

جامعة آل البيت " كلية الإقتصاد "

مجموعة طلابية تسعى لتوفير كل ما يلزم طلاب كلية إدارة المال والاعمال من مواد وشروحات واسئلة بصورة الكترونية

Instructor materials

Chapter 4 Capital budgeting

26192

What is "Capital Budgeting"

- Two big questions:
- *"Yes-No": Should you invest money today in a project that gives future payoffs?
- *"Ranking": How to compare mutually-exclusive projects? If you have several alternative investments, only one of which you can choose, which should you undertake?

Other issues

- Sunk costs. How should we account for costs incurred in the past?
- The cost of foregone opportunities.
- Salvage values and terminal values.
- Incorporating taxes into the valuation decision. This issue is dealt with briefly in Section 4.7. We return to it at greater length in Chapters 4-6.

NPV and IRR

The two basic capital budgeting tools
Note: We usually prefer NPV to IRR, but IRR is a handy tool

"Yes-No" and NPV

NPV rule: A project is worthwhile if the NPV > 0

$$NPV = CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_N}{(1+r)^N} = 0?$$

According to the NPV rule:
If NPV > 0, project is worthwhile
If NPV < 0, project should not be undertaken

Technical notes

- CF₀ is usually negative (the project cost)
- CF₁, CF₂, ... are usually positive (future payoffs of project)
- CF₁, CF₂, ... are <u>expected</u> or <u>anticipated</u> cash flows

r is a discount rate appropriate to the project's risk (see Chapter 6)

"Yes-No" and IRR

IRR rule: A project is worthwhile if the IRR > discount rate

$$CF_0 + \frac{CF_1}{(1 + IRR)^1} + \frac{CF_2}{(1 + IRR)^2} + \dots + \frac{CF_N}{(1 + IRR)^N} = 0$$

According to the IRR rule:
If IRR > r, then the project is worthwhile
If IRR < r, project should not be undertaken

Basic "Yes-No" example

	A	В	С				
1	YES-NO WITH NPV AND IRR						
2	Discount rate	12%					
3							
		Project cash					
4	Year	flow					
5	0	-1000					
6	1	300					
7	2	400					
8	3	500					
9	4	600					
10	5	100					
11							
12	NPV	380.68	< =B5+NPV(\$B\$2,B6:B10)				
13	IRR	26.47%	< =IRR(B5:B10)				

This project is worthwhile by both NPV and IRR rules:
□ NPV > 0
□ IRR > discount rate of 12%

1519²

Basic "Ranking" example

1519²

	A	В	С	D		
1	RANKING TWO PROJECTS WITH NPV AND					
2	Discount rate	12%				
3						
4	Year	Project A	Project B			
5	0	-1000	-800			
6	1	200	420			
7	2	400	100			
8	3	600	300			
9	4	300	600			
10	5	100	200			
11						
12	NPV	171.92	363.05	<= =C5+NPV(\$B\$2,C6:C10)		
13	IRR	19%	29%	< =IRR(C5:C10)		

"Yes-No": Both projects are worthwhile \square NPV_A, NPV_B > 0 \square IRR_A, IRR_B > discount rate of 12%

"Ranking": If you can choose only one project, B is preferred by both NPV and IRR □ NPV_B > NPV_A www.facebookRRm/>rRRm/srlkRc^{5th.wa36y}

Summing up

	"Yes or no": Choosing whether to undertake a single project	"Project ranking": Comparing two mutually exclusive projects	
NPV criterion	The project should be undertaken if its $NPV > 0$.	Project A is preferred to Project B if $NPV(A) > NPV(B)$.	
IRR criterion	The project should be undertaken if its IRR > <i>r</i> , where <i>r</i> is the appropriate discount rate.	Project A is preferred to Project B if $IRR(A) > IRR(B)$.	

	A	В	С	D				
	NPV AND IRR CAN SOMETIMES GIVE CONFLICTING							
1	RANKINGS							
2	Discount rate	6%						
3								
4	Year	Project A	Project B					
5	0	-500	-500					
6	1	100	250					
7	2	100	250					
8	3	150	200					
9	4	200	100					
10	5	400	50					
11								
12	NPV	266.60	242.84	< =C5+NPV(B2,C6:C10)				
13	IRR	19.77%	27.38%	< =IRR(C5:C10)				

In this example:
□ Both A and B are worthwhile by both NPV and IRR criteria
□ If discount rate = 6%
> A is preferred to B by NPV rule
> B preferred to A by IRR rule

Lacio-12

	A	В	С	D	E	F	G
15	TABLE OF NPVs AND DISCOUNT RATES						
		Project A	Project B				
16		NPV	NPV				
17	0%	450.00	350.00	< =\$C\$5+NPV(A17,\$C\$6:\$C\$10)			
18	2%	382.57	311.53	< =\$C\$5+NPV(A18,\$C\$6:\$C\$10)			
19	4%	321.69	275.90	500 ¬			
20	6%	266.60	242.84				
21	8.5128%	204.58	204.58	400 -			
22	10%	171.22	183.49				
23	12%	129.85	156.79	300 -			
24	14%	92.08	131.84				
25	16%	57.53	108.47	200 -			
26	18%	25.86	86.57				
27	20%	-3.22	66.00	100 -			
28	22%	-29.96	46.66				
29	24%	-54.61	28.45	0			_
30	26%	-77.36	11.28		150/ 200/	250/ 20	20/
31	28%	-98.39	-4.93		15/0 20/0	23/0 50	J/0
32	30%	-117.87	-20.25	Proj	ect A 🚽 Project B		Þ
33					NPV		
34				-200 -			

□ IRR_A is always < IRR_B: By IRR rule, B is always preferred to A □ For discount rates < 8.5128%: NPV_A > NPV_B (ranking conflict) □ For discount rates > 8.51285: NPV_A < NPV_B (no ranking conflict)

When IRR and NPV conflict, use NPV

Why: IRR gives the <u>rate of return</u>
NPV gives the <u>wealth increment</u>

Back to last example: Calculating the crossover point

	A	В	С	D	E			
	CROSSOVER POINT: IRR _A = IRR _B							
1	compute IRR of differential cash flows							
2	Discount rate	6%						
3								
				Project A -				
4	Year	Project A	Project B	Project B				
5	0	-500	-500	0	< =B5-C5			
6	1	100	250	-150	< =B6-C6			
7	2	100	250	-150	< =B7-C7			
8	3	150	200	-50	< =B8-C8			
9	4	200	100	100	< =B9-C9			
10	5	400	50	350	< =B10-C10			
11								
12	NPV	266.60	242.84					
13	IRR	19.77%	27.38%	8.5128%	< = IRR(D5:D10)			

Crossover point is the IRR of the differential cash flows (column D)

102