Student Name:		C I MI-	I Indian Min	C4'
		Serial No.	Univ. No.	Section:
l. The voltage across	a circuit element is v =	= 20 – 30 e ^{-50 t} V	, and the curren	t into the + terminal is
$i = 4 e^{-50 t} A$. Then	refore, the energy absor	bed by the elem-	ent during the ir	iterval $0 \le t \le 10 \text{ ms is:}$
(a) 1.811 J	(b) 0.129 J	(c) - 0.		(d) 3.329 J
2. In the circuit of Fig.	gure (A), the equivalent	t resistance acros	ss the x-y termin	nals is:
(a) 2.5 Ω	(b) 5 Ω	(c) 2 Ω		(d) 4 Ω
3. The power absorb	ed by the dependent sou	irce in the circui	t of Figure (A) i	s:
(a) -30 W	(b) 30 W	(c) -25	W	(d) -15 W
4. In the circuit of Fig.	gure (B), where all resis	stance values are	in Ω, the value	of Io is:
(a) 3 A	(b) -4 A	(c) -6 A	\	(d) -3 A
5. In the circuit of Fig	gure (C), where all resis	stance values are	in Ω, the value	of Vo is:
(a) 4 V	(b) -3 V	(c) -4 \	7	(d) -6 V
5. In the circuit of Fi	gure (D), where all resis	stance values are	e in Ω, nodal an	alysis quickly gives:
(a) $I_0 = -5/3$ A	(b) $I_0 = 1 A$	(c) I ₀ =	-1 A	(d) $I_0 = 5/3 \text{ A}$
7. In the circuit of Fig.	gure (E), where all resis	stance values are	in Ω, mesh ana	alysis quickly gives:
(a) $I_0 = 5 A$	(b) $I_0 = 1 A$	(c) I ₀ =	7 A	(d) $I_0 = 3 A$
Therefore, the equ	uit of Figure (G), $i_s = 1$ ivalent Thevenin voltage			5 A when $v_s = 30 \text{ V}$.
(a) 20 V, 20 Ω	(b) 40 V, 20 Ω	(c) -40	V, 20 Ω	(d) -20 V, 40 Ω
	amplifier in the circuit o			
(a) $V_0 = 18 \text{ V}$	$(b) V_0 = 6 V$	(c) V ₀ =	= 10 V	(d) $V_0 = -9 V$
 The circuit of Figure 10. The circuit of Figure 10. 		log solution of t	he following di	fferential equation with th
(a) $dv/dt - 10 v = 50$;			t + 10 v = 50;	v(0) = -10 V
(c) $dv/dt - 10 v = 25$;	v(0) = 10 V	(d) dv/c	it - 15 v = 50;	v(0) = 10 V
11. In the circuit of Fi	gure (J), with t in ms, th			
(a) $25(1 - e^{-1} - e^{-0.02})$	(b) A e ⁻⁵⁰⁰¹ cos(50	00 t) (c) 25($1 + e^{-1} + e^{-1/2}$	(d) (A + B t) $e^{-500 t}$
12. In the circuit of Fi units of mA and V	gure (K), the initial con	nditions i _L (0 ⁺), v	$_{\mathbb{C}}(0^+)$, and $i_{\mathbb{R}}(0^+)$, respectively, using the
(a) -50, 50, 0.0	(b) -50, -50, 100	(c) 50,	50, 100	(d) 50, -50, 100

Q	1	2	3	4	5	6	7	8	9	10	11	12
A												

EE210.	Final Exa	mination	Jan. 27, 2004
Student Name:	Seri	al No. Univ. No.	Section:
13. In the circuit of Fi	gure (K), the initial values o	of di_L/dt , and dv_C/dt at $t = 0$	O* are:
(a) -8 A/s, 50 kV/s	(b) -8 A/s, -50 kV/s	(c) 8 A/s, -5 kV/s	(d) 8 A/s, 500 V/s
of the response v_C	of Figure (L), i _L (0 ⁻) = 0, v _C (t) in volts may be expressed	(0 ⁻) = 0, and t ₁ > 0. There	fore, for $0 < t < t_1$, the form
(a) $5 + (A + B t) e^{-V4}$		(b) -5 + [5 cos(1.936 t)) + B sin(1.936 t)] e ⁻⁴¹
(c) $-5 + (A + B t) e^{-4t}$		(d) 5 + [A cos(1.936 t)	+ B sin(1.936 t)] e-1/4
15. In the RLC circuit	problem of Figure (L), for t	> t ₁ , the form of the respon	nse vc(t) in volts is:
(a) (A + B t) e-21	(b) A e ^{-3.414t} + B e ^{-0.586t}	(c) A e ^{-2t} cos t	(d) A e ^{-2t} sin 2t
 In a critically dam as shown in Figure 	ped parallel RLC circuit, the (M). This indicates that the	capacitor voltage response e value of α is:	e to a step-input current is
(a) 200 Np/s	(b) 100 Np/s	(c) 47 Np/s	(d) 150 Np/s
 In a series RLC cityields the following 	cuit, the current response to g values for α in Np/s, ω_d ar	a step-input voltage is as and ω ₀ in rad/s, respectively	shown in Figure (N). This
(a) 100, 3248, 3250	(b) 2000, 3464, 4000	(c) 1000, 3142, 3297	(d) 2000, 3000, 3606
	e phasors $V_1 = 13 / 22.62^0 \text{ V}$,		V ₃ = 5 <u>/-53.13</u> ⁰ V is:
(a) $V_t = 21.2 /45^0 V$	(b) $V_t = 9.9 /45^0 \text{ V}$	(c) $V_t = 14.1 / 45^0 \text{ V}$	(d) $V_t = 11.4 / 37.9^0 \text{ V}$
19. In the circuit of Fig	gure (O), the value of L that	makes ig(t) in phase with v	$v_g(t) = 80 \cos(5000t) \text{ V is:}$
(a) 2 H	(b) 0.5 H	(c) 1 H or 0.25 H	(d) 2 H or 0.5 H
20. When ig(t) in the c	ircuit problem of Figure (O)	is in phase with vg(t), its p	
(a) 80 or 20 mA	(b) 80 mA	(c) 40 or 20 mA	(d) 20 mA
21. In the circuit of Fig	gure (P), $i_s(t) = 12.5 \cos(500$	Ot) mA. Therefore, the pe	ak value of v ₀ (t) is:
(a) 22.36 V	(b) 67.1 V	(c) 89.44 V	(d) 44.72 V
,`1 22. For the circuit of F	igure (Q) with ω = 1 rad/s, t	he equivalent Thevenin vo	
(a) 1.414 /45 ⁰ V	(b) 0.707 /-90 ⁰ V	(c) 0.707 /-45° V	(d) 1.414 /90° V
23. At f = 318.31 Hz,	$Z = 0.8944 / 26.57^{\circ} \Omega$ can be		
(a) R, L = $2 k\Omega$, 1 H	(b) R, C = 1 kΩ, 1 μF	(c) R, C = $2 k\Omega$, $2 \mu F$	(d) R, L = 1 kΩ, 1 H
	the imaginary part of the in		
(a) $100 \omega^2/(\omega^2 + 100)$	and amaginary part of the in	(b) 50 ($\omega^2 - 100$)/[ω (ω	
(c) $100 \omega/(\omega^2 - 100)$		(d) 50 ($\omega^2 - 100$)/($\omega^2 +$	
		1(0) 30 (0 - 100) (0 +	100/

Student Name:

Serial No.

Univ. No.

Section:

