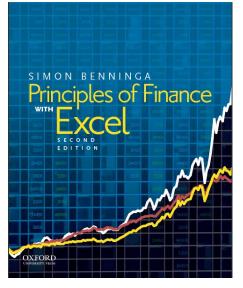


جامعة آل البيت " كلية الإقتصاد "

مجموعة طلابية تسعى لتوفير كل ما يلزم طلاب كلية إدارة المال والاعمال من مواد وشروحات واسئلة بصورة الكترونية



Instructor materials

Chapter 2 Time Value of Money

E193

This chapter

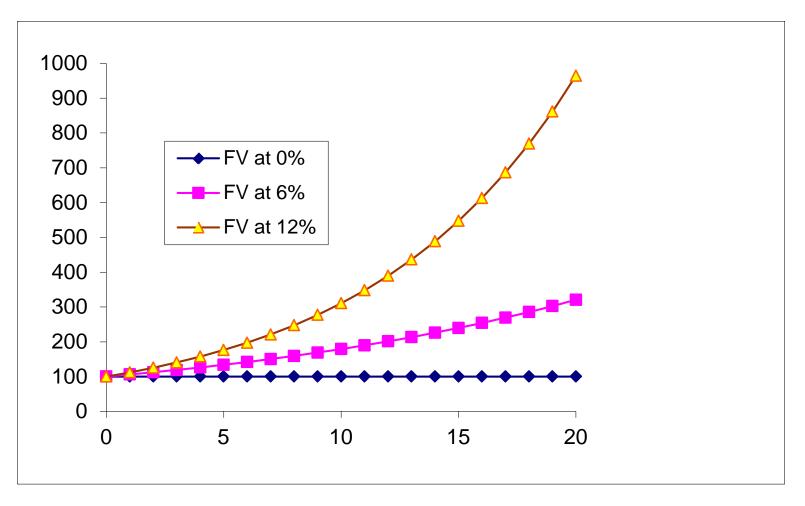
- Future value
- Present value
- Net present value
- Internal rate of return
- Pension and savings plans

Excel functions: FV, PV, NPV, IRR, PMT, NPER

Future value

At interest rate r%, how much does a deposit today of \$100 grow in N years?

 $100*(1+r)^{N}$


Why?

*****Suppose r = 6%

- Suppose you deposit \$100 in bank today
- \$\langle In one year: \$100*(1.06) = \$106 In two years: \$106*(1.06) = \$112.36 Note that \$106*(1.06)=\$100*(1.06)² Etc.

·	، ‹ درام	ż		
	C I	A	В	C D E F G
J.	1	THE FU	TURE V	ALUE OF A SINGLE \$100 DEPOSIT
	2	Initial deposit	100	
	3	Interest rate	11%	
	4			
			Future	
	5	Year	value	
	6	0		< =\$B\$2*(1+\$B\$3)^A6
	7	1		<= \$B\$2*(1+\$B\$3)^A7
	8	2		<= \$B\$2*(1+\$B\$3)^A8
	9	3		<= \$B\$2*(1+\$B\$3)^A9
	10	4		<= \$B\$2*(1+\$B\$3)^A10
	11	5	168.51	
	12	6	187.04	
	13	7	207.62	▲ 800 -
	14	8	230.45	
	15	9	255.80	
	16	10	283.94	
	17	11	315.18	
	18	12	349.85	
	19	13	388.33	
	20	<u> </u>	431.04	
	21		478.46	
	22	16	531.09	
	23 24	17 18	589.51 654.36	
	24 25	19	726.33	Years —
	25 26	20	806.23	
	20	20	000.23	

Future value at different interest rates

-<u>E</u>[9]2

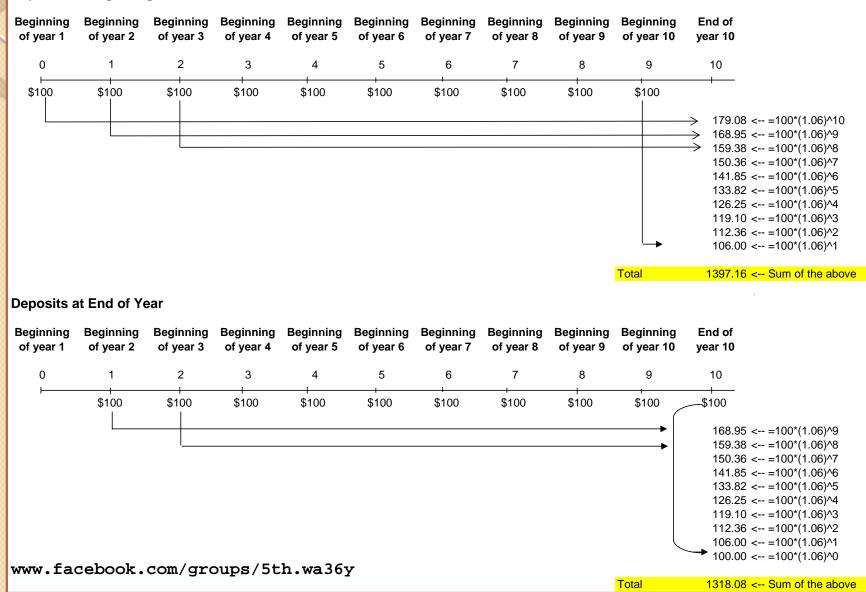
Some terminology: Beginning vs end of year

Year 0	Year 1	Year 2		
Today	End of year 1	End of year 2		
Beginning of year 1	Beginning of year 2	Beginning of year 3		
-		-		
0	1	2	3	

26192

Deposit \$100 today and at the beginning of years 1, 2, ..., 10
Interest paid: 6% per year on outstanding balances
How much will you have at the <u>end</u> of 10 years?

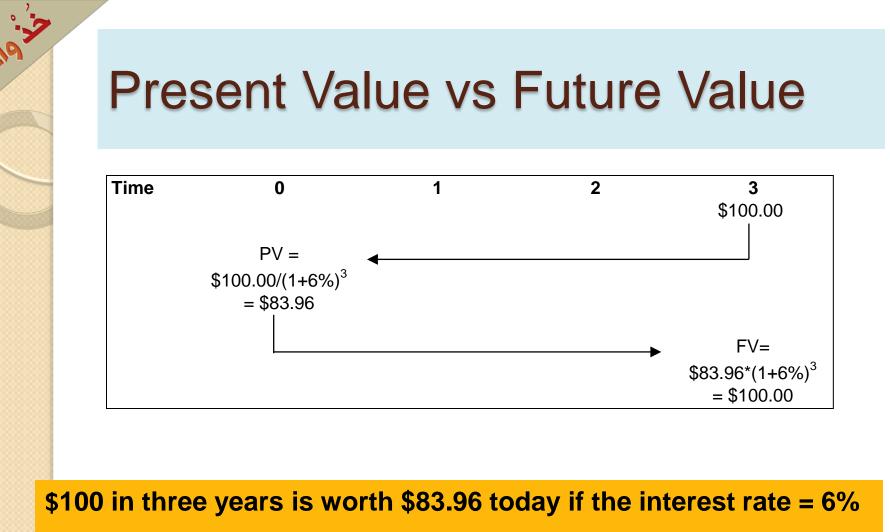
103


	A	В	С	D	E	F			
		FUTURE VALUE WITH ANNUAL DEPOSITS							
		at beginning of year							
1	• •	9 0 (at begin						
2	Interest	6%							
3	=E5	-				=(C6+B6)*\$B\$2			
		Account	Deposit at	Interest	Total in				
		balance,	beginning	earned	account at				
4	Year	🔪 beg. year	of year	during year	end of year				
5	1	0.00	100.00	6.00	106.00	< =B5+C5+D5			
6	2	106.00	100.00	12.364	218.36	< =B6+C6+D6			
7	3	218.36	100.00	19.10	337.46				
8	4	337.46	100.00	26.25	463.71				
9	5	463.71	100.00	33.82	597.53				
10	6	597.53	100.00	41.85	739.38				
11	7	739.38	100.00	50.36	889.75				
12	8	889.75	100.00	59.38	1,049.13				
13	9	1,049.13	100.00	68.95	1,218.08				
14	10	1,218.08	100.00	79.08	1,397.16				
15									
		Future value							
		using Excel's							
16		FV function	\$1,397.16	< =FV(B2,A2	14,-100,,1)				

1250 ° 12

Beginning vs end of period

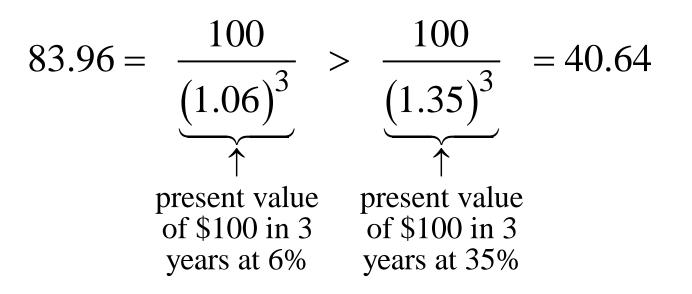
helo:



Present value

Future value: If you deposit today, how much will you have in the future?

Present value: If you are promised money in the future, how much is it worth today


Present value and Future value are mirror images!

\$83.96 today is worth \$100 in 3 years if the interest rate is 6%

Present value ↓ as interest ↑

Present value of multiple future payments

A B C D	
PRESENT VALUE OF AN ANNUITY:	
1 FIVE ANNUAL PAYMENTS OF \$100 EA	СН
2 Annual payment 100	
3 r, interest rate 6%	
4	
Payment Present	
at end of value of	
5 Year year payment	
6 1 100 94.34 < =B6/(1+\$B\$	3)^A6
7 2 100 89.00 < =B7/(1+\$B\$	3)^A7
8 3 100 83.96	
9 4 100 79.21	
10 5 100 74.73	
11	
12 Present value of all payments	
13Summing the present values421.24< =SUM(C6:C	/
14 Using Excel's PV function 421.24 < =PV(B3,5,-E	,
15 Using Excel's NPV function 421.24 < =NPV(B3,B)	6:B10)

5 future payments of \$100 each, interest rate 6%.

Note <u>three</u> ways of getting the present value (cells C13:C15)

Net present value (NPV)

Net present value of series of future cash flows is the pv of the cash flows <u>minus</u> the initial investment required to obtain them.

Example: Pay \$1,000 today to get
\$100 in year 1, \$150 in year 2, ...,
\$300 in year 5. Discount rate = 10%.

$$NPV = -1,000 + \frac{100}{1.10} + \frac{150}{(1.10)^2} + \frac{200}{(1.10)^3} + \frac{250}{(1.10)^4} + \frac{300}{(1.10)^5}$$

	A	В	С	D
1	CALCULATING	NET PRE	SENT V	ALUE (NPV) WITH EXCEL
2	r, interest rate	10%		
3				
			Present	
4	Year	Payment	value	
5	0	-1,000	-1000.00	
6	1	100	90.91	< =B6/(1+\$B\$2)^A6
7	2	150	123.97	< =B7/(1+\$B\$2)^A7
8	3	200	150.26	
9	4	250	170.75	
10	5	300	186.28	
11				
12	NPV			
13	Summing the present v	alues	-277.83	< =SUM(C5:C10)
14	Using Excel's NPV func	tion	-277.83	< =B5+NPV(\$B\$2,B6:B10)

The Net Present Value = -777.83: The cost of \$1,000 is \$277.83 <u>more</u> than the Present Value of the future cash flows.

Therefore, it's not worth spending 1,000 to buy the future cash flows. The NPV < 0!

12c19:22

Using NPV to make a "Yes-No" investment decision

An investment is worthwhile if its NPV>0.

	A	В	С	
4	MAKING		ES-NO" DECISION G NPV	
1	Discount rate	11%		
3				
4	Year	Cash flow		Investment is
5	0	-800		
6	1	200		worthwhile since its
7	2	400		NPV > 0
8	3	300		
9	4	150		
10	5	900		
11				
12	NPV	557.10	< =B5+NPV(B2,B6:B10)	

Note that this depends both on the cash flows and the discount rate!

Using NPV to choose between investments

When faced with two mutuallyexclusive investments, choose the one with the largest NPV

	0					
	A	В	С	D		
1	USING NPV T	O CHOOSE	BETWEEN	INVESTMENTS		
2	Discount rate	15%				
3						
4	Year	Investment A	Investment B			
5	0	-800	-800			
6	1	250	600			
7	2	500	200			
8	3	200	100			
9	4	250	500			
10	5	300	300			
11						
12	NPV	219.06	373.75	< =NPV(B2,C6:C10)+C5		

Investment B is preferred to Investment A

Internal rate of return (IRR)

IRR is the discount rate for which the NPV = 0.

Excel has an IRR function

ciloi

619	А	В	C D	Е
1	COMF	PUTING IRR	WITH EXCEL	
2	Year	Payment		
3	0	-1,000		
4	1	100		
5	2	200		
6	3	300		
7	4	400		
8	5	500		
9				
10	IRR	12.01%	< =IRR(B3:B8)	
11				
	Discount			
12	rate	NPV		
13	0.00%		< =NPV(A13,\$B\$4:\$B\$8)+\$B\$3	
14	1.00%	446.37	< =NPV(A14,\$B\$4:\$B\$8)+\$B\$3	
15	2.00%	395.37	< =NPV(A15,\$B\$4:\$B\$8)+\$B\$3	
16	3.00%	346.85		1
17	4.00%	300.65		
18	5.00%	256.64	IRR is where the NPV crosses the x-axis	
19	6.00%	214.69		
20	12.01%	0.00	600	
21	8.00%	136.51	500	
22	9.00%	100.07	400	
23	10.00%	65.26		
24	11.00%	31.99	300	
25	12.00%	0.18		
26	14.00%	-59.38		
27	16.00%	-113.99		
28	18.00%	-164.16	0	
29	20.00%	-210.33	-100 ⁰ % 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%	
30				
31			-200	
32		+		L

Using IRR to make a "Yes-No" investment decision

An investment is worthwhile if its IRR>discount rate.

	A	В	С
	MAKING	THE "Y	ES-NO" DECISION
1		USIN	IG IRR
2	Discount rate	11%	
3			
4	Year	Cash flow	
5	0	-800	
6	1	200	
7	2	400	
8	3	300	
9	4	150	
10	5	900	
11			
12	IRR	31.19%	< =IRR(B5:B10)

Investment is worthwhile since its IRR>11% (the discount rate)

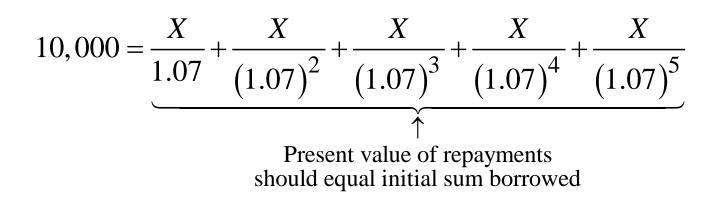
Note that this depends both on the cash flows and the discount rate!

Using IRR to choose between investments

When faced with two mutuallyexclusive investments, choose the one with the largest IRR

	O						
	A	В	С	D			
	USI	USING IRR TO CHOOSE BETWEEN					
1		INVE	STMENTS				
		Investment A	Investment B				
2	Year	cash flows	cash flows				
3	0	-1,000.00	-1,000.00				
4	1	450.00	550.00				
5	2	425.00	300.00				
6	3	350.00	475.00				
7	4	450.00	200.00				
8							
9	IRR	24.74%	22.26%	< =IRR(C3:C7)			

Investment A is preferred to Investment B



NPV and IRR

	"Yes or No": Choosing whether to undertake a single investment	"Investment ranking": Comparing two investments that are mutually exclusive
NPV criterion	The investment should be undertaken if its $NPV > 0$:	Investment A is preferred to invest- ment B if NPV(A) > NPV(B)
IRR criterion	The investment should be undertaken if its IRR $>$ r, where r is the appropriate discount rate.	Investment A is preferred to invest- ment B if IRR(A) > IRR(B).

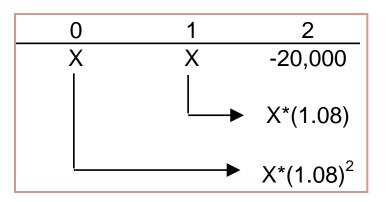
Chapter 4: IRR and NPV may not always rank two investments the same. In this case, use NPV to rank the investments.

Computing annual "flat" payments on a loan You borrow \$10,000 for 5 years Interest rate 7% Bank wants same sum X repaid each year ♦ How to compute X?

Use **PMT** to compute loan payments

	A	В	С		
	PMT TO COMPUTE FLAT LOAN				
1	F	PAYMEN	ГS		
2	Interest rate	7%			
3	Loan term	5	< Years		
4	Loan principal	10,000			
5	Annual flat payment	2,438.91	< =PMT(B2,B3,-B4)		
6					
7	Present value	of payments	= Loan principal		
8	Year	Payment			
9	1	2,438.91	< =\$B\$5		
10	2	2,438.91	< =\$B\$5		
11	3	2,438.91	< =\$B\$5		
12	4	2,438.91			
13	5	2,438.91			
14					
15	PV of payments	10,000.00	< =NPV(B2,B9:B13)		

Loan amortization table


The "flat" loan payment pays off the loan over the loan term:

	A	В	С	D	Е	F
1	PMT AND LOAN AMORTIZATION TABLE					
2	Interest rate	7%				
3	Loan term	5	< Years			
4	Loan principal	10,000				
5	Annual flat payment	2,438.91	< =PMT(B2,B	3,-B4)		
6						
7	Loan Am	ortization Ta	ble			
	Year	Principal, beginning	Payment, end of year	Part of payment that is	Part of payment that is	
8		of year		interest	principal	
9	1	10,000.00	2,438.91	700.00	1,738.91	< =C9-D9
10	2	⊿ 8,261.09	2,438.91	578.28	1,860.63	
11	3 /	6,400.46	2,438.91	448.03	1,990.87	
12	4	4,409.59	2,438.91	308.67	2,130.24	
13	5 /	2,279.35	2,438.91	159.55	2,279.35	
14					\setminus	
15	Cell B10 contains formula			Cell D10 cont	tains formula	
16	=B9-E9			=\$B\$2	2*B10	

12102

Saving for the future

- Mario wants to buy a \$20,000 car in 2 years.
- Plans to save X today and X in one year
- Interest rate = 8%

FV of X = cost of car

We show 3 ways to do this calculation

-103

3 solutions to Mario's problem

- Trial and error
- Goal seek

c10³

Excel's PMT function

Trial and error

	A	В	С	D	E	
1	HELPING MARIO SAVE FOR A CAR					
2	Deposit, X	5,000.00				
3	Interest rate	8.00%				
				Total at		
		In bank, before	Deposit or	beginning of	End of year	
4	Year	deposit	withdrawal	year	with interest	
5	0	0.00	5,000.00	5,000.00	5,400.00	
6	1	5,400.00	5,000.00	10,400.00	11,232.00	
7	2	11,232.00	(20,000.00)	(8,768.00)	(9,469.44)	
8						
		NPV of all				
		deposits				
9		and payments	-7,517.15	< =C5+NPV(B	3,C6:C7)	

1619.2

	A	В	С	D	E	
1	HELPING MARIO SAVE FOR A CAR					
2	Deposit, X	9,000.00				
3	Interest rate	8.00%				
				Total at		
		In bank, before	Deposit or	beginning of	End of year	
4	Year	deposit	withdrawal	year	with interest	
5	0	0.00	9,000.00	9,000.00	9,720.00	
6	1	9,720.00	9,000.00	18,720.00	20,217.60	
7	2	20,217.60	(20,000.00)	217.60	235.01	
8						
		NPV of all				
		deposits				
9		and payments	186.56	< =C5+NPV(B	3,C6:C7)	

X = \$5,000 is too little. The NPV < 0

X = \$9,000 is too much. The NPV > 0

"Playing" with the numbers: When X = \$8,903.13, the NPV (cell C9) = 0

www.facebook.com/groups/5th.wa36y

Use Goal Seek

- E									
	- 21	A	В	С	D	E	F	G	H
	1	HE	LPING MAR	IO SAVE	FOR A CA	R			
	2	Deposit, X	9,000.00						
	3	Interest rate	8.00%						
	4	Year	In bank, before deposit	Deposit or withdrawal	Total at beginning of year	End of year with interest			
	5	0	0.00	9,000.00	9,000.00	9,720.00			
	6	1	9,720.00	9,000.00	18,720.00	20,217.60			
	7	2	20,217.60	(20,000.00)	217.60	235.01			2 x
	8						Goal Seek		? X
			NPV of all deposits				S <u>e</u> t cell:	\$C\$9	E
8.	9		and payments	186.56	< =C5+NPV(E	33,C6:C7)	To <u>v</u> alue:	0	
	10						By changing cell:	\$B\$2	
8.	11								
	12						ОК		Cancel
8.	13								
8	14								

Goal Seek will compute X = \$8,903.13

12 cloz2

Using **PMT** to compute X

	A	В	C			
	HELPING MARIO SAVE FOR A CAR					
1	using Excel PMT function					
2	Goal	20,000.00	< The cost of the car			
3	When to reach the goal?	2	< The year in which Mario wants to buy the car			
4	Interest rate	8.00%				
5	Deposit, X	8,903.13	< =PMT(B4,B3,,-B2,1)			

Function Arguments		? ×				
PMT						
Rate	B4 💽	= 0.08				
Nper	B3 💽	= 2				
Pv		= number				
Fv	-B2	= -20000				
Туре	1	= 1				
= 8903.133903 Calculates the payment for a loan based on constant payments and a constant interest rate. Type is a logical value: payment at the beginning of the period = 1; payment at the						
	end of the period = 0 or omittee	u.				
Formula result = 8,903.13						
Help on this function		OK Cancel				

Use **FV** box on **PMT** function to compute the beginning-of-period payment that gives \$20,000 in two years.

Note that **Type** = 1, indicating beginning-ofperiod payments.

E19:20

Saving for future: More complicated problems

Linda is 10 years old. Her parents want to save for 4 years of college, starting at 18.

- Her parents want to deposit \$X today and on birthdays 11, 12, ... 17.
- On birthdays 18, 19, 20, 21, they plan to take out \$20,000—the cost of college.

🔎 🔍		-						
	A	В	С	D	E			
Y,	SAVING FOR COLLEGE							
2.2	Interest rate	8%						
3	Annual deposit	4,000.00						
4	Annual cost of college	20,000						
5								
8		In bank on birthday,	Deposit or					
3		before	withdrawal at		End of year			
6	Birthday	deposit/withdrawal	beginning of year	Total	with interest			
7	10	0.00	4,000.00	4,000.00	4,320.00			
8	11	4,320.00	4,000.00	8,320.00	8,985.60			
9	12	8,985.60	4,000.00	12,985.60	14,024.45			
10	13	14,024.45	4,000.00	18,024.45	19,466.40			
11	14	19,466.40	4,000.00	23,466.40	25,343.72			
12	15	25,343.72	4,000.00	29,343.72	31,691.21			
13		31,691.21	4,000.00	,	38,546.51			
14		38,546.51	4,000.00	,	45,950.23			
15		45,950.23	-20,000.00	25,950.23	28,026.25			
16		28,026.25	-20,000.00		8,668.35			
17	20	8,668.35	-20,000.00	-11,331.65	-12,238.18			
18	21	-12,238.18	-20,000.00	-32,238.18	-34,817.24			
19								
20		NPV of all payments	<mark>-13,826.40</mark>	< =C7+NPV(B2,C8:C18)			

\$4,000 per year is too little: The NPV of all savings and payments < 0.

Like Mario's problem: Can solve this with trial-and-error, **Goal Seek**, or **PMT** and **PV**. See PFE book for details.

Solution Annual deposit = \$6,227.78

	A	В	С	D	E		
1	SAVING FOR COLLEGE						
2	Interest rate	8%					
3	Annual deposit	6,227.78					
4	Annual cost of college	20,000					
5							
		In bank on birthday,	Deposit or				
		before	withdrawal at		End of year		
6	Birthday	deposit/withdrawal	beginning of year	Total	with interest		
7	10	0.00	6,227.78	6,227.78	6,726.00		
8	11	6,726.00	6,227.78	12,953.77	13,990.08		
9	12	13,990.08	6,227.78	20,217.85	21,835.28		
10	13	21,835.28	6,227.78	28,063.06	30,308.10		
11	14	30,308.10	6,227.78	36,535.88	39,458.75		
12	15	39,458.75	6,227.78	45,686.52	49,341.45		
13	16	49,341.45	6,227.78	55,569.22	60,014.76		
14	17	60,014.76	6,227.78	66,242.54	71,541.94		
15	18	71,541.94	-20,000.00	51,541.94	55,665.29		
16	19	55,665.29	-20,000.00	35,665.29	38,518.52		
17	20	38,518.52	-20,000.00	18,518.52	20,000.00		
18	21	20,000.00	-20,000.00	0.00	0.00		
19							
20		NPV of all payments	0.00	< =C7+NPV(B2,C8:C18)		

6192