Jordan University of Science & Technology Department of Applied Chemical Sciences CH 102 Final Exam 13/06/2009

Student's Name: Student's No.:				Section:				Instructor: Serial No.:						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	_	

* Each of the question bellow is followed by four suggested answers. Select the one that is best in each case and type it in the above table.

1.	The pH of a 1 x 10 ⁻¹⁰ M HCl(aq) is approximately equal to								
	<u>A</u> . 10.0	B. 4.0	C. 7.0	D. 5.0					
	Consider the fo	ollowing ionization cor	nstants of some weak acids f	or the <u>next 2 questions</u> :					
			Acid K _a						
		CH₃C							
		HF	7.1×10^{-4}						
		HCN	4.9×10^{-10}						
		HNO ₂	4.5 x 10 ⁻⁴ 5.6 x 10 ⁻¹⁰						
		NH_4^+	5.0 X 10						
2.	Which of the following is the strongest base ?								
	A. NH₃	B. F ⁻	C. CH₃COO	<u>D</u> . CN⁻					
	Predict the direc	ction of the following rea	ction in aqueous solution						
3.		Ū							
3.	HNO ₂	(aq) + CN⁻(aq) ⇒ HC							
3.	HNO ₂ A. The net react	(aq) + CN⁻(aq) ⇒ HC tion will shifted to the <u>lef</u>	N(aq) + NO₂⁻(aq) i <u>t</u> favoring HNO₂ and CN⁻						
3.	HNO ₂ A. The net react B. In the <u>middle</u>	(aq) + CN⁻(aq) ⇒ HC tion will shifted to the <u>lef</u>	t favoring HNO ₂ and CN ⁻						
3.	HNO₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react	(aq) + CN⁻(aq) ⇒ HC tion will shifted to the <u>lef</u> <u>2</u> tion will shifted to the <u>ric</u>							
3.	HNO ₂ A. The net react B. In the <u>middle</u>	(aq) + CN⁻(aq) ⇒ HC tion will shifted to the <u>lef</u> <u>2</u> tion will shifted to the <u>ric</u>	t favoring HNO ₂ and CN ⁻						
3. 4.	HNO₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be d	(aq) + CN ⁻ (aq) ⇐ HC tion will shifted to the <u>lef</u> tion will shifted to the <u>ric</u> etermined	t favoring HNO ₂ and CN ⁻	monoprotic acid (HA) who					
	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u> pH is 2.44 at ec	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the <u>lef</u> tion will shifted to the <u>ric</u> etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64	<u>it</u> favoring HNO_2 and CN^- <u>ant</u> favoring HCN and NO_2^- procentration) of a solution of a 4 x 10 ⁻⁴)						
	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u>	(aq) + CN ⁻ (aq) ← HC tion will shifted to the <u>lef</u> tion will shifted to the <u>ric</u> etermined <u>ginal molarity</u> (initial co	<u>it</u> favoring HNO_2 and CN^- <u>ant</u> favoring HCN and NO_2^- procentration) of a solution of a 4 x 10 ⁻⁴)	monoprotic acid (HA) who D. 0.10 M					
4.	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orid</u> pH is 2.44 at ec A. 13.8 M	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the <u>lef</u> tion will shifted to the <u>ric</u> etermined <u>ginal molarity</u> (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M	<u>it</u> favoring HNO_2 and CN^- <u>ant</u> favoring HCN and NO_2^- procentration) of a solution of a 4 x 10 ⁻⁴)	D. 0.10 M					
1.	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u> pH is 2.44 at ec A. 13.8 M	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the lef tion will shifted to the rig etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M er at 0°C is 1.6 x 10 ⁻¹⁵ . W	<u>it</u> favoring HNO_2 and CN^- <u>a</u>ht favoring HCN and NO_2^- pncentration) of a solution of a 4×10^{-4}) C. 20 M What is the pH and pOH of wate	D. 0.10 M					
	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u> pH is 2.44 at ec A. 13.8 M The K _w for wate A. pH = pOH =	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the lef tion will shifted to the <u>ric</u> tion will shifted to the <u>ric</u> etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M er at 0°C is 1.6 x 10 ⁻¹⁵ . W 7.0 B.	<u>it</u> favoring HNO ₂ and CN ⁻ <u>a</u>ht favoring HCN and NO ₂ ⁻ pncentration) of a solution of a 4×10^{-4}) C. 20 M What is the pH and pOH of wate pH = 6.6, pOH = 7.4	D. 0.10 M					
4.	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u> pH is 2.44 at ec A. 13.8 M	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the lef tion will shifted to the <u>ric</u> tion will shifted to the <u>ric</u> etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M er at 0°C is 1.6 x 10 ⁻¹⁵ . W 7.0 B.	<u>it</u> favoring HNO_2 and CN^- <u>a</u>ht favoring HCN and NO_2^- pncentration) of a solution of a 4×10^{-4}) C. 20 M What is the pH and pOH of wate	D. 0.10 M					
1.	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u> pH is 2.44 at ec A. 13.8 M The K _w for wate A. pH = pOH = <u>C</u> . pH = pOH =	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the lef tion will shifted to the rig etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M er at 0°C is 1.6 x 10 ⁻¹⁵ . W 7.0 B. 7.4 D. e following solutions wo	<u>it</u> favoring HNO ₂ and CN ⁻ <u>a</u>ht favoring HCN and NO ₂ ⁻ pncentration) of a solution of a 4×10^{-4}) C. 20 M What is the pH and pOH of wate pH = 6.6, pOH = 7.4 pH = 7.4, pOH = 6.6 uld be expected to have the <u>his</u>	D. 0.10 M er at 0°C ?					
۲ <u>.</u>	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orid</u> pH is 2.44 at ec A. 13.8 M The K _w for wate A. pH = pOH = <u>C</u> . pH = pOH =	(aq) + CN ⁻ (aq) ⇒ HC tion will shifted to the lef tion will shifted to the <u>ric</u> etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M er at 0°C is 1.6 x 10 ⁻¹⁵ . W 7.0 B. 7.4 D.	<u>it</u> favoring HNO ₂ and CN ⁻ <u>a</u>ht favoring HCN and NO ₂ ⁻ pncentration) of a solution of a 4×10^{-4}) C. 20 M What is the pH and pOH of wate pH = 6.6, pOH = 7.4 pH = 7.4, pOH = 6.6 uld be expected to have the <u>his</u>	D. 0.10 M er at 0°C ?					
۲. 5.	HNO ₂ A. The net react B. In the <u>middle</u> <u>C</u> . The net react D. Can not be de What is the <u>orig</u> pH is 2.44 at ec A. 13.8 M The K _w for wate A. pH = pOH = <u>C</u> . pH = pOH = Which one of the A. 0.1 M HF	(aq) + CN ⁻ (aq) \Rightarrow HC tion will shifted to the lef tion will shifted to the rig etermined ginal molarity (initial co quilibrium? (K_a HA = 2.64 <u>B</u> . 0.05 M er at 0°C is 1.6 x 10 ⁻¹⁵ . W 7.0 B. 7.4 D. e following solutions wo <u>B.</u> 0.05 M	<u>it</u> favoring HNO ₂ and CN ⁻ <u>a</u>ht favoring HCN and NO ₂ ⁻ pncentration) of a solution of a 4×10^{-4}) C. 20 M What is the pH and pOH of wate pH = 6.6, pOH = 7.4 pH = 7.4, pOH = 6.6 uld be expected to have the <u>his</u>	D. 0.10 M er at 0°C ? ghest % ionization? D. 5.0 M HF					

8.	Water can not function as w A. a Bronsted acid	vhich one of the follow B. a Bronsted Base	-	D. a Lewis base
9.	Which one of the following A. $HCIO_3$	compounds is the <u>stro</u> B. HClO ₂	ngest acid? C. HClO	<u>D</u> . HClO₄
10.	An aqueous solution of Na A. neutral	HSO ₃ will be (<i>I</i> <u>B</u> . acidic	$K_{a1} = 1.7 \times 10^{-2}, K_{a2} = 6$ C. Basic	.4 x 10 ⁻⁸) D. non
11.	H_3PO_4 has the following ion make up a buffer solution of <u>A</u> . $H_2PO_4^{-7}$ HPO ₄ ⁻²	f pH 7.21. Which of the		
12.	Calculate the pH of 1.0 L o mole of HCI? (K_a for CH change when the HCI is ad	$_{3}\text{CO}_{2}\text{H} = 1.8 \text{ x } 10^{-5}) \text{ A}$	₃ CO ₂ H/0.36 M CH ₃ CO	₂ Na after the addition of 0.1 ne of the solution does not
	A. 4.82	B. 4.38	C. 5.11	<u>D</u> . 4.56
13.	Addition NH_4CI , to a NH_3 so A. increases the pH of the so C. increases the concentration	solution	<u>B</u> . decreases the pl D. has no effect on	H of the solution the pH of the solution
15.	Which of the following state A. At equilibrium the reaction B. At equilibrium the rate con C. At equilibrium there are D. At equilibrium the forward	on is completely stoppe onstant for the forward equal amounts of reac	reaction equals that of tants and products	
	Consider the following read	tion at equilibrium: A(g) \Rightarrow 2 B(g). Based on	the following data, which of
	Consider the following read the following is correct?			the following data, which of
		Temperature (°C) 200 300	[A] [B] 0.0125 0.843 0.171 0.764	the following data, which of
		Temperature (°C) 200 300 400	[A] [B] 0.0125 0.843	the following data, which of
16.	the following is <u>correct?</u> <u>A.</u> the reaction is exotherm	Temperature (°C) 200 300 400 ic. C.	[A] [B] 0.0125 0.843 0.171 0.764 0.250 0.724 B. the reaction is end D. $K_p = K_c$	
16.	the following is <u>correct?</u> <u>A.</u> the reaction is exotherm C. K_c at 200°C > K_c at 300° At 430°C, the equilibrium co	Temperature (°C) 200 300 400 ic. C. constant (K_c) for the reader of $H_2 + I_2 \Rightarrow 2$ = 0.08 M, [I_2] = 0.08 M	[A] [B] 0.0125 0.843 0.171 0.764 0.250 0.724 B. the reaction is end D. $K_p = K_c$ ction: HI	dothermic.
16.	the following is <u>correct?</u> <u>A.</u> the reaction is exotherm C. K_c at 200°C > K_c at 300° At 430°C, the equilibrium co is 64. If you start with [H ₂] =	Temperature (°C) 200 300 400 ic. C. constant (K_c) for the reader of $H_2 + I_2 \Rightarrow 2$ = 0.08 M, [I_2] = 0.08 M	[A] [B] 0.0125 0.843 0.171 0.764 0.250 0.724 B. the reaction is end D. $K_p = K_c$ ction: HI	

10										
18.	The standard free energy change for the dissociation of silver chromate is +66.2 kJ/ mol at 25°C.									
	$Ag_2CrO_4(s) \Rightarrow 2 Ag^+(aq) + CrO_4^{2-}(aq)$									
	What is the [Ag ⁺] ions in the solution if the [CrO ₄ ²⁻] ions at the equilibrium is 2.0 × 10 ⁻³ M?									
	A. 1.2 × 10 ⁻⁹ M	B. 6.2 × 10 ⁻	^{.7} M		C. 3.5 × 10⁻⁵ M	D. 3.5 × 10 ⁻⁴ M				
	-									
19.	Consider the equilibrium	$AB_{1}(2a) \rightarrow A$	(20) + 2	B(ad)						
	Consider the equilibrium $AB_2(aq) \Rightarrow A(aq) + 2 B(aq)$ Suppose you start with 0.2 M of AB_2 in a 1.0 L flask at 500 K. Calculate K_c for the equilibrium at the									
	same temperature if the equilibrium concentration of B is 0.1 M.									
	A. 1.0 x 10^{-2}	<u>B.</u> 3.33 x 10		1 0 13 0.	C. 5.0 x 10 ⁻⁴	D. 2.5 x 10 ⁻³				
	A. 1.0 X 10	<u>D.</u> 3.33 X R	J		C. 5.0 X 10	D. 2.3 X 10				
20.	Which of the following will	he present in	the smalle	-st conc	entration in an an					
20.	solution? ($K_{a1} = 4.3 \times 10^{-7}$,				ontration in an aq					
	A. H_2CO_3	B. H ₃ O ⁺	,		C. HCO ₃ [−]	D. CO ₃ ^{2–}				
	A. 112003	D. 1130			0.11003	<u>D</u> . 003				
21.	The incorrect statement a	bout the catal	vst effect is	3						
	A. increases the rate of r		,							
	B. changes the mechanis		ion							
	C. lowers the activation e									
	D. increases the value of		n constant							
			loonotant							
22	The molarity of pure water	is (v	vater dens	itv is 1 () a/ml)					
	A.5.55 M	B. 55.5 M			C. 1000 M	D. 1.0 M				
		<u>D</u> . 0010 III				D. 1.0 M				
23.	Calculate the boiling point	of an aqueous	solution o	of a nonv	volatile solute that	freezes at – 3.4 °C.				
_0.	(for H_2O : $K_b = 0.52 \ ^{\circ}C/m$, k			i a noni		100200 at 0.1 0.				
	A. 100 .95 °C	B. 100 .84 °			C. 100.52 °C	D. 100.31 °C				
	<u>/</u> 100.00 C	D. 100 .04	0		0. 100.02 0	D. 100.01 0				
24.	Which of the species below	w oxhibito bydr	agan hang	ling?						
24.	A. CH_3 -S- CH_3	B. CH ₃ OCF			C. CH₃OH	D. CH₃SH				
	A. CH 3-3-CH 3	D. CH3OCH	13		<u>C</u> . CH ₃ OH	D. 013011				
25.	The three Laws of the ther	modynamics a	re as follo	ws:						
20.	I. The total									
					spontaneouse pro	ICASS				
						0033.				
		a pericelly oru	Sieu ci yste		130.					
	III. The of									
	The answers in order are -		P ono							
	The answers in order are - A. energy, energy, energy	···········		rgy, enti	ropy, energy					
	The answers in order are -	···········		rgy, enti						
26	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop	y		rgy, enti	ropy, energy					
26.	The answers in order are - A. energy, energy, energy	y wing reaction,	D. entr	rgy, enti opy, en	ropy, energy ergy, entropy					
26.	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow	wing reaction, N ₂ (g) + 3 H	D. entr $I_2O(I) \rightarrow 2$	rgy, entr opy, en∉ NH₃(g) ·	ropy, energy ergy, entropy + 3/2 O ₂ (g)					
26.	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$	wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a	D. entr $I_2O(I) \rightarrow 2$	rgy, entr ropy, en NH ₃ (g) - IH ₃ (g)] =	ropy, energy ergy, entropy + 3/2 O ₂ (g) = -16.5 kJ/mol.	D 248 k l				
26.	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow	wing reaction, N ₂ (g) + 3 H	D. entr $I_2O(I) \rightarrow 2$	rgy, entr ropy, en NH ₃ (g) - IH ₃ (g)] =	ropy, energy ergy, entropy + 3/2 O ₂ (g)	D. 348 kJ				
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ	y wing reaction, N₂(g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ	D. entr $I_2O(I) \rightarrow 2$ and ΔG°_{f} [N	rgy, enti ropy, en MH₃(g) - IH₃(g)] =	ropy, energy ergy, entropy + 3/2 O ₂ (g) = -16.5 kJ/mol. C221 kJ					
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$	y wing reaction, N₂(g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ	D. entr $I_2O(I) \rightarrow 2$ and ΔG°_{f} [N he value o	rgy, entr opy, entr NH ₃ (g) $=$ IH ₃ (g)] =	ropy, energy ergy, entropy + 3/2 O ₂ (g) = -16.5 kJ/mol. C221 kJ					
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ	wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine t	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ}_f [N]$ he value of A + B	rgy, entr opy, entr NH ₃ (g) → IH ₃ (g)] = f the rat → P	ropy, energy ergy, entropy + 3/2 O ₂ (g) = -16.5 kJ/mol. C221 kJ e constant for the					
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ	y wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine the Experiment	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ}_f [N]$ he value o <u>A + B</u> [A], M	rgy, entr opy, entr NH ₃ (g) → IH ₃ (g)] = f the rat → P [B], M	ropy, energy ergy, entropy + 3/2 O ₂ (g) = -16.5 kJ/mol. C221 kJ e constant for the T Rate, M/s					
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ	y wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine the Experiment 1	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ_f}[N]$ he value o <u>A + B</u> [A], M 0.273	rgy, entr ropy, entr $NH_3(g) =$ $H_3(g)] =$ f the rat $\rightarrow P$ [B], M 0.763	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the Rate, M/s 2.83					
26.	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ	y wing reaction, N₂(g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine t Experiment 1 2	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ_f}[N]$ he value o <u>A + B</u> [A], M 0.273 0.273	rgy, entr ropy, entr $NH_3(g) =$ $IH_3(g)] =$ f the rat $\rightarrow P$ [B], M 0.763 1.526	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the $\overline{Rate, M/s}$ 2.83 2.83					
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ Use the information below	y wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine th Experiment 1 2 3	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ_f}[N]$ he value o <u>A + B</u> [A], M 0.273	rgy, entr ropy, entr NH ₃ (g) → IH ₃ (g)] = f the rat → P [B], M 0.763 1.526 0.763	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the Rate, M/s 2.83 2.83 2.83 25.47	following reaction:				
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ	y wing reaction, N₂(g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine t Experiment 1 2	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ_f}[N]$ he value o <u>A + B</u> [A], M 0.273 0.273	rgy, entr ropy, entr NH ₃ (g) → IH ₃ (g)] = f the rat → P [B], M 0.763 1.526 0.763	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the $\overline{Rate, M/s}$ 2.83 2.83					
27.	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ Use the information below	y wing reaction, $N_2(g) + 3 H$ 237.1 kJ/mol a <u>B</u> . 678 kJ to determine the Experiment 1 2 3 B. 0.278	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ}_f [N]$ he value of A + B [A], M 0.273 0.273 0.819	rgy, entr ropy, entr NH₃(g) → IH₃(g)] = f the rat → P [B], M 0.763 1.526 0.763	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the Rate, M/s 2.83 25.47 C. 13.2	following reaction:				
27.	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ Use the information below <u>A.</u> 38.0	y wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine th Experiment 1 2 3 B. 0.278 ction at 25°C:	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ}_f [N]$ he value o A + B [A], M 0.273 0.273 0.273 0.819 C(s) + H ₂	rgy, entr opy, entr $NH_3(g) \rightarrow$ $IH_3(g)] =$ f the rat $\rightarrow P$ [B], M 0.763 1.526 0.763 1.526 0.763	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the $$ Rate, M/s 2.83 2.83 2.83 25.47 C. 13.2 \rightarrow CO(g) + H ₂ (g)	following reaction: D. 42.0				
	The answers in order are - A. energy, energy, energy <u>C.</u> energy, entropy, entrop Calculate ΔG° for the follow given that $\Delta G^{\circ}_{f}[H_{2}O(I)] = -$ A. 221 kJ Use the information below	y wing reaction, N ₂ (g) + 3 H 237.1 kJ/mol a <u>B</u> . 678 kJ to determine th Experiment 1 2 3 B. 0.278 ction at 25°C:	D. entr $I_2O(I) \rightarrow 2$ and $\Delta G^{\circ}_f [N]$ he value o A + B [A], M 0.273 0.273 0.273 0.819 C(s) + H ₂	rgy, entr ropy, entr NH ₃ (g) → IH ₃ (g)] = f the rat → P [B], M 0.763 1.526 0.763 20(g) → ue of ΔH	ropy, energy ergy, entropy + $3/2 O_2(g)$ = -16.5 kJ/mol. C. -221 kJ e constant for the $$ Rate, M/s 2.83 2.83 2.83 25.47 C. 13.2 \rightarrow CO(g) + H ₂ (g)	following reaction: D. 42.0				