.

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 1 & 3 & 10 \\ 2 & 1 & 4 & 13 \\ -3 & 1 & 4 & -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -3 & -3 & 6 \\ 0 & -3 & -2 & 9 \\ 0 & 7 & 13 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -3 & -3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 6 & 18 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -3 & -3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Find its rref $R = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
only 3 pivots, hence they are not linearly independent.

1 C

7. The LU decomposition of the matrix A is given by:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 5 \\ 0 & 3 & 2 \\ 0 & 0 & 6 \end{bmatrix}$$

Without finding A, write down a basis for the column space of A and a basis for the row space of A. Explain your answers.

Answer: Row space basis (-2,1,5), (0,3,2), (0,0,6). Column space basis (1,-2,3), (0,1,2), (0,0,1).

Linear combinations of the columns of L produce A, hence both A and L have the same column space.

 $C(A) = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$ basis are $\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$ Linear combinations of the rows of

Linear combinations of the rows of U produce A, hence both A and U have the same row space.

$$C(A^{T}) = \begin{bmatrix} -2 & 0 & 0 \\ 1 & 3 & 0 \\ 5 & 2 & 6 \end{bmatrix}$$

basis are $\begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$
$$A = \begin{bmatrix} -2, 1, 5; 4, 1, -8; -6, 9, 25 \end{bmatrix}$$

8. Find the complete solution $(\vec{x_c} = \vec{x_p} + \text{any multiple of the special solutions } \vec{s})$ to the system

,

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ 2 & 0 & 4 & 9 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ 5 \\ 10 \end{bmatrix}$$

given that

Answer: F	orm t	the	aug	mei	nted	matri	x an	nd u	lse r	ow e	limir	natior	n to	get	aug	q =	$[A:ec{b}]$	$\Rightarrow [R:\vec{d}].$					
	[1	0	2	3	2] [1	0	2	3	2		1	0	2	0	-4		1	0	2	0	-4
aug =	1	3	2	0	5	\Rightarrow	0	3	0	-3	3	\Rightarrow	0	3	0	0	9	$\Rightarrow [R:\vec{d}] =$	0	1	0	0	3
	2	0	4	9	10		0	0	0	3	6		0	0	0	3	6		0	0	0	1	2

The free column is # 3, then
$$\vec{x}_p = \begin{bmatrix} -4 \\ 3 \\ 0 \\ 2 \end{bmatrix}$$
 (setting element # 3 to 0),
 $\vec{x}_n = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ (setting element # 3 to 1) and $\vec{x}_{complete} = \alpha \vec{x}_n + x_p$.

9. Find values for a, b so that the following matrix has orthogonal columns:

$$A = \left[\begin{array}{rrr} -1 & +1 & a \\ 1 & 3 & 1 \\ -2 & 1 & b \end{array} \right]$$

Answer: Take dot products of the first two columns with the third column to get: -a+1-2b=0; a+3+b=0. Solving to get a = -7, b = 4.

10. Find the LU factorization of the rectangular matrix A:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{array} \right]$$

Answer:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix} \Rightarrow_{e_{21}=-2,e_{31}=-3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{bmatrix} \Rightarrow_{e_{32}=-2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix},$$
$$U = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

EE204 - Applied Linear Algebra Exam 2, Form: B

Name:
Student Number:
Section:
Date:

The exam contains only short answer questi	ons.
Total number of points in this exam $= 100$	

Section 1. Short Answers-B-10 questions, 100 points, 10 points each

1. Find the complete solution $(\vec{x_c} = \vec{x_p} + \text{any multiple of the special solutions } \vec{s})$ to the system

1	0	2	3		$\begin{bmatrix} 2 \end{bmatrix}$
1	3	2	0	$\vec{x} =$	5
2	0	4	9		10
-			_		

given that

2. Find the LU factorization of the rectangular matrix A:

$$A = \left[\begin{array}{rrrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{array} \right]$$

- 3. Find the projection matrix P that takes any vector \vec{b} into C(A) the column space of the matrix A. Take $A = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. If $\vec{b} = \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix}$ find its projection onto C(A) and the distance from the vector \vec{b} to the subspace C(A).
- 4. Suppose S is spanned by the vectors (1,1,1,1) and (-2,0,0,-2). Find two vectors that span S^{\perp} .
- 5. For which right side \vec{b} does the system have a solution?

$$A = \begin{bmatrix} 1 & 3\\ 2 & 10\\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} b_1\\ b_2\\ b_3 \end{bmatrix}$$

- 6. Construct a matrix whose column space contains (1,2,2), (2,1,1) and (3,3,4) and whose nullspace contains the vector (-23/3,-17/3,5,1).
- 7. Find the reduced row echelon form R for the 3 by 4 matrix A, having $a_{ij} = 2i + j 1$
- 8. Find values for a, b so that the following matrix has orthogonal columns:

$$A = \left[\begin{array}{rrr} -1 & +1 & a \\ 1 & 3 & 1 \\ -2 & 1 & b \end{array} \right]$$

- 9. Given the vectors $\vec{v_1} = (1, 2, 2, -3), \vec{v_2} = (2, 1, 1, 1), \vec{v_3} = (3, 3, 4, 4)$ and $\vec{v_4} = (2, 10, 13, -2)$. Test them for being linearly independent or not? Show all your work.
- 10. The LU decomposition of the matrix A is given by:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 5 \\ 0 & 3 & 2 \\ 0 & 0 & 6 \end{bmatrix}$$

Without finding A, write down a basis for the column space of A and a basis for the row space of A. Explain your answers.

Answer Key for Exam **B**

Section 1. Short Answers-B-10 questions, 100 points, 10 points each

1. Find the complete solution $(\vec{x_c} = \vec{x_p} + \text{any multiple of the special solutions } \vec{s})$ to the system

[1]	0	2	3 -		[2]
1	3	2	0	$\vec{x} =$	5
$\lfloor 2$	0	4	9 _		10

given that

Answer: Form the augmented matrix and use row elimination to get $aug = [A:\vec{b}] \Rightarrow [R:\vec{d}].$ $aug = \begin{bmatrix} 1 & 0 & 2 & 3 & 2 \\ 1 & 3 & 2 & 0 & 5 \\ 2 & 0 & 4 & 9 & 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 3 & 2 \\ 0 & 3 & 0 & -3 & 3 \\ 0 & 0 & 0 & 3 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & -4 \\ 0 & 3 & 0 & 0 & 9 \\ 0 & 0 & 0 & 3 & 6 \end{bmatrix} \Rightarrow [R:\vec{d}] = \begin{bmatrix} 1 & 0 & 2 & 0 & -4 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ The free column is # 3, then $\vec{x}_p = \begin{bmatrix} -4 \\ 3 \\ 0 \\ 2 \end{bmatrix}$ (setting element # 3 to 0), $\vec{x}_n = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ (setting element # 3 to 1) and $\vec{x}_{complete} = \alpha \vec{x}_n + x_p.$

2. Find the LU factorization of the rectangular matrix A:

$$A = \left[\begin{array}{rrrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{array} \right]$$

Answer:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix} \Rightarrow_{e_{21}=-2,e_{31}=-3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{bmatrix} \Rightarrow_{e_{32}=-2} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix},$$
$$U = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

3. Find the projection matrix P that takes any vector \vec{b} into C(A) the column space of the matrix A. Take $A = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. If $\vec{b} = \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix}$ find its projection onto C(A) and the distance from the vector \vec{b} to the subspace C(A).

Answer:
$$P = A * inv(A' * A) * A', \vec{p} = P * \vec{b}, \vec{e} = \vec{b} - \vec{p}.$$

 $A' * A = 3, inv(A' * A) = \frac{1}{3}. P = \frac{1}{3} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$
 $\vec{p} = PA = [-2; 2; -2]$
 $\vec{e} = \vec{b} - \vec{p} = [0; 3; 3]$

4. Suppose S is spanned by the vectors (1,1,1,1) and (-2,0,0,-2). Find two vectors that span S^{\perp} .

 $\begin{array}{l} \textbf{Answer:} \ S^{\perp} \ \text{is in the nullspace of } A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -2 & 0 & 0 & -2 \end{bmatrix} \Rightarrow R = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}. \\ \text{The vectors } \vec{s_1} = (-1, 0, 0, 1) \ \text{and} \ \vec{s_2} = (0, -1, 1, 0) \ \text{span } S^{\perp}. \end{array}$

5. For which right side \vec{b} does the system have a solution?

$$A = \begin{bmatrix} 1 & 3\\ 2 & 10\\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} b_1\\ b_2\\ b_3 \end{bmatrix}$$
Answer: $aug = [Ab] = \begin{bmatrix} 1 & 3 & b_1\\ 2 & 10 & b_2\\ -3 & -9 & b_3 \end{bmatrix} \Rightarrow U = \begin{bmatrix} 1 & 3 & b_1\\ 0 & 4 & b_2 - 2b_1\\ 0 & 0 & b_3 + 3b_1 \end{bmatrix}$ and the condition $b_3 + 3b_1 = 0$.
 $RHS = \begin{bmatrix} b_1\\ b_2\\ -3b_1 \end{bmatrix}$

6. Construct a matrix whose column space contains (1,2,2), (2,1,1) and (3,3,4) and whose nullspace contains the vector (-23/3,-17/3,5,1).

Answer: Let this matrix be
$$A = \begin{bmatrix} 1 & 2 & 3 & a \\ 2 & 1 & 3 & b \\ 2 & 1 & 4 & c \end{bmatrix}$$
.
 $A\vec{x} = \vec{0}, \ \vec{x} = \begin{bmatrix} -23/3 \\ -17/3 \\ 5 \\ 1 \end{bmatrix}$.
Form the equations:
 $-23/3 - 34/3 + 15 + x = 0, \Rightarrow a = 4$
 $-46/3 - 17/3 + 15 + b = 0, \Rightarrow b = 6$
 $-46/3 - 17/3 + 20 + c = 0, \Rightarrow c = 1$
Then $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 6 \\ 2 & 1 & 4 & 1 \end{bmatrix}$

7. Find the reduced row echelon form R for the 3 by 4 matrix A, having $a_{ij} = 2i + j - 1$

Answer:

,

$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7 \\ 6 & 7 & 8 & 9 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & -2 & -4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$R = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

8. Find values for a, b so that the following matrix has orthogonal columns:

$$A = \left[\begin{array}{rrr} -1 & +1 & a \\ 1 & 3 & 1 \\ -2 & 1 & b \end{array} \right]$$

Answer: Take dot products of the first two columns with the third column to get: -a+1-2b=0; a+3+b=0. Solving to get a = -7, b = 4.

9. Given the vectors $\vec{v_1} = (1, 2, 2, -3), \vec{v_2} = (2, 1, 1, 1), \vec{v_3} = (3, 3, 4, 4)$ and $\vec{v_4} = (2, 10, 13, -2)$. Test them for being linearly independent or not? Show all your work.

Answer: Form the matrix A from the four vectors as its columns.

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 1 & 3 & 10 \\ 2 & 1 & 4 & 13 \\ -3 & 1 & 4 & -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -3 & -3 & 6 \\ 0 & -3 & -2 & 9 \\ 0 & 7 & 13 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -3 & -3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 6 & 18 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 2 \\ 0 & -3 & -3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Find its rref $R = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

only 3 pivots, hence they are not linearly independent.

10. The LU decomposition of the matrix A is given by:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 5 \\ 0 & 3 & 2 \\ 0 & 0 & 6 \end{bmatrix}$$

Without finding A, write down a basis for the column space of A and a basis for the row space of A. Explain your answers.

Answer: Row space basis (-2,1,5), (0,3,2), (0,0,6). Column space basis (1,-2,3), (0,1,2), (0,0,1).

,

Linear combinations of the columns of L produce A, hence both A and L have the same column space. $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

 $C(A) = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$ basis are $\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$ Linear combinations of the rows of

Linear combinations of the rows of U produce A, hence both A and U have the same row space.

$$C(A^{T}) = \begin{bmatrix} -2 & 0 & 0 \\ 1 & 3 & 0 \\ 5 & 2 & 6 \end{bmatrix}$$

basis are $\begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$
$$A = \begin{bmatrix} -2, 1, 5; 4, 1, -8; -6, 9, 25 \end{bmatrix}$$