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PREFACE 
 
This Booklet contains a selected and edited laboratory experiments that were taken with 
some minor modifications from the book “Digital Signal Processing and Applications 
with the TMS320C6713 and TMS320C6416 DSK”, second edition, john Wiley & Sons, 
2008 written by Rulph Chassaing and Donald Reay. The book has a wide variety of 
digital signal processing and filter design experiments that can be run on the 
TMS320C6713 and TMS320C6416 digital signal processing kit (DSK).Our selection of 
the experiments was made to achieve some objectives: the ability to analyze signals and 
systems in the time and frequency domain, implement real-time signal processing system 
and design of FIR and IIR digital falters. In addition, we have included one experiment 
based on Matlab in order to have a simulation tool which can be used for comparison 
purposes and to start the design of some FIR and IIR design experiments. Another 
experiment was included to get the students familiar with the DSK kit.  
 
 
Dr. Jehad Ababneh 
Eng. Yara Obeidat 
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Labs 
 

Lab 1:   
     Experiment 1: Waveform Generation and Digital Filter Design and Analysis in Time              

and Frequency Domains Using Matlab. 
 
Lab 2: 
     Experiment 2A: Introduction to the Digital Signal Processing Kit (DSK) and the Code 

Composer Studio (CCS). 
 Experiment 2B: Sine Wave Generation Using Eight points with DIP Switch Control. 

     Experiment 2C: Generation of sinusoid and Plotting with CCS (sine8_buf). 
 
Lab 3: 
     Experiment 3A: Basic Input and Output Using Polling (loop_poll). 
     Experiment 3B: Basic Input and Output Using Interrupts (loop_intr). 
     Experiment 3C: Sine Wave Generation Using sin() Function, Reconstruction, 

Aliasing, and the Properties of the AIC 23 Codec. 
 
Lab 4: 
      Experiment 4: FIR Filter I 
 
Lab 5: 
      Experiment 5: FIR Filter II. 
 
Lab 6: 
      Experiment 6: IIR Filter I. 
 
Lab 7: 
      Experiment 7: IIR Filter II. 
 
Lab 8: 
       Experiment 8: Discrete Time and Fast Fourier Transform 
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Experiment 1 
Waveform Generation and Digital Filter Design and Analysis in Time 

and Frequency Domains Using Matlab  
 
Objectives: 

1- Generation and analysis of different basic signals in time and frequency domain. 
2- Design and analysis of typical FIR and IIR digital filters.  
3- Filters application and implementation. 
 

Lab Equipments: 
1- PC with Matlab software installed. 
2- Headphone. 

 
Description: 
 
In this experiment, we will use signal processing toolbox commands and analysis tools in 
Matlab to visualize signals in time and frequency domains, compute FFTs for spectral 
analysis of signals and filters, design FIR and IIR filters. Most toolbox functions require 
you to begin with a vector representing a time base. Consider generating data with a 1000 
Hz sample frequency, for example. An appropriate time vector is t = (0:0.001:1)';where 
the MATLAB colon operator creates a 1001-element row vector that represents time 
running from 0 to 1 s in steps of 1 ms. The transpose operator (') changes the row vector 
into a column; the semicolon (;) tells MATLAB to compute, but not display the result. 
Given t, you can create a sample signal y consisting of two sinusoids, one at 50 Hz and 
one at 120 Hz with twice the amplitude. y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);. You 
may also generate discrete-time signals by first generating a sample axis using the 
command n = (0:1:1024);. Then, to generate a sinusoidal signal sampled at twice the 
Nyquist rate (or a signal that has a frequency that is one forth the sampling frequency), 
use the command:  X=cos(n*pi/2);. You may plot the signal in the time domain using the 
command: plot (n,X). Since MATLAB is a programming language, an endless variety of 
different signals is possible. Here are some statements that generate several commonly 
used sequences, including the unit impulse, unit step, and unit ramp functions: t = 
(0:0.001:1)'; 
y = [1; zeros(99,1)];  % impulse 
y = ones(100,1);       % step (filter assumes 0 initial cond.) 
y = t;                 % ramp 
Some applications, however, may need to import data from outside MATLAB. To load 
data from an ASCII file or MAT-file, use the MATLAB load command. You may also 
use this command to load wave files. 
 
The single sided amplitude spectrum of a signal can be evaluated using the FFT function 
which computes the Fast Fourier Transform. A simple Matlab function named 
single_sided_amplitude_spectrum was written for this purpose. This function is stored in 
the directory C:\DSPLaboratory. To calculate and plot single sided amplitude spectrum of 
the signal Y sampled at FS frequency, type the command: 
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HY= Single_Sided_Amplitude_Spectrum(Y,FS);  
We will also learn how to graphically design and implement digital filters using Signal 
Processing Toolbox. Filter design is the process of creating the filter coefficients to meet 
specific frequency specifications. Although many methods exist for designing the filter 
coefficients, this experiment focuses on using the basic features of the Filter Design and 
Analysis Tool (FDATool) GUI. This experiment includes a brief discussion of applying 
the completed filter design and filter implementation using MATLAB command line 
functions, such as filter. The analysis and design process in this experiment will be used 
in later experiments for design and analysis of real time filters implemented on the 
TMS320C6713 DSP starter kit.  

 
LAB WORK: 
 

1- Waveform Generation and Analysis 
 
1. Launch Matlab by double - clicking on its desktop icon 

2. Generate 1024 samples of 1kHz sinusoidal (cos) signal sampled at 8kHz with the 
command: n=(0:1023);X=cos(2*n*pi*1000/8000); 

3. Plot 100 samples of the generated signal in the time domain using both the plot and 
stem Matlab functions using the commands: plot(n(1:100),X(1:100)), 
stem(n(1:100),X(1:100)). Use appropriate title and axis labeling. 

4. Evaluate and plot the amplitude spectrum of the generated signal using fft Matlab 
function with the command:  HX= Single_Sided_Amplitude_Spectrum(X,8000); 

5. Use the Matlab function load to load the word “Aspect” uttered by male speaker with 
the command: [Y,FS,NBITS]=wavread('aspect11'); 

6. Plot three 250 samples of three different segments (frames) of the loaded signal in the 
time domain using the plot Matlab function with the commands:  

plot(Y(1000:1250)) 
plot(Y(3200:3450)) 
plot(Y(5000:5250)) 

     Use appropriate title and axis labeling 

7. Evaluate and plot the amplitude spectrum of these different segments using the 
commands: 

HY= Single_Sided_Amplitude_Spectrum(Y(1000:1250),FS); 
HY= Single_Sided_Amplitude_Spectrum(Y(3200:3450),FS); 
HY= Single_Sided_Amplitude_Spectrum(Y(5000:5250),FS); 

     Use appropriate title and axis labeling. 
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8. Compare and discuss the results obtained in steps 3 through 7 in your lab report. 

9. Generate and analyze 100 samples of unit impulse and unit step function in the time 
and frequency domain using the same procedure 

 

2- Filters Design with FDATool GUI   
 

In this part, first we will exactly follow and use the Matlab example to design and analyze 
an octave-band filter in the Getting Started With Signal Processing Toolbox to get 
familiar with this powerful tool. Then, we will use similar procedure to design a notch 
filter and export its coefficients to be used in the last part of this experiment to suppress a 
single tone from a corrupted spoken word. 
An octave is the interval between two frequencies having a ratio of 2:1. An octave-band 
filter is a bandpass filter with high cutoff frequency approximately twice that of the low 
cutoff frequency. The class of an octave filter is determined by its allowable passband 
ripple and its stopband attenuation. 
 

2.1. Designing the Octave-band Filter 
 

10. Start FDATool from the MATLAB command line by typing: 
Fdatool 
 

The FDATool dialog opens with a default filter. Its filter information is summarized in 
the upper left (Current Filter Information) and its filter specifications are depicted in the 
upper right. In addition to displaying filter specification, this upper right pane displays 
filter responses and filter coefficients. 
 
The bottom half of FDATool shows the Filter Design panel, where you specify the filter 
parameters. Other panels, such as Import filter from workspace and Pole/Zero Editor, 
which you access with the buttons on the lower left, are also displayed in this area. If you 
have other products installed, you may see additional buttons. Note that when you open 
FDATool, Design Filter is not enabled. You must make a change to the default filter 
design in order to enable Design Filter. This is true each time you want to change the 
filter design. Changes to radio button items or drop down menu items such as those under 
Response Type or Filter Order enable Design Filter immediately. Changes to 
specifications in text boxes such as Fs, Fpass, and Fstop require you to click outside the 
text box to enable Design Filter. 
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11. In the Response Type pane, select Bandpass. 

12. In the Design Method pane, select IIR, and then select Butterworth. 

 

13. For the Filter Order, select Specify order, and then enter 6. 
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14. Set the Frequency Specifications as follows: 

 
 

 
 

15. After specifying the filter design parameters, click the Design Filter button at the 
bottom of the design panel to compute the filter coefficients. The display updates to 
show the magnitude response of the designed filter. 
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Notice that the Design Filter button is disabled after you compute the coefficients for 
your filter design. This button is enabled again if you make any changes to the filter 
specifications. 

 
16. Click the Store Filter button. 

 

17. In the Store Filter dialog, change the filter name to Bandpass Butterworth-1 and click 
OK to save the filter in the Filter Manager. 

 

 
 

2.2. Analyzing the Octave-band Filter 
 
After designing the filter, you can view the following filter responses in the display 
region by clicking on the associated toolbar button or by selecting the desired response 
from the Analysis menu.  
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18. Examine the displayed magnitude response of the filter. 
 
19. Display other responses, as desired. Click the appropriate buttons, shown in the table 

above or select the desired response from the Analysis menu. 
 
20. Click the Filter coefficients button to display the filter coefficients. 
 
 

 
 

2.3. Designing and Analyzing the Notch Filter 
 
21. Start FDATool from the MATLAB command line by typing fdatool. 
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22. In the Response Type pane, select Notching. 
 
23. In the Design Method pane, select IIR, and then select single notch. 
 
24. In the frequency specifications pane, type 11025 for Fs and 3000 for Fnotch, select 

Bandwidth and type 200. 
 
25. Click the Design Filter button at the bottom of the design panel to compute the filter 

coefficients. 
 
26. From the View menu, select filter visualization too, a new window is opened and 

showing the magnitude response. You need to print or save this figure to include it in 
your report. 

 
27. In the filter visualization window, select phase response, impulse response and filter 

coefficients and save or print this information to include it in your report. 
 
28. In the filter design and analysis tool window, select Export from the File menu, a 

small window with Export title will be opened.  
 
29. In the Export window, select Workspace for Export to, Coefficients for Export As. 
 
30. In the Variable Names, type NumNotch for Numerator and type DenNotch for 

Denominator, then click Export. The filter coefficients are now available in the 
present Workspace and can be verified by typing whos. 

 
3- Filter Application 
 

In this part, we will use the notch filter designed in the previous part to suppress a single 
tone from a corrupted speech signal. 
 
31.  Load the speech signal stored as a wave signal using the command: 
       [Y,FS,NBITS]=wavread('aspect11'); 
 
32. Listen to this speech signal using the command: 

sound(Y,FS) 
 

33. Generate a 3kHz single tone sinusoidal signal with the same length of the speech 
signal with the command: 
n=(0:length(Y)-1);X=cos(2*n*pi*3000/FS); 
 

34. Mix the speech signal with the single tone signal with the command: 
Mix=0.05*X+Y'; 
 

35. Listen to the Mixed speech signal using the command: 
sound(Mix,FS) 
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36. Evaluate and plot the amplitude spectrum of both the original speech signal and the 

mixed signal with the command:   
HY= Single_Sided_Amplitude_Spectrum(Y,FS); 
HMix= Single_Sided_Amplitude_Spectrum(Mix,FS); 
Notice the presence of high spike at frequency 3kHz in the later spectrum. 

 
37. To suppress the single tone from the corrupted speech signal use the notch filter 

designed in the previous part. First, verify the response of the filter using the 
command: 
freqz(NumNotch,DenNotch) 
A figure of both the amplitude and phase response of the filter will be created. Then, 
use the following command to apply the notch filter to the mixed signal: 
YF=filter(NumNotch,DenNotch,Mix); 
 

38. Verify the suppression of the single tone from the mixed signal by plotting and 
listening to the filtered signal YF using the Single_Sided_Amplitude_Spectrum and 
the sound functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

Experiment 2A 
Introduction to the Digital Signal Processing Kit (DSK) and 

the Code Composer Studio (CCS) 
 
Objectives: 

1- To become familiar with the DSK and its audio connections. 
2- Test the operation of the DSK and CCS. 
 

Lab Equipments: 
1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphone. 

 
Description: 

1- The C6713 DSK Board 
 
The DSK packages are powerful, yet relatively inexpensive, with the necessary hardware 
and software support tools for real - time signal processing. They are complete DSP 
systems. A simplified block diagram of the DSK is shown in Figure 2A.1. 

 
The major DSK hardware features are: 

• A TMS320C6713 DSP operating at 225 MHz. 
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• 16 - bit stereo codec TLV320AIC23 (AIC23) for analog input and output. The 
onboard codec AIC23 uses sigma – delta technology that provides analog - to - 
digital conversion (ADC) and digital - to - analog conversion (DAC) functions. 
It uses a 12 - MHz system clock and its sampling rate can be selected from a 
range of alternative settings from 8 to 96 kHz. 

• A daughter card expansion facility 

• Two 80 - pin connectors provide for external peripheral and external memory 
interfaces. 

• 16 MB (megabytes) of synchronous dynamic RAM (SDRAM). 

• 512 Kbytes of Flash memory (256 Kbytes usable in default configuration). 

• Four connectors on the boards provide analog input and output: MIC IN for 
microphone input, LINE IN for line input, LINE OUT for line output, and 
HEADPHONE for a headphone output (multiplexed with line output). 

• Four user accessible LEDs and DIP switches. 

• Voltage regulators that provide 1.26 V for the DSP cores and 3.3 V for their 
memory and peripherals. 

2- Software Support for the DSK Board and ’C6x DSP’s 
 
           2.1 The Board Support Library (BSL) 

A special Board Support Library (BSL) is supplied with the TMS320C6713 DSK. The 
BSL provides C-language functions for configuring and controlling all the on-board 
devices. The library includes modules for general board initialization, access to the 
AIC23 codec, reading the DIP switches, controlling the LED’s, and programming and 
erasing the Flash memory. The source code for this library is also included. The version 
of Code Composer supplied with the DSK is set up to automatically use the BSL. You 
can get complete documentation for the BSL by connecting the DSK to your PC, bring up 
Code Composer, and going to Help, Contents, TMS320C6713DSK, Software, Board 
Support Library. 
 
           2.2 The Chip Support Library (CSL) 
 
Chip Support Library contains C functions and macros for configuring and interfacing 
with all the ’C6713 on-chip peripherals and CPU interrupt controller. This library is 
loaded onto the PC when the DSK software is installed. The CSL header files provide a 
complete symbolic description of all peripheral registers and register fields. 
 

3- Code Composer Studio (CCS) 
 
Code Composer Studio (CCS) provides an integrated development environment (IDE) for 
real - time digital signal processing applications based on the C programming language. It 
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incorporates a C compiler, an assembler, and a linker. It has graphical capabilities and 
supports real - time debugging. The C compiler compiles a C source program with 
extension .c to produce an assembly source file with extension .asm. The assembler 
assembles an .asm source file to produce a machine language object file with extension 
.obj. The linker combines object files and object libraries as input to produce an 
executable file with extension .out. This executable file represents a linked common 
object file format (COFF), popular in Unix - based systems and adopted by several 
makers of digital signal processors. This executable file can be loaded and run directly on 
the digital signal processor.  
A Code Composer Studio project comprises all of the files (or links to all of the files) 
required in order to generate an executable file. A variety of options enabling files of 
different types to be added to or removed from a project are provided. In addition, a Code 
Composer Studio project contains information about exactly how files are to be used in 
order to generate an executable file. Compiler/linker options can be specified. A number 
of debugging features are available, including setting breakpoints and watching variables, 
viewing memory, registers, and mixed C and assembly code, graphing results, and 
monitoring execution time. One can step through a program in different ways (step into, 
or over, or out). Real - time analysis can be performed using CCS’s real - time data 
exchange (RTDX) facility. This allows for data exchange between the host PC and the 
target DSK as well as analysis in real - time without halting the target.  
 
          3.1 Project Files and Building Programs 
 
You can build a project in CCS to easily manage an application involving multiple source 
files, libraries, memory maps, and special command files. The file containing all the 
project information is given the extension pjt. By clicking on the Rebuild All or 
Incremental build task bar buttons or by menu selections. 
 
          3.2 The Optimizing Compiler and Assembler 
 
Code Composer Studio includes a C/C++ optimizing compiler that converts standard 
ANSI C source programs into C6000 assembly language source. The compiler has 
several extensions to ANSI C. Assembly statements can be included inline with the C 
source code. This is useful for manipulating registers in the DSP and using special 
hardware features that are not efficiently accessible thorough C. TI has created a 
language called linear assembly that is part way between pure assembly language and C. 
Linear assembly source files have the extension sa. In linear assembly you do not have to 
be concerned with assigning registers. Symbolic names can be used for registers. The 
assembly optimizer assigns registers and optimizes loops to generate highly parallel 
assembly code. The assembly source code files generated by the compiler and optimizing 
assembler must then be passed through the assembler to generate relocatable object 
modules. 
 
          3.3 The Linker 
 
The final step in building a program is to link all the relocatable modules together. The 
linker, lnk6x.exe, combines relocatable object modules to form an executable output 
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program. The default extension for executable programs is out. In addition, the linker can 
generate a map file showing the absolute memory addresses of all global variables. A 
very important input to the linker is a linker command file which has the extension cmd. 
The command file can contain names of additional object modules to link, paths to 
libraries, names for the map and out files, a memory map for the target hardware system, 
and commands describing where to put specific program sections in memory.  
 

4- File Types 
 
You will be working with a number of files with different extensions. They include: 
1. file.pjt : to create and build a project named file. 
2. file.c : C source program. 
3. file.asm : assembly source program created by the user, by the C compiler,or by  the 

linear optimizer. 
4. file.sa : linear assembly source program. The linear optimizer uses file.sa as   input to 

produce an assembly program file.asm . 
5. file.h : header support file. 
6. file.lib : library file, such as the run - time support library file rts6700.lib . 
7. file.cmd : linker command file that maps sections to memory. 
8. file.obj : object file created by the assembler. 
9. file.out : executable file created by the linker to be loaded and run on the C6713 

processor. 
10. file.cdb : configuration file when using DSP/BIOS. 
 
 
LAB WORK: 
 

1- QUICK TESTS OF THE DSK (ON POWER ON AND USING CCS) 
 
1. Check out the hardware. Find the three audio connectors for the DSK. They are MIC 

IN, LINE IN, and LINE OUT. The MIC IN jack is for low level signals from a 
microphone. 

You will be using the commercial signal generator for this course and should use only 
the LINE IN and LINE OUT connectors for these larger signal levels. Beware that a 
common mistake of lab students is to make the input too large and saturate the input 
amplifiers resulting in strange outputs. 

2. On power on, a power on self - test (POST) program, stored by default in the onboard 
flash memory, uses routines from the board support library (BSL) to test the DSK. It 
tests the internal, external, and flash memory, the two multichannel buffered serial 
ports (McBSP), DMA, the onboard codec, and the LEDs. If all tests are successful, all 
four LEDs blink three times and stop (with all LEDs on). During the testing of the 
codec, a 1 - kHz tone is generated for 1 second. 

3. Launch CCS from the icon on the desktop. A USB enumeration process will take 
place and the Code Composer Studio window will open. 
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4. Click on Debug →Connect and you should see the message “The target is now 
connected” appear (for a few seconds) in the bottom left - hand corner of the CCS 
window. 

5. Click on GEL →Check DSK →QuickTest . The Quick Test can be used for 
confirmation of correct operation and installation. A message of the following form 
should then be displayed in a new window within CCS: 

Switches:15  Board Revision:2  CPLDRevision: 2 
 

The value displayed following the label Switches reflects the state of the four DIP 
switches on the edge of the DSK circuit board. A value of 15 corresponds to all four 
switches in the up position. Change the switches to (1110) 2, that is, the first three 
switches (0, 1, 2) up and the fourth switch (3) down. Click again on GEL →Check DSK 
→QuickTest and verify that the value displayed is now 7 (“Switches: 7”). You can set 
the value represented by the four user switches from 0 to 15. Programs running on the 
DSK can test the state of the DIP switches and react accordingly. The values displayed 
following the labels Board Revision and CPLD Revision depend on the type and revision 
of the DSK circuit board. 
 
6. Click on Debug → Disconnect 

2- Alternative Quick Test of DSK  
 

7. Open/launch CCS from the icon on the desktop if not done already. 

8. Select Debug →Connect and check that the symbol in the bottom left – hand corner 
of the CCS window indicates connection to the DSK. 

9. Select File →Load Program and load the file c: \ CCStudio_v3.1 \ MyProjects 
\sine8_LED \ Debug \ sine8_LED.out. This loads the executable file sine8_LED.out 
into the digital signal processor.   

10.Select Debug →Run. 

Check that the DSP is running. The word RUNNING should be displayed in the 
bottom left - hand corner of the CCS window. 
Press DIP switch #0 down. LED #0 should light and a 1 - kHz tone should be generated 
by the codec. Connect the LINE OUT (or the HEADPHONE) socket on the DSK board 
to a speaker, an oscilloscope, or headphones and verify the generation of the 1 - kHz tone. 
The four connectors on the DSK board for input and output (MIC, LINE IN, LINE OUT, 
and HEADPHONE) each use a 3.5 - mm jack audio cable.  
Halt execution of program sine8_LED.out by selecting Debug →Halt. 
 
11.Select Debug →Disconnect. 

12.Close the CCS program. 
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Experiment 2B 
Sine Wave Generation Using Eight points with DIP Switch Control 

 
Objectives: 

1- To generate a sinusoidal analog output waveform using a table-
lookup method. 

2- To illustrate some of the features of the CCS for editing source 
files, building a project, accessing the code generation tools, and 
running a program on the C6713 processor. 

 
Lab Equipments: 

1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphone. 

 
Description: 
 
The C source file sine8_LED.c listed in Figure 2B.1 is included in the folder sine8_LED . 
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The operation of program sine8_LED.c is as follows. An array, sine_table, of eight 16 - 
bit signed integers is declared and initialized to contain eight samples of exactly one 
cycle of a sinusoid. The value of sine_table[i] is equal to 

 
Within function main(), calls to functions comm_poll(), DSK6713_LED_init() ,and 
DSK6713_DIP_init() initialize the DSK, the AIC23 codec onboard the DSK, and the two 
multichannel buffered serial ports (McBSPs) on the C6713 processor. 
Function comm_poll() is defined in the file c6713dskinit.c , and functions 
DSK6713_LED_init() and DSK6713_DIP_init() are supplied in the board support library 
(BSL) file dsk6713bsl.lib . 
The program statement while (1) within the function main() creates an infinite loop. 
Within that loop, the state of DIP switch #0 is tested and if it is pressed down, LED #0 is 
switched on and a sample from the lookup table is output. If DIP switch #0 is not pressed 
down then LED #0 is switched off. As long as DIP switch #0 is pressed down, sample 
values read from the array sine_table will be output and a sinusoidal analog output 
waveform will be generated via the left - hand channel of the AIC23 codec and the LINE 
OUT and HEADPHONE sockets. Each time a sample value is read from the array 
sine_table , multiplied by the value of the variable gain , and written to the codec, the 
index, loopindex , into the array is incremented and when its value exceeds the allowable 
range for the array ( LOOPLENGTH - 1 ), it is reset to zero. 
 Each time the function output_left_sample() , defined in source file C6713dskinit.c , is 
called to output a sample value, it waits until the codec, initialized by the function 
comm_poll() to output samples at a rate of 8 kHz, is ready for the next sample. In this 
way, once DIP switch #0 has been pressed down it will be tested at a rate of 8 kHz. The 
sampling rate at which the codec operates is set by the program statement 
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; 
One cycle of the sinusoidal analog output waveform corresponds to eight output samples 
and hence the frequency of the sinusoidal analog output waveform is equal to the codec 
sampling rate (8 kHz) divided by eight, that is, 1 kHz. 
 
LAB WORK: 
 

1- Creating a Project 
 

This experiment illustrates how to create a project, adding the necessary files to generate 
an executable file sine8_LED.out. a file named sine8_LED.pjt is already exist at 
c:\CCStudio_v3.1\MyProjects\sine8_LED. However, for the purposes of gaining 
familiarity with CCS, this experiment will illustrate how to create that project file from 
scratch. 
 
1. Delete the existing project file sine8_LED.pjt in folder 

c:\CCStudio_v3.1\myprojects\sine8_LED. Do this from outside CCS. 
 
2.  Launch CCS by double - clicking on its desktop icon. 
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3. Make a quick test on the DSK. 
 
4. Create a new project file sine8_LED.pjt by selecting Project→New and typing 

sine8_LED as the project name, as shown in Figure 2B.2. Set Target to 
TMS320C67XX before clicking on Finish. The new project file will be saved in the 
folder c:\CCStudio_v3.1\Myprojects\sine8_LED. The .pjt file stores project 
information on build options, source filenames, and dependencies. The names of the 
files used by a project are displayed in the Project View window, which, by default, 
appears at the left - hand side of the Code Composer window. 

 
 
5. Add the source file sine8_LED.c to the project. sine8_LED.c is the top level C 

source file containing the definition of function main(). This source file is stored in 
the folder sine8_LED and must be added to the project if it is to be used to generate 
the executable file sine8_LED.out. Select Project→Add Files to Project and look 
for Files of Type C Source Files (* .c, * .ccc). Open, or double - click on, 
sine8_LED.c. It should appear in the Project View window Source folder. 

 
6. Add the source file c6713dskinit.c to the project. c6713dskinit.c contains the 

function definitions for a number of low level routines including comm._poll() and 
output_left_sample(). This source file is stored in the folder 
c:\CCStudio_v3.1\Myprojects\Support. Select Project→Add Files to Project and 
look for Files of Type C Source Files ( * .c, * .ccc). Open , or double - click on, 
c6713dskinit.c . It should appear in the Project View window in the Source folder. 

 
7. Add the source file vectors__poll.asm to the project. vectors_poll.asm contains the 

interrupt service table for the C6713. This source file is stored in the folder 
c:\CCStudio_v3.1\myprojects\Support. Select Project→Add Files to Project and 
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look for Files of Type ASM Source Files (* .a *). Open, or double - click on, 
vectors_poll.asm. It should appear in the Project View window in the Source folder. 

 
8. Add library support files rts6700.lib, dsk6713bsl.lib, and csl6713.lib to the 

project. Three more times, select Project→Add Files to Project and look for Files 
of Type Object and Library Files (* .o * , * .l * ) The three library files are stored in 
folders c:\CCStudio_v3.1\c6000\cgtools\lib, c:\ CCStudio_v3.1\c6000\dsk6713\lib, 
and c:\CCStudio_v3.1\c6000\csl\lib, respectively. These are the run - time support 
(for C67x architecture), board support (for C6713 DSK), and chip support (for C6713 
processor) library files. 

 
9. Add the linker command file c6713dsk.cmd to the project. This file is stored in the 

folder c:\CCStudio_v3.1\myprojects\Support. Select Project→Add Files to Project 
and look for Files of Type Linker Command File (* .cmd; * .lcf) . Open, or double - 
click on, c6713dsk.cmd. It should then appear in the Project View window. 

 
10. No header files will be shown in the Project View window at this stage. Selecting 

Project→Scan All File Dependencies will rectify this. You should now be able to 
see header files c6713dskinit.h, dsk6713.h, and dsk6713_aic23.h , in the Project View 
window. 

 
11. The Project View window in CCS should look as shown in Figure 2B.3. The GEL 

file dsk6713.gel is added automatically when you create the project. It initializes the 
C6713 DSK invoking the board support library to use the PLL to set the CPU clock to 
225 MHz (otherwise the C6713 runs at 50 MHz by default). Any of the files (except 
the library files) listed in the Project View window can be displayed (and edited) by 
double - clicking on their name in the Project View window. You should not add 
header or include files to the project. They are added to the project automatically 
when you select Scan All File Dependencies . (They are also added when you build 
the project.) 
Verify from the Project View window that the project ( .pjt ) file, the 
linker command ( .cmd ) file, the three library ( .lib ) files, the two C 
source ( .c ) files, and the assembly ( .asm ) file have been added to 
the project. 
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2- Code Generation and Build Options 
 
The code generation tools underlying CCS, that is, C compiler, assembler, and linker, 
have a number of options associated with each of them. These options must be set 
appropriately before attempting to build a project. Once set, these options will be stored 
in the project file. 
 
      2.1. Setting Compiler Options  
Select Project→Build Options and click on the Compiler tab. Set the following options, 
as shown in Figures 2B.4, 2B.5, and 2B.6.In the Basic category set Target Versionto 
C671x (- mv6710). In the Advanced category set Memory Models to Far ( – mem_ 
model:data=far) . In the Preprocessor category set Pre - Defi ne Symbol to CHIP_6713 
and Include Search Path to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include. Click on OK. 
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 2.2. Setting Linker Options  
 
Click on the Linker tab in the Build Options window, as shown in Figure 2B.7. The 
Output Filename should default to .\ Debug \ sine8_LED.out based on the name of the 
project file and the Autoinit Model should default to Run - Time Autoinitialization. Set the 
following options (all in the Basic category). Set Library Search Path to c:\ 
CCStudio_v3.1 \ C6000 \ dsk6713 \ lib and set Include Libraries to 
rts6700.lib;dsk6713bsl.lib;csl6713.lib . The map file can provide useful information for 
debugging (memory locations of functions, etc.). The –c option is used to initialize 
variables at run time, and the –o option is to name the linked executable output file 
sine8_LED.out . Click on OK . 
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3- Building , Downloading and Running the Project 
 

The project sine8_LED can now be built, and the executable file sine8_LED.out can be 
downloaded to the DSK and run. 

 
12. Build this project as sine8_LED. Select Project→Rebuild All. Or press the toolbar 

button with the three downward arrows. This compiles and assembles all the C files 
using cl6x and assembles the assembly file vectors_poll.asm using asm6x. The 
resulting object files are then linked with the library files using lnk6x . This creates an 
executable file sine8_LED.out that can be loaded into the C6713 processor and run. 
Note that the commands for compiling, assembling, and linking are performed with 
the Build option. A log file cc_build_Debug.log is created that shows the files that are 
compiled and assembled, along with the compiler options selected. It also lists the 
support functions that are used. The building process causes all the dependent files to 
be included (in case one forgets to scan for all the file dependencies). You should see 
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a number of diagnostic messages, culminating in the message “ Build Complete, 0 
Errors, 0 Warnings, 0 Remarks ” appear in an output window in the bottom left - hand 
side of the CCS window. It is possible that a warning about the Stack Size will have 
appeared. This can be ignored or can be suppressed by unchecking the Warn About 
Output Sections option in the Advanced category of Linker Build Options. 
Alternatively, it can be eliminated by setting the Stack Size option in the Advanced 
category of Linker Build Options to a suitable value (e.g., 0x1000 ). 
Connect to the DSK . Select Debug→Connect and check that the symbol in the 
bottom left - hand corner of the CCS window indicates connection to the DSK. 
 

13. Select File→Load Program in order to load sine8_LED.out. It should be stored in 
the folder c:\CCStudio_v3.1\MyProjects\sine8_LED\Debug. Select Debug→Run. 
In order to verify that a sinusoidal output waveform with a frequency of 1 kHz is 
present at both the LINE OUT and HEADPHONE sockets on the DSK, when DIP 
switch #0 is pressed down, use an oscilloscope connected to the LINE OUT socket 
and a pair of headphones connected to the HEADPHONE socket. 

 
4- Monitoring the Watch Window 

 
Ensure that the processor is still running (and that DIP switch #0 is pressed down). Note 
the message “RUNNING” displayed at the bottom left of CCS. The Watch window 
allows you to change the value of a parameter or to monitor a variable: 
 
14.  Select View →Quick Watch. Type gain, and then click on Add to Watch. The gain 

value of 10 set in the program in Figure 2B.1 should appear in the Watch window. 
 
15. Change gain from 10 to 30 in the Watch window. Press enter. Verify that the 

amplitude of the generated tone has increased (with the processor still running and 
DIP switch #0 pressed down). The amplitude of the sine wave should have increased 
from approximately 0.9 V p - p to approximately 2.5 V p - p. 

 
 

5- Using a GEL Slider to Control the Gain 
 

The General Extension Language (GEL) is an interpreted language similar to (a subset 
of) C. It allows you to change the value of a variable (e.g., gain) while the processor is 
running. 
 
16. Select File →Load GEL and load the file gain.gel (in folder sine8_LED ). 
 
17. Double - click on the filename gain.gel in the Project View window to view it within 

CCS. The file is listed in Figure 2B.8. The format of a slider GEL function is 
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where param_definition identifies the slider and is displayed as the name of the slider 
window, minVal is the value assigned to the GEL variable param-Name when the slider 
is at its lowest level, maxVal is the value assigned to the GEL variable paramName when 
the slider is at its highest level, increment specifies the incremental change to the value of 
the GEL variable paramName made using the up - or down - arrow keys, and 
pageIncrement specifies the incremental change to the value of the GEL variable 
paramName made by clicking in the slider window. In the case of gain.gel , the statement 
gain = gain_parameter; assigns the value of the GEL variable gain_parameter to the 
variable gain in program sine8_LED . The line menuitem “Sine Gain”sets the text that 
will appear as an option in the CCS GEL menu when gain.gel is loaded. 
 
18. Select GEL→Sine Gain →Gain. This should bring out the slider window shown 

in Figure 2B.9, with the minimum value of 0 set for the gain. 
 
19. Press the up - arrow key three times to increase the gain value from 0 to 12. Verify 

that the peak - to - peak value of the sine wave generated is approximately 1.05 V. 
Press the up - arrow key again to continue increasing the slider, incrementing by 4 
each time. The amplitude of the sine wave should be about 2.5 V p - p with the value 
of gain set to 30. Clicking in the Gain slider window above or below the current 
position of the slider will increment or decrement its value by 1. The slider can also 
be dragged up and down. Changes to the value of gain made using the slider are 
reflected in the Watch window. 
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6- Changing the Frequency of the Generated Sinusoid 
 
There are several different ways in which the frequency of the sinusoid generated by 
program sine8_LED.c can be altered. 
 
20. Change the AIC23 codec sampling frequency from 8 kHz to 16 kHz by changing the 

line that reads 
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; 
to read 
Uint32 fs = DSK6713_AIC23_FREQ_16KHZ; 
Rebuild (use incremental build) the project, load and run the new executable file, and 
verify that the frequency of the generated sinusoid is 2 kHz. The sampling 
frequencies supported by the AIC23 codec are 8, 16, 24, 32, 44.1, 48, and 96 kHz. 

 
21.  Change the number of samples stored in the lookup table to four. By changing the 

lines that read 
#define LOOPLENGTH 8 
short sine_table[LOOPLENGTH]={0,707,1000,707,0, -707,0,-1000,-707}; 
to read 
#define LOOPLENGTH 4 
short sine_table[LOOPLENGTH]={0,1000,0, -1000}; 
Verify that the frequency of the sinusoid generated is 2 kHz (assuming an 8 - kHz 
sampling frequency). 
 

Remember that the sinusoid is no longer generated if the DIP switch #0 is not pressed 
down. A different DIP switch can be used to control whether or not a sinusoid is 
generated by changing the value of the parameter passed to the functions 
DSK6713_DIP_get(), DSK6713_LED_on(), and DSK6713_LED_off() . Suitable values 
are 0, 1, 2, and 3. 
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Two sliders can readily be used, one to change the gain and the other to change the 
frequency. A different signal frequency can be generated, by changing the incremental 
changes applied to the value of loopindex within the C program (e.g., stepping through 
every two points in the table). When you exit CCS after you build a project, all changes 
made to the project can be saved. You can later return to the project with the status as you 
left it before. For example, when returning to the project, after launching CCS, select 
Project→Open to open an existing project such as sine8_LED.pjt (with all the 
necessary files for the project already added). 
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Experiment 2C 
Generation of sinusoid and Plotting with CCS (sine8_buf) 

 
Objectives: 

1- To generate a sinusoidal analog output waveform using eight pre-
calculated and pre-stored sample values. 

2- To illustrate the capabilities of CCS for plotting data in both time 
and frequency domains.  

 
Lab Equipments: 

1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphone. 

 
Description: 
 
This example generates a sinusoidal analog output signal using eight pre[calculated and 
pre[stored sample values. However, it differs fundamentally from sine8_LED in that its 
operation is based on the use of interrupts. In addition, it uses a buffer to store the 
BUFFERLENGTH most recent output samples. It is used to illustrate the capabilities of 
CCS for plotting data in both time and frequency domains. All the files necessary to build 
and run an executable file sine8_BUF.out are stored in folder sine8_buf. Program file 
sine8_buf.c is listed in Figure 2C.1. 
 
This program uses interrupt- driven input/output rather than polling, so that the file 
vectors_intr.asm is used in place of vectors_poll.asm. The interrupt service table 
specified in vectors_intr.asm associates the interrupt service routine c_int11() with 
hardware interrupt INT11, which is asserted by the AIC23 codec on the DSK at each 
sampling instant. Within function main() , function comm_intr() is used in place of 
comm_poll() . This function is defined in file c6713dskinit.c. Essentially, it initializes the 
DSK hardware, including the AIC23 codec, such that the codec sampling rate is set 
according to the value of the variable fs and the codec interrupts the processor at every 
sampling instant. The statement while(1) in function main() creates an infinite loop, 
during which the processor waits for interrupts. On interrupt, execution proceeds to the 
interrupt service routine (ISR) c_int11() , which reads a new sample value from the array 
sine_table and writes it both to the array out_buffer and to the DAC using function 
output_left_sample().  
 
Because a project file sine8_buf.pjt is supplied, there is no need to create a new project 
file, add files to it, or alter compiler and linker build options. In order to build, download 
and run program sine8_buf.c. 
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LAB WORK: 
 
1.  Launch CCS by double - clicking on its desktop icon. 
 
2. Make a quick test on the DSK. 
 
3. Open project sine8_buf.pjt by selecting Project →Open and double – clicking on 

file sine8_buf.pjt in folder sine8_buf. 
 
4. Build this project as sine8_buf. Load and run the executable file sine8_buf.out and 

verify that a 1 - kHz sinusoid is generated at the LINE OUT and HEADPHONE 
sockets 

 
Graphical Displays in CCS 
 
The array out_buffer is used to store the BUFFERLENGTH most recently output sample 
values. Once program execution has been halted, the data stored in out_buffer can be 
displayed graphically in CCS. 
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5. Select View→Graph →Time/Frequency and set the Graph Property Dialog 
properties as shown in Figure 2C.2.a. Figure 2C.2.b. shows the resultant Graphical 
Display window. 

 
6. Figure 2C.3.a shows the Graph Property Dialog window that corresponds to the 

frequency domain representation of the contents of out_buffer shown in Figure 
2C.3.b. The spike at 1 kHz represents the frequency of the sinusoid generated by 
program sine8_buf.c . 
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Viewing and Saving Data from Memory into File 
 
7. To view the contents of out_buffer, select View→Memory. Specify out_buffer as 

the Address and select 32 - bit Signed Integer as the Format , as shown in Figure 
2C.4.a. The resultant Memory window is shown in Figure 2C.4.b. 

 
8. To save the contents of out_buffer to a file, select File→Data →Save. Save the 

file as sine8_buf.dat , selecting data type Integer , in the folder sine8_buf. In the 
Storing Memory into File window, specify out_buffer as the Address and a Length of 
256. The resulting file is a text file and you can plot this data using other applications 
(e.g., MATLAB). 
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Although the values stored in array sine_table and passed to function 
output_left_sample() are 16 - bit signed integers, array out_buffer is declared as type int 
(32 - bit signed integer) in program sine8_buf.c to allow for the fact that there is no 16 - 
bit Signed Integer data type option in the Save Data facility in CCS. 
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Experiment 3A 
Basic Input and Output Using Polling (loop_poll) 

 
Objectives: 

1- Sampling and reconstruction of real time signals. 
2- Gain change of the line input.  
 

Lab Equipments: 
1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphone. 
5- Signal Generator. 

 
Description: 
 
A basic DSP system, suitable for processing audio frequency signals, comprises a digital 
signal processor and analog interfaces as shown in Figure 2A.1. The C6713 provides just 
such a system, using the TMS320C6713 (C6713) floating - point processor and the 
TLV320AIC23 (AIC23) codec. The term codec refers to the coding of analog waveforms 
as digital signals and the decoding of digital signals as analog waveforms. The AIC23 
codec performs both the analog - to - digital conversion (ADC) and digital - to - analog 
conversion (DAC) functions shown in Figure 3A.1. Alternatively, I/O daughter cards, 
plugged into the External Peripheral Interface 80 - pin connector J3 on the DSK board 
can be used for analog input and output.  
 

 
 
Within digital signal processors, signals are represented as sequences of discrete samples 
and whenever signals are sampled, the possibility of aliasing arises. Aliasing is 
undesirable phenomena and it may be avoided by the use of an antialiasing filter placed at 
the input to the system shown in Figure 3A.1 and by suitable design of the DAC. In a 
baseband system, an effective antialiasing filter is one that allows frequency components 
below half of the sampling frequency to pass but which attenuates greatly, or stops, 
frequency components equal to or greater than half of the sampling frequency. A suitable 
DAC for a baseband system essentially comprises a lowpass filter having characteristics 
similar to the aforementioned antialiasing filter. The AIC23 codec contains digital 
antialiasing and reconstruction filters. 
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The C6713 DSK makes use of the TLV320AIC23 (AIC23) codec for analog input and 
output. The analog - to - digital converter (ADC), or coder, part of the codec converts an 
analog input signal into a sequence of sample values (16 – bit signed integer) to be 
processed by the digital signal processor. The digital - to – analog converter (DAC), or 
decoder, part of the codec reconstructs an analog output signal from a sequence of sample 
values (16 - bit signed integer) that have been processed by the digital signal processor. 
The AIC23 is a stereo audio codec based on sigma – delta technology.  
 
A 12 - MHz crystal supplies the clock to the AIC23 codec (also to the DSP and the USB 
interface). Using this 12 - MHz master clock, with oversampling rates of 250Fs and 
272Fs , exact audio sample rates of 48 kHz (12 MHz/250) and the CD rate of 44.1 kHz 
(12 MHz/272) can be obtained. The sampling rate of the AIC23 can be configured to be 
8, 16, 24, 32, 44.1, 48, or 96 kHz. 
 
Communication with the AIC23 codec for input and output uses two multichannel 
buffered serial ports (McBSPs) on the C6713. McBSP0 is used as a unidirectional 
channel to send a 16 - bit control word to the AIC23. McBSP1 is used as a bidirectional 
channel to send and receive audio data. The codec can be configured for data - transfer 
word-lengths of 16, 20, 24, or 32 bits. The LINE IN and HEADPHONE OUT signal 
paths within the codec contain configurable gain elements with ranges of 12 to − 34 dB in 
steps of 1.5 dB, and 6 to − 73 dB in steps of 1 dB, respectively. Most of the programming 
examples in this booklet configure the codec for a sampling rate of 8 kHz, 32 - bit data 
transfer, and 0 - dB gain in the LINE IN and HEADPHONE OUT signal paths. The 
maximum allowable input signal level at the LINE IN inputs to the codec is 1 V rms. 
However, the C6713 DSK contain a potential divider circuit with a gain of 0.5 between 
their LINE IN sockets and the codec itself with the effect that the maximum allowable 
input signal level at the LINE IN sockets on the DSK is 2 V rms. Above this level, input 
signals will be distorted. Input and output sockets on the DSK are ac coupled to the 
codec.  
 
The C language source file for a program, loop_poll.c , that simply copies input samples 
read from the AIC23 codec ADC back to the AIC23 codec DAC as output samples is 
listed in Figure3A.2. Effectively, the MIC input socket is connected straight through to 
the HEADPHONE OUT socket on the DSK via the AIC23 codec and the digital signal 
processor. loop_poll.c uses the same polling technique for real - time input and output as 
program sine8_LED.c , presented in previous experiment .  
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Input and Output Functions Defined in Support File c6713dskinit.c 
 
The functions input_left_sample() , output_left_sample() , and comm_poll() 
are defined in the support file c6713dskinit.c. This way the C source file loop_poll.c is 
kept as small as possible and potentially distracting low level detail is hidden. The 
implementation details of these, and other, functions defined in c6713dskinit.c need not 
be studied in detail in order to carry out the examples presented in this booklet but are 
described here for completeness. 
 
Further calls are made by input_left_sample() and output_left_sample() to lower level 
functions contained in the board support library DSK6713bsl.lib. Function comm_poll() 
initializes the DSK and, in particular, the AIC23 codec such that its sample rate is set 
according to the value of the variable fs (assigned in loop_poll.c ), its input source 
according to the value of the variable inputsource (assigned in loop_poll.c), and polling 
mode is selected. Other AIC23 configuration settings are determined by the parameters 
specified in file c6713dskinit.h. These parameters include the gain settings in the LINE 
IN and HEADPHONE out signal paths, the digital audio interface format, and so on. 
Similar values for all of these parameters are used by almost all of the program examples 
in this booklet. Only rarely will they be changed and so it is convenient to hide them out 
of the way in file c6713dskinit.h . 
 
The two settings, sampling rate and input source, are changed sufficiently frequently, 
from one program example to another, that their values are set in each example program 
by initializing the values of the variables fs and inputsource. In function dsk6713_init() in 
file c6713dskinit.c , these values are used by functions DSK6713_AIC23_setFreq() and 
DSK6713_AIC23_rset(), respectively. In polling mode, function input_left_sample() 



 38 

polls, or tests, the receive ready bit ( RRDY ) of the McBSP serial port control register ( 
SPCR ) until this indicates that newly converted data is available to be read using 
function MCBSP_read(). Function output_left_sample() polls, or tests, the transmit ready 
bit ( XRDY ) of the McBSP serial port control register ( SPCR ) until this indicates that 
the codec is ready to receive a new output sample. A new output sample is sent to the 
codec using function McBSP_write() . 
 
Although polling is simpler than the interrupt technique used in sine8_buf.c, it is less 
efficient since the processor spends nearly all of its time repeatedly testing whether the 
codec is ready either to transmit or to receive data. 
 
LAB WORK: 
 
1.  Launch CCS by double - clicking on its desktop icon. 
 
2. Make a quick test on the DSK. 
 
3. Open project loop_poll.pjt by selecting Project →Open and double – clicking on 

file loop_poll.pjt in folder loop_poll. 
 
4. Load and run the executable file loop_poll.out. 
 
5. Use a microphone and headphones to verify that the program operates as intended. 
 
6. Rebuild the program having changed the line that reads 

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; 
to read 
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; 
in order to select the LINE IN rather than the MIC socket on the 
DSK. 

 
7. Input a sinusoidal waveform to the LINE IN connector on the DSK, with amplitude of 

approximately 2.0 V p - p and a frequency of approximately 1 kHz. 
 
8. Connect the output of the DSK, LINE OUT, to an oscilloscope, and verify the 

presence of a tone of the same frequency, but attenuated to approximately 1.0 V p - p. 
 
9. Explain the attenuation occurred. 
 
10. Increase the amplitude of the input sinusoidal waveform (at the LINE IN socket) 

beyond 5V p – p. and verify that the output signal becomes distorted. Why? 
 
Changing the LINE IN Gain of the AIC23 Codec 
 
The AIC23 codec allows for the gain on left - and right - hand line - in input channels to 
be adjusted independently in steps of 1.5 dB by writing different values to the left and 
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right line input channel volume control registers. The values assigned to these registers 
by function comm_poll() are defined in the header file c6713dskinit.h . In order to change 
the values written, that file must be modified. 
 
 
11. Copy the files c6713dskinit.h and C6713dskinit.c from the Support folder into the 

folder loop_poll so that you don’t modify the original header file. 
 
12. Remove these two files from the loop_poll project by right - clicking on 

c6713dskinit.c in the Project View window and then selecting Project→ Remove 
from Project. 

 
13. Add the copy of the file c6713dskinit.c in folder loop_poll to the project by selecting 

Project → Add Files to Project. 
 
14. Check that you have added the copy of file c6713dskinit.c to the project by right - 

clicking on it in the Project View window and selecting Properties. 
 
15. Select Project→ Scan all Dependencies in order to replace the file c6713dskinit.h 

with the copy in folder loop_poll . 
 
16. Edit the copy of file c6713dskinit.h included in the project (and stored in folder 

loop_poll ), changing the line that reads 
0x0017 / * Set -Up Reg 0 Left line volume control */ 
to read 
0x001B / * Set -Up Reg 0 Left line volume control */ 

This modifies the value written to the AIC23 left line input channel gain register 
from 0x0017 to 0x001B and this increases the gain from 0 dB to 6 dB. 

 
17. Build the project, making sure that the copy of the file c6713dskinit.c used in the 

project is the copy in folder loop_poll. The header file c6713dskinit.h that will be 
included will come from that same folder 

 
18. Load and run the executable file loop_poll.out and verify that the output signal is not 

attenuated, but has the same amplitude as the input signal, that is, 2 V p - p.  
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Experiment 3B 
Basic Input and Output Using Interrupts (loop_intr) 

 
Objectives: 

1- Sampling and reconstruction of real time signals using the 
interrupt driven model. 

2- Demonstration of echo and delay effects. 
 
Lab Equipments: 

1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphone. 
5- Signal Generator. 

 
Description: 
 
Program loop_intr.c is functionally equivalent to program loop_poll.c but makes use of 
interrupts. This simple program is important because many of the other example 
programs in this booklet are based on the same interrupt - driven model. Instead of 
simply copying the sequence of samples representing an input signal to the codec output, 
a digital filtering operation can be performed each time a new input sample is received. It 
is worth taking time to ensure that you understand how program loop_intr.c works. In 
function main() , the initialization function comm_intr() is called. comm_intr() is very 
similar to comm_poll() but in addition to initializing the DSK, codec, and McBSP, and 
not selecting polling mode, it sets up interrupts such that the AIC23 codec will sample the 
analog input signal and interrupt the C6713 processor, at the sampling frequency defined 
by the line 
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 
 
It also initiates communication with the codec via the McBSP. In this example, a 
sampling rate of 8 kHz is used and interrupts will occur every 0.125 ms. (Sampling rates 
of 16, 24, 32, 44.1, 48, and 96 kHz are also possible.) 
 
Following initialization, function main() enters an endless while loop, doing nothing but 
waiting for interrupts. The functions that will act as interrupt service routines for the 
various different interrupts are specified in the interrupt service table contained in file 
vectors_intr.asm. This assembly language file differs from the file vectors_poll.asm in 
that function c_int11() is specified as the interrupt service routine for interrupt INT11. On 
interrupt, the interrupt service routine (ISR) c_int11() is called and it is within that routine 
that the most important program statements are executed. Function output_left_sample() 
is used to output a value read from the codec using function input_left_sample() . 
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Format of Data Transferred to and from AIC 23 Codec 
 
The AIC23 ADC converts left - and right - hand channel analog input signals into 16 - bit 
signed integers and the DAC converts 16 - bit signed integers to left - and right - hand 
channel analog output signals. Left - and right - hand channel samples are combined to 
form 32 - bit values that are communicated via the multichannel buffered serial port 
(McBSP) to and from the C6713. Access to the ADC and DAC from a C program is via 
the functions Uint32 input_sample(), short input_left_sample(), short 
input_right_sample(), void output_sample(int out_data) , void output_left_sample(short 
out_data), and void output_right_sample(short out_data). 
The 32 - bit unsigned integers (Uint32) returned by input_sample() and passed to 
output_sample() contain both left and right channel samples. The statement 
 

 
 

 
 
In file dsk6713init.h declares a variable that may be handled either as one 32 - bit 
unsigned integer (AIC_data.uint) containing left and right channel sample values, or as 
two 16 - bit signed integers (AIC_data.channel[0] and AIC_data.channel[1] ). 
 
Most of the program examples in this booklet use only one channel for input and output 
and for clarity most use the functions input_left_sample() and output_left_sample() . 
These functions are defined in the file c6713dskinit.c, where the unpacking and packing 
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of the signed 16 - bit integer left - hand channel sample values out of and into the 32 - bit 
words received and transmitted from and to the codec are carried out. 
 
Modifying Program loop_intr.c to Create a Delay ( delay) 
 
Some simple, yet striking, effects can by achieved simply by delaying the samples as they 
pass from input to output. Program delay.c, listed in Figure 3B.2 , demonstrates this. A 
delay line is implemented using the array buffer to store samples as they are read from 
the codec. Once the array is full, the program overwrites the oldest stored input sample 
with the current, or newest, input sample. Just prior to overwriting the oldest stored input 
sample in buffer , that sample is retrieved, added to the current input sample, and output 
to the codec. Figure 3B.3 shows a block diagram representation of the operation of 
program delay.c in which the block labeled T represents a delay of T seconds.  
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Modifying Program loop_intr.c to Create an Echo ( echo) 
 
By feeding back a fraction of the output of the delay line to its input, a fading echo effect 
can be realized. Program echo.c, listed in Figure 3B.4, does this. Figure 3B.5 shows a 
block diagram representation of the operation of program echo.c. The value of the 
constant BUF_SIZE determines the number of samples stored in the array buffer and 
hence the duration of the delay. The value of the constant GAIN determines the fraction 
of the output that is fed back into the delay line and hence the rate at which the echo 
effect fades away. Setting the value of GAIN equal to or greater than unity would cause 
instability of the loop. 
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Build and run this project as echo. Experiment with different values of GAIN (between 
0.0 and 1.0) and BUF_SIZE (between 100 and 8000). Source file echo.c must be edited 
and the project rebuilt in order to make these changes. 
 
Loop Program with Input Data Stored in a Buffer ( loop_buf ) 
 
Program loop_buf.c , listed in Figure 3B.6  , is an interrupt - based program and is stored 
in folder loop_buf . It is similar to program loop_intr.c except that it maintains a circular 
buffer in array buffer containing the BUF_SIZE most recent input sample values. 
Consequently, it is possible to display this data in CCS after halting the program. 
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LAB WORK: 
 
1.  Launch CCS by double - clicking on its desktop icon. 
 
2. Make a quick test on the DSK. 
 
3. Open project loop_intr.pjt by selecting Project →Open and double – clicking on 

file loop_intr.pjt in folder loop_intr. 
 
4. Load and run the executable file loop_intr.out. 
 
5. Use a microphone and headphones to verify that the program operates as intended. 
 
6. Halt the executable file loop_intr.out. 
 
7. Open project delay.pjt by selecting Project →Open and double – clicking on file 

delay.pjt in folder delay. 
 
8. Load and run the executable file delay.out. 
 
9. Use a microphone and headphones to verify that the program operates as intended. 
 
10. Halt the executable file delay.out. 
 
11. Open project echo.pjt by selecting Project →Open and double – clicking on file 

echo.pjt in folder delay. 
 
12. Load and run the executable file echo.out. 
 
13. Experiment with different values of GAIN (between 0.0 and 1.0) and BUF_SIZE 

(between 100 and 8000). Source file echo.c must be edited and the project rebuilt in 
order to make these changes. 

 
14. Halt the executable file echo.out. 
 
15. Use a signal generator connected to the LINE IN socket to input a sinusoidal signal 

with a frequency between 100 and 3500 Hz. 
 
16. Open project loop_buf.pjt by selecting Project →Open and double – clicking on file 

loop_buf.pjt in folder loop_buf. 
 
17. Load and run the executable file loop_buf.out. 
 
18. Halt the program after a short time. 
 
19. Select View → Graph → Time/Frequency in order to display the contents of array buffer.  
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Experiment 3C 
Sine Wave Generation Using sin() Function,   

Reconstruction, Aliasing, and the Properties of the AIC 23 
Codec 

 
Objectives: 

1- To generate sinusoidal signal using mathematical function. 
2- Demonstration of aliasing in real time system. 
3- To visualize the step response of the AIC23 Codec Anti-aliasing 

Filter 
 

Lab Equipments: 
1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Signal Generator. 

 
Description: 
 
Generating analog output signals using programs such as sine_intr.c (Figure 3C.1) is a 
useful means of investigating the characteristics of the AIC23 codec. 
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At each sampling instant, that is, within function c_int11() , a new output sample value is 
calculated using a call to the math library function sin() . The floating - point parameter, 
theta, passed to that function is incremented at each sampling instant by the value 
theta_increment = 2 * PI * frequency/SAMPLING_FREQ and when value of theta 
exceeds 2 π the value 2 π is subtracted from it. 
 
Changing the value of the variable frequency in program sine_intr.c to an arbitrary value 
between 100.0 and 3500.0, you should find that a sine wave of that frequency is 
generated. While changing the value of the variable frequency to 7000.0, you will find 
that a 1 - kHz sine wave is generated. The same is true if the value of frequency is 
changed to 9000.0 or 15000.0. These effects are due to the phenomenon of aliasing. 
Sequences of samples calculated using function sin() at frequencies 8000 n ± 1000 Hz, 
where n = 0, ± 1, ± 2, ± 3, . . . are identical and all are reconstructed by the codec as a 1 - 
kHz sine wave.A graphical representation of this is shown in Figure 3C.2. 
 
In the time domain, the sampling process may be represented by multiplication of the 
analog input waveform sin(2 * pi * 1000 * t) (Figure 3C.2a) by a sequence of impulses at 
intervals of Ts = 0.125 ms (Figure 3C.2c), resulting in a sequence of weighted impulses 
(Figure 3C.2e). 
 
In the frequency domain, the analog input waveform is represented by two discrete values 
at ± 1 kHz (Figure 3C.2b) and the sequence of time - domain impulses by a sequence of 
impulses in the frequency domain at intervals of 1/ Ts = 8 kHz (Figure 3C.2d). 
Multiplication in the time domain is equivalent to convolution in the frequency domain. 
Convolving the signals of Figures 3C.2.b and 3C.2d, the frequency – domain 
representation of the sampled sinusoid (Figure 3C.2e) is an infinitely repeated sequence 
of copies of the two impulses at ± 1 kHz centered at 0 Hz, ± 8 kHz, ± 16 kHz, . . . (Figure 
3C.2f). Next, consider the case of a 7 - kHz sine wave sampled at 8 kHz. Time – and 
frequency - domain representations of the analog input signal sin(2 * pi * 7000 * t) are 
shown in Figures 3C.2g and 3C.2h. 
 
Convolving the signal shown in Figure 3C.2h with that shown in Figure 3C.2d results in 
the signal shown in Figure 3C.2j. This comprises an infinitely repeated sequence of 
copies of the two impulses at ± 7 kHz centered at 0 Hz, ± 8 kHz, ± 16 kHz, . . . . Despite 
their different derivations, Figures 3C.2f and 3C.2j are identical. This corresponds to the 
equivalence of the time - domain sample sequences shown in Figures 3C.2e and 3C.2i. 
The lowpass characteristic of the DAC can be represented by the attenuation, or blocking, 
of frequency components outside the range ± 4 kHz. This results, in this example, in the 
lowpass filtered or reconstructed versions of the signals in Figures 3C.2f and 3C.2j being 
identical to that shown in Figure 3C.2b. 
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Since the reconstruction (digital - to - analog conversion) process is one of lowpass 
filtering, it follows that the bandwidth of signals output by the codec is limited.  
 
LAB WORK: 
 
1. Launch CCS by double - clicking on its desktop icon. 
 
2. Make a quick test on the DSK. 
 
3. Connect the oscilloscope to LINE OUT on the DSK. 
 
4. Open project sine_intr.pjt by selecting Project →Open and double – clicking on file 

sine_intr.pjt in folder sine_intr. 
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5. Change the value of the variable frequency in program sine_intr.c to an arbitrary 
value between 100.0 and 3500.0. 

 
6. Rebuild the project sine_intr.pjt. 
 
7. Load and run the executable file sine_intr.out. 
 
8. Record the frequency of the output sine wave. 
 
9. Change the value of the variable frequency to 7000.0, then rebuild the project. 
 
10. Load and run the executable file sine_intr.out. 
 
11. Record the frequency of the output sine wave. 
 
12. Change the value of the variable frequency to 3500.0, then rebuild the project. 
 
13. Load and run the executable file sine_intr.out. 
 
14. Record the frequency of the output sine wave. 
 
15. Change the value of the variable frequency to 4500.0, then rebuild the project. 
 
16. Load and run the executable file sine_intr.out. 
 
17. Record the frequency of the output sine wave. 
 
Step Response of the AIC23 Codec Antialiasing Filter (loop_buf) 
 
18. Connect a signal generator to the DSK LINE IN socket. 
 
19. Adjust the signal generator to give a square wave output of frequency 270 Hz and 

amplitude 0.2 V. 
 
20. Load and run program loopbuf.c on the DSK. 
 
21. Halting the DSP after a few seconds. 
 
22. View the most recent 64 input sample values by selecting View→ Graph and setting 

the Graph Properties as shown in Figure 3C.3. 
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Experiment 4 
FIR Filter I 

 
Objectives: 

1- To implement FIR filters in real time signal processing system. 
2- To assess the magnitude frequency response of FIR filters. 
 

Lab Equipments: 
1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphones. 

 
Theory: 
 
The moving average filter is widely used in DSP and arguably is the easiest of all digital 
filters to understand. It is particularly effective at removing (high frequency) random 
noise from a signal or at smoothing a signal. 
The moving average filter operates by taking the arithmetic mean of a number of past 
input samples in order to produce each output sample. This may be represented by the 
equation 

 
Where x ( n ) represents the n th sample of an input signal and y ( n ) the n th sample of 
the filter output. The moving average filter is an example of convolution using a very 
simple filter kernel or impulse response comprising N coefficients each of value 1 /N. The 
above equation may be thought of as a particularly simple case of the more general 
convolution sum implemented by a finite impulse response filter; that is, 
 

 
where the FIR filter coefficients h (i) are samples of the filter impulse response and in the 
case of the moving average filter each is equal to 1 /N . As far as implementation is 
concerned, at the nth sampling instant we multiply N past input samples individually by 
1/N and sum the N products. 
 
Program average.c, listed in Figure 4.1, uses this approach, even though it is not the most 
computationally efficient. The value of N defined near the start of the source file 
determines the number of previous input samples to be averaged. 
 
A more rigorous method of assessing the magnitude frequency response of the filter is to 
use a signal generator and an oscilloscope or spectrum analyzer to measure its gain at 
different individual frequencies. By using this method, it is straightforward to identify the 
distinct notches in the magnitude frequency response at 1600 Hz (corresponding to the 
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tone in test file mefsin.wav that is stored in folder average.c ) and at 3200 Hz. The 
theoretical frequency response of the filter can be found using Matlab by running the 
following two lines: 
 
>> [H W]=freqz([0.2 0.2 0.2 0.2 0.2],1); 
>> plot(W*4000/pi,20*log10(abs(H))) 
 
This frequency response is shown in Figure 4.2 
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Another method of assessing the magnitude frequency response of a filter is to use 
wideband noise as an input signal. Program averagen.c demonstrates this technique. A 
pseudorandom binary sequence (PRBS) is generated within the program and used as an 
input to the filter in lieu of samples read from the ADC. The filtered noise can be viewed 
on a spectrum analyzer and whereas the frequency content of the PRBS input is uniform 
across all frequencies, the frequency content of the filtered noise will reflect the 
frequency response of the filter. 
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The frequency response of the moving average filter can be changed by altering the 
number of previous input samples that are averaged, or by altering the values of the 
coefficients. 
 
LAB WORK I: 
 
1.  Launch CCS by double - clicking on its desktop icon. 
 
2. Make a quick test on the DSK. 
 
3. Open project average.pjt by selecting Project →Open and double – clicking on file 

average.pjt in folder average. 
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4. Connect the output of a function generator to the LINE IN socket on the DSK.  
 
5. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
6. Load and run the executable file average.out. 
 
7. Construct a table to assess the magnitude frequency response of the filter. 
 

i. Set the output of the function generator to 1 P PV −  sinusoidal waveform. 
ii. Change the frequency of the sinusoidal signal at the output of a function from 100 

Hz to 4000 Hz in steps and record the peak value of the signal on the scope.  
 

Frequency Peak Value dB value 
   
   
   
   
   
   
   
   
   
   
   
   

 
 
 
8. A test file mefsin.wav, stored in folder average, contains a recording of speech 

corrupted by the addition of a sinusoidal tone. Listen to this file using Goldwave, 
Windows Media Player, or similar.  

 
9. Connect the PC soundcard output to the LINE IN socket on the DSK and listen to the 

filtered test signal (LINE OUT or HEADPHONE).  
 
10. Halt the executable file average.out. 
 
11. Open project averagen.pjt by selecting Project →Open and double – clicking on 

file averagen.pjt in folder averagen. 
 
12. Load and run the executable file averagen.out. 
 
13. Using the FFT feature of the scope, capture the output of program averagen.c, 

compare the plot with figure 4.2.  
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14. Halt the executable file averagen.out. 
 
15. Modify program averagen.c so that it implements an eleven point moving average 

filter; that is, change the line that reads 
#define N 5 
to read 
#define N 11 

 
16. Build and run the project and verify that the frequency response of the filter has 

changed using the FFT feature of the scope. 
 
17. Build and run the project and verify that the frequency response of the filter has 

changed using the FFT feature of the scope. 
 
18. Use Matlab to verify the frequency response of this new filter. 
 
19. Halt the executable file averagen.out. 
 
20. Modify program averagen.c again, changing the lines that read 

#define N 11 
float h[N]; 
to read 
#define N 5 
float h[N] = {0.0833, 0.2500, 0.3333. 0.2500, 0.0833}; 
and comment out the following line 
for (i=0 ; i < N ; i++) h[i] = 1.0/N; 

 
21. Build and run the project and verify that the frequency response of the filter has 

changed using the FFT feature of the scope. 
     Use Matlab to verify the frequency response of this new filter. Record your notes. 
 
FIR Filter with Moving Average, Bandstop, and Bandpass Characteristics ( fir ) 
 
Description  
 
The mechanism used by program fir.c (Figure 4.4) to calculate each output sample is 
identical to that employed by program average.c. Function c_int11() has exactly the same 
definition in both programs. Whereas program average.c calculated the values of its 
coefficient in function main() , program fir.c reads the values of its coefficients from a 
separate file. Using this mechanism, we can implement any FIR filter with its coefficients 
stored in a separate file. 
 
LAB WORK II: 
 
22. Open project fir.pjt by selecting Project →Open and double – clicking on file fir.pjt 

in folder fir. 
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23. Connect the output of a function generator to the LINE IN socket on the DSK.  
 
24. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
25. Load and run the executable file fir.out. Coefficient file ave5f.cof is listed in Figure 

4.5. Using that file, program fir.c implements the same five point moving average 
filter implemented by program average.c. The number of filter coefficients is 
specified by the value of the constant N, defined in the .cof file and the coefficients 
are specified as the initial values in an N element array, h, of type float. 

 
26. Run the program and verify that it implements a five point moving average filter 

using an assessment method similar to that in LAB WORK I above. You need only to 
take some selected frequencies as a test such as 1600 Hz. Record your note. 

 
27. To implement a band-pass filter at 2700 Hz change the line that reads 
      #include “ ave5f.cof ” 
      To read 
      #include “ bs2700f.cof ” 
 
28. Build and run this project. 
 
29. Input a sinusoidal signal and vary the input frequency slightly below and above 2700 

Hz. Verify that the output is a minimum at 2700 Hz. The values of the coefficients for 
this filter were calculated using MATLAB’s filter design and analysis tool, fdatool. 

 
30. Edit program fir.c again to include the coefficient file bp1750f.cof in place of 

bs2700f.cof. File bp1750f.cof represents an FIR bandpass filter (81 coefficients) 
centered at 1750 Hz. Again, this filter was designed using MATLAB ’ s fdatool . 

 
31.  Select Project → Build, and the new coefficient file bp1750.cof will automatically be 

included in the project. Run again and verify an FIR bandpass filter centered at 1750 
Hz using an assessment method similar to that in LAB WORK I above. You need 
only to take some selected frequencies as a test such as 1600 Hz. Record your note. 
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Generating Filter Coefficient ( .cof) Files Using MATLAB 
 
If the number of filter coefficients is small, a coefficient ( .cof) file can be edited by hand. 
For larger numbers of coefficients the MATLAB function dsk_fir67() , supplied on the 
CD accompanying the text book as file dsk_fir67.m , can be used. This function, listed in 
Figure 4.6, expects to be passed a MATLAB vector of coefficient values and prompts the 
user for an output filename. 
For example, the coefficient file ave5f.cof was created by typing the following at the 
MATLAB command prompt: 
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>> x = [0.2, 0.2, 0.2, 0.2, 0.2]; 
>> dsk_fir67(x) 
 
Enter filename for coefficients ave5f.cof 
Note that the coefficient filename must be entered in full, including the suffix .cof. 
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LAB WORK III: 
 
32. Open project fir.pjt by selecting Project →Open and double – clicking on file fir.pjt 

in folder fir. 
 
33. Connect the output of the PC speaker to the LINE IN socket on the DSK.  
 
34. Connect the HP OUT socket on the DSK to a headphone. 
 
35. Design a bandstop filter to approximately reject 3 kHz tone from a corrupted speech 

signal using the Matlab filter design tool (fdatool). 
 
36. In the filter design and analysis tool window, select Export from the File menu, a 

small window with Export title will be opened. 
 
37.  In the Export window, select Workspace for Export to, Coefficients for Export As. 
 
38. In the Variable Names, type Num3000, then click Export. The filter coefficients are 

now available in the present Workspace and can be verified by typing whos. 
 
39. Create a coefficient file by typing 

>> dsk_fir67(Num3000) 
enter filename for coefficients Num3000f.cof 

 
40. To implement this filter edit file fir.c and change the line that reads 
      #include “ ave5f.cof ” 
      To read 
      #include “Num3000f.cof  
 
41. Build and run this project. 
 
42. On Matlab, play the corrupted speech signal with the command 

>> sound(CorrAspect,8000) or using RealPlayer while listening to the speech signal 
using the headphone. Record your notes. 
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Experiment 5 
FIR Filter II 

Objectives: 
1- To implement real time signal processing system based on FIR 

filters. 
 

Lab Equipments: 
1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphones. 

 
1- Effects on Voice or Music Using Three FIR Lowpass Filters (fir3LP) 
 
In this part of the experiment, three FIR lowpass filters with cutoff frequencies at 600, 
1500, and 3000 Hz, respectively are implemented. The program fir3lp.c used in this part 
is listed in Figure 5.1. The three lowpass filters were designed using MATLAB. 
LP_number selects the desired lowpass filter to be implemented. For example, if 
LP_number is set to 0, h[0][i] is equal to hlp600[i] (within the for loop in function main() 
), which is the address of the first set of coefficients. The coefficient file LP600.cof 
represents an 81 - coefficient FIR lowpass filter with a 600 - Hz cutoff frequency, using 
the Kaiser window function. Figure 5.2 shows a listing of coefficient file LP600.cof. Note 
that the FIR filters in this experiment are implemented using fixed - point arithmetic and 
use 16 - bit integer type coefficients. Coefficient files LP600.cof, LP1500.cof, and 
LP3000.cof are incompatible with programs fir.c. The value of LP_number can be 
changed to 1 or 2 to implement the 1500 – or 3000 - Hz lowpass filter, respectively. With 
the GEL file fir3lp.gel, the value of LP_number can be varied while the program is 
running. 
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LAB WORK I: 
 
1.  Launch CCS by double - clicking on its desktop icon. 
 
2. Make a quick test on the DSK. 
 
3. Open project fir3lp.pjt by selecting Project →Open and double – clicking on file 

fir3lp.pjt in folder fir3lp.  
 
4. Edit the file fir3lp.c and change the line that reads 

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC;//select MIC IN 
to read 
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select LINE IN 

 
5. Connect the microphone to the LINE IN and headphone to the HP OUT sockets on 

the DSK. 
 
6. Rebuild the project, load and run program fir3lp.out. 
 
7. Select File →Load GEL and load the file fir3lp.gel (in folder fir3lp). 
 
8. Double - click on the filename fir3lp.gel in the Project View window to view it within 

CCS.  
 
9. Select GEL→Filter Characteristics→filter. The value of LP_number can be varied 

while the program is running. 
 
10. Vary the value of the LP_number and note the effect of the three different lowpass 

filters while talking into a microphone and listening on the headphone. 
 
11. Halt the executable file fir3lp.out. 
 
12. The effect of the filters is particularly striking if applied to a voice signal input, 

connect the PC soundcard output to the LINE IN socket on the DSK. Run the file 
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lab5.wav which stored in the DSP laboratory directory and note the effect of the three 
different lowpass filters. 

 
13. Use the file lab5.wav as a source connected to the LINE IN socket on the DSK. With 

the lower bandwidth of 600 Hz, using the first set of coefficients, the frequency 
components of the input signal above 600 Hz are suppressed. Connect the output to a 
speaker or a spectrum analyzer (use the FFT feature of the scope) to verify such 
results, and listen to the effect of the different bandwidths of the three FIR lowpass 
filters.  

 
14. Alternatively, the effects of the filters can be illustrated using an oscilloscope and a 

signal generator set to input a 200 - Hz square wave to the LINE IN socket. 
 
15. Monitor the effect of the different bandwidths of the three FIR lowpass filters on the 

input a 200 - Hz square wave by monitoring the output signal on the scope in the time 
and the frequency domain (use the FFT feature of the scope). 

 
2- Two Notch Filters to Recover a Corrupted Speech Recording (notch2) 
 
This part of the experiments illustrates the use of two notch (bandstop) FIR filters in 
series to recover a speech recording corrupted by the addition of two sinusoidal signals at 
frequencies of 900 and 2700 Hz. Program notch2.c is listed in Figure 5.3. Two coefficient 
files, bs900.cof and bs2700.cof , each containing 89 coefficients and designed using 
MATLAB, are used by the program. They implement two FIR notch filters, centered at 
900 and 2700 Hz, respectively. The output of the first notch filter, centered at 900 Hz, is 
used as the input to the second notch filter, centered at 2700 Hz. 
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LAB WORK II: 
 
 
16. Open project notch2.pjt by selecting Project →Open and double – clicking on file 

notch2.pjt in folder notch2. 
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17. Connect the PC soundcard output to the LINE IN socket and the scope to the LINE 
OUT sockets on the DSK. 

 
18. Load and run program notch2.out. 
 
19. The file corrupt.wav, stored in folder notch2, contains a recording of speech corrupted 

by the addition of 900 - and 2700 - Hz sinusoidal tones. Use the FFT feature of the 
scope to see the 900 and 2700Hz before and after the filter.  

 
20. A GEL slider ( notch2.gel ) can be used to select either the output of the two cascaded 

notch filters (default) or the output of the first notch filter. Make these different 
selections and record your notes. 

 
21. Compare the results of this example with those obtained using a moving average 

filter. 
 
3- Voice Scrambling Using Filtering and Modulation ( scrambler ) 
 
This part of the experiment illustrates a voice scrambling/descrambling scheme. The 
approach makes use of basic algorithms for filtering and modulation. With voice as input, 
the resulting output is scrambled voice. The original descrambled voice is recovered 
when the output of the DSK is used as the input to a second DSK running the same 
program. The scrambling method used is commonly referred to as frequency inversion. It 
takes an audio range, in this case 300 Hz to 3 kHz, and “ folds ” it about a 3.3 – kHz 
carrier signal. The frequency inversion is achieved by multiplying (modulating) the audio 
input by a carrier signal, causing a shift in the frequency spectrum with upper and lower 
sidebands. In the lower sideband that represents the audible speech range, the low tones 
are high tones, and vice versa. 
 
Figure 5.4 is a block diagram of the scrambling scheme. At point A we have an input 
signal, band limited to 3 kHz. At point B we have a double - sideband signal with 
suppressed carrier. At point C the upper sideband and the section of the lower sideband 
between 3 and 3.3 kHz are filtered out. The scheme is attractive because of its simplicity. 
Only simple DSP algorithms — namely, filtering, sine wave generation, and amplitude 
modulation — are required for its implementation. 
 
 

 
 



 67 

Figure 5.5 shows a listing of program scrambler.c, which operates at a sampling rate, fs , 
of 16 kHz. The input signal is first lowpass filtered using an FIR filter with 65 
coefficients.h, defined in the file lp3k64.cof. The filtering algorithm used is identical to 
that used in, for example, program fir.c. The filter delay line is implemented using array 
x1 and the output is assigned to variable yn1. The filter output (at point A in Figure 5.4 ) 
is multiplied (modulated) by a 3.3 - kHz sinusoid stored as 160 samples (exactly 33 
cycles) in array sine160 (file sine160.h ) . Finally, the modulated signal (at point B) is 
lowpass filtered again, using the same set of filter coefficients.h (lp3k64.cof) but a 
different filter delay line implemented using array x2 and the output variable yn2 . The 
output is a scrambled signal (at point C). 
 

 



 68 

Using this scrambled signal as the input to a second DSK running the same algorithm, the 
original descrambled input is recovered as the output of the second DSK. 
 
LAB WORK III: 
 
22. Open project scrambler.pjt by selecting Project →Open and double – clicking on 

file scrambler.pjt in folder scrambler.  
 
23. Connect the output of a function generator to the LINE IN socket on the DSK.  
 
24. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
25. Set the function generator output to 2 – kHz sine wave. 
 
26. Edit the file c6713dskinit.h included in the project  changing the line that reads 

0x0017 / * Set -Up Reg 0 Left line volume control */ 
to read 
0x001B / * Set -Up Reg 0 Left line volume control */ 

 
27. Rebuild the project then load and run program scrambler.out. The resulting output is 

a lower sideband signal at 1.3 kHz. The upper sideband signal at 5.3 kHz is filtered 
out by the second lowpass filter.  

 
28. Vary the frequency of the sinusoidal input in the range 300 – 3000 Hz and verify that 

output frequencies appear as in the inverted range 3000 to 300 Hz. A second DSK 
running the same program can be used to recover the original signal (simulating the 
receiving end). Use the output of the first DSK as the input to the second DSK. 

 
29. Change the input source used by the program on each DSK from LINE IN to MIC.  

By editing  the file scrambler.c and change the line that reads 
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;//select LINE IN 
to read 

          Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select MIC 
 
30. Test the scrambler and descrambler using speech from a microphone as the input. 

Run exactly the same program on each DSK, and connect HEADPHONE on the first 
DSK (scrambler) to MIC IN on the second DSK (descrambler). 
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Experiment 6 
IIR Filter I 

Objectives: 
1- To design an IIR filter using the impulse invariance transformation method. 
2- To assess the magnitude frequency response of IIR filter. 

 
Lab Equipments: 

1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphones. 

 
1- Design of a Simple IIR Low pass Filter Using Impulse Invariance                     

Transformation Method 
 
Traditionally, IIR filter design is based on the concept of transforming a continuous- 
time, or analog, design into the discrete - time domain. Butterworth, Chebyshev, Bessel, 
and elliptical classes of analog filter are widely used. In this part of the experiment, we 
will design a second order, type 1 Chebyshev, lowpass continuous-time filter with 2 dB 
of passband ripple and a cutoff frequency of 1500 Hz (9425 rad/s). Then, the designed 
continuous-time filter is transformed into digital filter using the impulse invariance 
method. In impulse invariance method, the impulse response of the digital filter is the 
samples of the impulse response of the continuous-time filter 
(mathematically: )(][ nTThnh = , where T represents the sampling interval.  
Program iirsos.c, stored in folder iirsos and listed in Figure 6.1, implements ageneric IIR 
filter using cascaded direct form II second order stages (sections) and coefficient values 
stored in a separate file. The program uses the following two expressions: 

 
Implemented by the lines 
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LAB WORK I: 
 
1. Design the continuous-time filter using the Matlab command: 
 

>> [b,a] = cheby1(2,2,2 * pi * 1500, ’ s ’ ); 
 
The continuous - time transfer function of such a filter is given by: 
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2. Draw the frequency response of this filters using the Matlab command: 
>> freqs(b,a) 

 
3. Transfer the designed continuous-time filter into digital filter using the Matlab 

command:  
 

>> [bz,az] = impinvar(b,a,8000);. Here a sampling frequency of 8000 Hz is assumed.  
 
The filter coefficients bz and az are used to create the coefficient filter file impinv.cof 
(listed in Figure 6.2) which is then used in the main program iirsos.c. 

 

 
 
4. Use Matlab to assess the magnitude frequency response of the digital filter by typing 

the command:  
       >> freqz(bz,az). 
 
5. Compare the gain of the analog prototype filter (step 2) with that of the transformed 

digital filter.    
 
6.   Launch CCS by double - clicking on its desktop icon. 
 
7. Make a quick test on the DSK. 
 
8. Open file iirsos.c by selecting File →Open and double – clicking on file iirsos.c in 

folder iirsos.  
 
9. Connect the output of a function generator to the LINE IN socket on the DSK.  
 
10. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
11. Load and run the executable file iirsos.out. 
 
12. Construct a table to assess the magnitude frequency response of the filter. 

i. Set the output of the function generator to sinusoidal. 
ii. Change the frequency of the sinusoidal signal at the output of a function 

from   100 Hz to 4000 Hz in steps and record the peak value of the signal on 
the scope.  

iii. Make sure to include frequency 3000 Hz in your table. 
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Frequency Peak Value dB value 

   
   
   
   
   
   
   

 
You will find that the attenuation of frequencies above 2500 Hz is not very 
pronounced. That is due to the low order of the filter and to inherent shortcomings 
of the impulse invariant transformation method. 

 
13. In your report, explain the difference between the designed digital filter and the 

analog prototype filter. 
 
14. Alternatively, we can estimate the frequency response of the digital filter using 

Pseudorandom Noise as input. In real time, it generates a pseudorandom binary 
sequence and uses this wideband noise signal as the input to an IIR filter. The output 
of the filter is written to the DAC in the AIC23 codec and the resulting analog signal 
(filtered noise) can be analyzed using an oscilloscope or spectrum analyzer. Halt the 
executable file iirsos.out. 

 
15. Open file iirsosprn.c by selecting File →Open and double – clicking on file 

iirsoprns.c in folder iirsosprn.  
 
16. Load and run the executable file iirsosprn.out. 
 
17. Using the FFT feature of the scope, capture the output of program iirsosprn.out, 

compare the plot with your results in steps 4 and 12. 
 
2- Estimating the Frequency Response of an IIR Filter Using a Sequence of                   

Impulses as Input (iirsosdelta) 
 
Instead of a pseudorandom binary sequence, program iirsosdelta.c generates a sequence 
of discrete - time impulses as the input to an IIR filter. The resultant output is an 
approximation to a repetitive sequence of filter impulse responses. This relies on the filter 
impulse response decaying practically to zero within the period between successive input 
impulses. The filter output is written to the DAC in the AIC23 codec and the resulting 
analog signal can be analyzed using an oscilloscope, spectrum analyzer, Goldwave , or 
other instrument. In addition, program iirsosdelta.c stores BUFSIZE samples of the filter 
output in buffer response and we can use the View→ Graph facility in Code Composer to 
view that data in both time and frequency domains. 
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LAB WORK II: 
 
18. Open project iirsosdelta.pjt by selecting Project →Open and double – clicking on 

file iirsosdelta.pjt in folder iirsosdelta. 
 
19. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
20. Load and run the executable file iirsosdelta.out.  
 
21. Monitor the output (impulse response of the filter) on the scope and make your notes. 

The output waveform is shaped both by the IIR filter and by the AIC23 codec reconstruction 
filter. 

 
22.  Using the FFT feature of the scope, capture the magnitude of the frequency response 

of the filter.  
In the frequency domain, the codec reconstruction filter is responsible for the steep 
roll – off of gain at frequencies above 3500 Hz and the ac coupling of the codec 
output is responsible for the steep roll - off of gain at frequencies below 100 Hz. 

 
23. Halt the program and select View→ Graph. Set the Graph Properties as indicated in 

Figure 6.4 and you should see something similar to the right - hand graph shown in 
Figure 6.5. You need to set the Graph Properties differently to see something similar 
to the left - hand graph shown in Figure 6.5. 
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Experiment 7 
IIR Filter II 

Objectives: 
1- To design an IIR filter using the bilinear transformation method. 
2- To assess the magnitude frequency response of IIR filter. 

 
Lab Equipments: 

1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphones. 

 
1- Bilinear Transform Method of Digital Filter Implementation. 
 
The bilinear transform method of converting an analog filter design to discrete time is 
relatively straightforward, often involving less algebraic manipulation than the impulse 
invariant method. It is achieved by making the substitution 

 
In H (s), where T is the sampling period of the digital filter; that is, 

 
 The concept behind the bilinear transform is that of compressing the frequency response 
of an analog filters design such that its response over the entire range of frequencies from 
zero to infinity is mapped into the frequency range zero to half the sampling frequency of 
the digital filter. This may be represented by 

 
And 

 
As a result of the frequency warping inherent in the bilinear transform, the cutoff 
frequency of the discrete - time filter obtained is not equal to the cutoff frequency of the 
analog filter. A technique called prewarping the prototype analog design (used by default 
in the MATLAB filter design and analysis tool fdatool) can be used in such a way that the 
bilinear transform maps an analog frequency cA ww = , in the range 0 to 2/sw , to exactly 
the same digital frequency cD ww = . This technique is based on the selection of T 
according to csc wwwT /)/tan(2 π= . 
 
In this part of the experiment, we will design a second order, type 1 Chebyshev, lowpass 
continuous-time filter with 2 dB of passband ripple and a cutoff frequency of 1500 Hz 
(9425 rad/s). Then, the designed continuous-time filter is transformed into digital filter 
using the bilinear transformation method.  We will also use the same programs in 
experiment 10 (iirsos.c, iirsoprns.c and iirsosdelta.c) 
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LAB WORK I: 
 
1. Design the continuous-time filter using the Matlab command: 

>> [b,a] = cheby1(2,2,2 * pi * 1500, ’ s ’ ); 
 
2. Draw the frequency response of this filters using the Matlab command: 

>> freqs(b,a) 
 
3. Transfer the designed continuous-time filter into digital filter using the Matlab 

command:  
>> [bd,ad] = bilinear(b,a,8000);. Here a sampling frequency of 8000 Hz is assumed. 
 The filter coefficients bz and az are used to create the coefficient filter file bilinear.cof 
which is then used in the main program iirsos.c.  

 
4. Use Matlab to assess the magnitude frequency response of the digital filter by typing 

the command:  
      >> freqz(bz,az).  
     In your report, explain the difference between the designed digital filter and the analog 

prototype filter. 
 
5. Launch CCS by double - clicking on its desktop icon. 
 
6. Make a quick test on the DSK. 
 
7. Connect the output of a function generator to the LINE IN socket on the DSK. 
 
8. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
9. Open file iirsos.c by selecting File →Open and double – clicking on file iirsos.c in 

folder iirsos.  
 
10. Change the line that reads #include “impinv.cof” to read #include “bilinear.cof”. 
 
11. Build the project. 
 
12. Load and run the executable file iirsos.out. 
 
13. Construct a table to assess the magnitude frequency response of the filter. 

i. Set the output of the function generator to sinusoidal. 
ii. Change the frequency of the sinusoidal signal at the output of a function 

from 100 Hz to 4000 Hz in steps and record the peak value of the signal on 
the scope. 
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Frequency Peak Value dB value 
   
   
   
   
   
   
   

 
You will find that the cutoff frequency of the discrete - time filter obtained is not 
1500 Hz but 1356 Hz. In addition, you will find that the gain of the analog filter at a 
frequency of 4500 Hz is equal to the gain of the digital filter at a frequency of 2428 
Hz and that the digital frequency 1500 Hz corresponds to an analog frequency of 
1702 Hz.  

 
14. Alternatively, we can estimate the frequency response of the digital filter using 

Pseudorandom Noise as input. Halt the executable file iirsos.out. 
 
15. Open file iirsosprn.c by selecting File →Open and double – clicking on file 

iirsoprns.c in folder iirsosprn.  
 
16. Change the line that reads #include “impinv.cof” to read #include “bilinear.cof”. 
 
17. Build the project. 
 
18. Load and run the executable file iirsosprn.out. 
 
19. Using the FFT feature of the scope, capture the output of program iirsosprn.out, 

compare the plot with your results in steps 4 and 13. 
 
2- Estimating the Frequency Response of an IIR Filter Using a Sequence of 
Impulses as Input ( iirsosdelta). 

 
LAB WORK II: 
 
20. Launch CCS by double - clicking on its desktop icon. 
 
21. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
22. Open project iirsosdelta.pjt by selecting Project →Open and double – clicking on 

file iirsosdelta.pjt in folder iirsosdelta. 
 
23. Edit file iirsosdelta.c and change the line that reads #include “impinv.cof” to read 

#include “bilinear.cof”. 
 
24. Build the project. 
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25. Load and run the executable file iirsosdelta.out. 
 
26. Monitor the output (impulse response of the filter) on the scope and make your notes. 

The output waveform is shaped both by the IIR filter and by the AIC23 codec 
reconstruction filter. 

 
27. Using the FFT feature of the scope, capture the magnitude of the frequency response 

of the filter.  
 
28. Halt the program and select View→ Graph. Set the Graph Properties as indicated in 

Figure 7.1, save the obtained graph and used in your report. 
 
29. You need to set the Graph Properties differently to see the impulse response of the 

filter in the time domain. 
 

 
 

3- Design of IIR Filters Using MATLAB ’s Filter Design and Analysis Tool 
 
MATLAB provides a filter design and analysis tool, fdatool, that makes the design of IIR 
filter coefficients simple. Coefficients can be exported in direct form II, second order 
section format and a MATLAB function dsk_sos_iir67() written by the author of the text 
book can be used to generate coefficient files compatible with the programs (iirsos.c, 
iirsoprns.c and iirsosdelta.c). 
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LAB WORK III: 
 
30. Start FDATool from the MATLAB command line by typing: 
     >>fdatool. 
 
31. In the Response Type pane, select Lowpass. 
 
32. In the Design Method pane, select IIR, and then select Butterworth 
 
33. For the Filter Order, select Specify order, and then enter 6. 
 
34. Set frequency specifications to Fs to 8000 and Fc to 1500. 
 
35. Click the Design Filter button, you will shortly be able to see the magnitude response 

of the designed filter, make your not and save it to use it in your report. 
 
36. Click on Export in the fdatool File menu. 
 
37. Select Workspace, Coefficients, SOS , and G and click Export . 
 
38. At the MATLAB command line, type dsk_sos_iir67(SOS,G) and enter a filename  

Butterworth.cof . 
 
39. Launch CCS by double - clicking on its desktop icon. 
 
40. Connect the LINE OUT socket on the DSK to an oscilloscope. 
 
41. Open project iirsosdelta.pjt by selecting Project →Open and double – clicking on 

file iirsosdelta.pjt in folder iirsosdelta. 
 
42. Edit file iirsosdelta.c and change the line that reads #include “ impinv.cof ” to read 

#include “Butterworth.cof ”. 
 
43. Build the project. 
 
44. Load and run the executable file iirsosdelta.out. 
 
45. Monitor the output (impulse response of the filter) on the scope and make your notes. 
 
46. Using the FFT feature of the scope, capture the magnitude of the frequency response 

of the filter.  
 
47. Halt the program and select View→ Graph. Set the Graph Properties as indicated in 

Figure 7.1, save the obtained graph and compare it with that in step 35. 
 
48. You need to set the Graph Properties differently to see the impulse response of the 

filter in the time domain. 
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Experiment 8 
Discrete Time and Fast Fourier Transforms  

 
Objectives: 

1- To compute the Discrete Fourier Transform (DTF) of real signal. 
2- To compute the Fast Fourier Transform (FFT) of real signal. 
3- To estimate the execution time for the DFT and FFT functions  

 
Lab Equipments: 

1- DSK Board. 
2- CCS software installed on the computer. 
3- Oscilloscope. 
4- Headphones. 

 
1- DFT of a Sequence of Real Numbers with Output in the 

CCS Graphical Display Window ( dft ) 
 
This part of the experiment illustrates the DFT of an N - point, real - valued sequence. 
Program dft.c, listed in Figure 8.1, calculates the complex DFT: 

 
Using Euler ’ s relation to represent a complex exponential 

 
The real and imaginary parts of X (k) are computed by the program: 
 

 
 
A structured data type COMPLEX is used by the program to represent the complex 
valued time - and frequency - domain values of X(k) and x(n).  
 
The function dft() has been written such that it replaces the input samples x(n), stored in 
array samples with their frequency - domain representation X(k).  
 
The time - domain sequence x(n) consists of exactly 10 cycles of a real - valued cosine 
wave (assuming a sampling frequency of 8 kHz, the frequency of the cosine wave is 800 
Hz). The DFT of this sequence, X ( k ), is equal to zero for all k , except at k = 10 and at 
k = 90. These two real values correspond to frequency components at ± 800 Hz. Different 
time - domain input sequences can be used in the program, most readily by changing the 
value of the constant TESTFREQ . 
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LAB WORK I: 
 
1. Launch CCS by double - clicking on its desktop icon. 
 
2. Open project dft.pjt by selecting Project →Open and double – clicking on file 

dft.pjt in folder dft. 
 
3. Load the executable file dft.out.  
 
4. Place a breakpoint at the line 

printf(“\n”); // place breakpoint here 
by clicking on that line in the source file dft.c and then either right – clicking and 
selecting Toggle Software Breakpoint , or clicking on the Toggle Breakpoint toolbar 
button. A red dot should appear to the left of that line of code. 
 

5. Select Debug→ Run. The program should halt at the breakpoint just before calling 
function dft() and at this point the initial, time - domain contents of array samples will 
be displayed in the Graphical Display window. 

 
6. Select View→ Graph → Time/Frequency and set the Graph Properties as shown in 

Figure 8.2. Note that this will display only the real part of the complex values stored 
in array samples. The Graph Property Data Plot Style is set to Bar in order to 
emphasize that the DFT operates on discrete data.  

 
7. Select Debug→ Run again. The program should run to completion at which point the 

contents of array samples will be equal to the frequency – domain representation X(k) 
of the input data x(n). The real part of X(k) will now be displayed in the Graphical 
Display window and you should be able to see two distinct spikes at k = 10 and k = 
90, representing frequency components at ± 800 Hz, as shown in Figure 8.3. 

 
8. Change the frequency of the input waveform to 900 Hz (#define TESTFREQ 900.0) 

and repeat the procedure listed above. You should see a number of nonzero values in 
the frequency - domain sequence X(k), as shown in Figure 8.4 . This effect is referred 
to as spectral leakage and is due to the fact that the N sample time - domain sequence 
stored in array samples does not now contain an integer number of cycles of a 
sinusoid. Correspondingly, the frequency of that sinusoid is not exactly equal to one 
of the N discrete frequency components, spaced at intervals of (8000.0/N) Hz in the 
frequency - domain representation X (k). 
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2- DFT of a Sequence of Real Numbers Using Twiddle Factors with Output 

in the CCS Graphical Display Window ( dftw ) 
 

Whereas the radix - 2 FFT is applicable if N is an integer power of 2, the DFT can be 
applied to an arbitrary length sequence (e.g., N = 100), as illustrated by program dft.c . 
However, the FFT is widely used because of its computational efficiency. Part of that 
efficiency is due to the use of precalculated twiddle factors, stored in a lookup table, 
rather than the repeated evaluation of sin() and cos() functions during computation of the 
FFT. The use of precalculated twiddle factors can be applied to the function dft() to give 
significant efficiency improvements to program dft.c. Calls to the math library functions 
sin() and cos() are computationally very expensive and are made a total of 4 N2 times in 
function dft(). In program dftw.c, listed in Figure 8.5, these function calls are replaced by 
reading precalculated twiddle factors from array twiddle. 
 The source file dftw.c is stored in folder dft and can be substituted for source file dft.c in 
project dft. Verify that program dftw.c gives similar results.  
(Change the Output Filename to dftw.out.) 

 
LAB WORK II: 
 
9. Open project dft.pjt by selecting Project →Open and double – clicking on file 

dft.pjt in folder dft. 
 
10. Remove file dft.c from the project by double – clicking on Source from the project 

view, then right click on the file dft.c and select remove file from project. 
 
11. Add file dftw.c to the project by right clicking on Source and select Add files to 

project and select the file dftw.c. 
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12. Select Project→ Build Options. In the Compiler tab in the Basic category set the Opt 
Level to Function(− o2) and in the Linker tab set the Output Filename  to 
.\Debug\dftw.out . 
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13. Build the project. 
 
14. Load the executable file dftw.out.  
 
15. Place a breakpoint at the line 

printf(“\n”); // place breakpoint here 
by clicking on that line in the source file dftw.c and then either right – clicking and 
selecting Toggle Software Breakpoint , or clicking on the Toggle Breakpoint toolbar 
button. A red dot should appear to the left of that line of code. 

 
16. Select Debug→ Run. The program should halt at the breakpoint just before calling 

function dftw() and at this point the initial, time - domain contents of array samples 
will be displayed in the Graphical Display window. 

 
17. Select View→ Graph → Time/Frequency and set the Graph Properties as shown in 

Figure 8.2. Note that this will display only the real part of the complex values stored 
in array samples. The Graph Property Data Plot Style is set to Bar in order to 
emphasize that the DFT operates on discrete data.  

 
18. Select Debug→ Run again. The program should run to completion at which point the 

contents of array samples will be equal to the frequency – domain representation X(k) 
of the input data x(n). The real part of X(k) will now be displayed in the Graphical 
Display window and you should be able to see two distinct spikes at k = 10 and k = 
90, representing frequency components at ± 800 Hz, as shown in Figure 8.3. 

 
19. Change the frequency of the input waveform to 900 Hz (#define TESTFREQ 900.0) 

and repeat the procedure listed above. You should see a number of nonzero values in 
the frequency - domain sequence X(k), as shown in Figure 8.4 . This effect is referred 
to as spectral leakage and is due to the fact that the N sample time - domain sequence 
stored in array samples does not now contain an integer number of cycles of a 
sinusoid. Correspondingly, the frequency of that sinusoid is not exactly equal to one 
of the N discrete frequency components, spaced at intervals of (8000.0/N) Hz in the 
frequency - domain representation X (k). 

 
3- Estimating Execution Times for DFT and FFT Functions (fft) 
 
The computational expense of function dft() can be illustrated using Code Composer’s 
Profile Clock. In this part of the experiment, the functions dft() and dftw() used in Lab 
Work I and II are compared with a third function, fft() , which implements the FFT in C. 

 
LAB WORK III: 
 
20. Edit the lines in programs dft.c and dftw.c that read 

#define N 100 
to read 
#define N 128 
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21. Ensure that source file dft.c and not dftw.c is present in the project. 
 
22. Select Project→ Build Options. In the Compiler tab in the Basic category set the Opt 

Level to Function (− o2) and in the Linker tab set the Output Filename  to 
.\Debug\dft.out . 

 
23. Build the project and load dft.out. 
 
24. Open source file dft.c by double - clicking on its name in the Project View window 

and set breakpoints at the lines  
dft(samples);  
and 
printf(“done!\n”); . 

 
25. Select Profile → Clock → Enable. 
 
26. Select Profile → Clock View. A small clock icon and the number of processor 

instruction cycles that the Profile Clock has counted should appear in the bottom right 
- hand corner of the Code Composer window. 

 
27. Run the program. It should halt at the first breakpoint. 
 
28. Reset the Profile Clock by double - clicking on its icon in the bottom right – hand 

corner of the CCS window. 
 
29. Run the program. It should stop at the second breakpoint. The number of instruction 

cycles counted by the Profile Clock gives an indication of the computational expense 
of executing function dft(). 

 
30. Repeat the preceding experiment (step 22 to step 27) substituting file dftw.c for file 

dft.c.  
 
31. Finally, repeat the preceding experiment (step 22 to step 27) using file fft.c (also 

stored in folder dft) (see Figure 8.6). This program computes the FFT using a function 
written in C and defined in the file fft.h (Figure 8.7). The advantage, in terms of 
execution time, of the FFT over the DFT should increase with the number of points, 
N, used. Repeat this example using different values of N (e.g., 256 or 512). 
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 N=128 N=256 N=512 
 Number of 

Instruction 
Cycles 

Execution 
Time 

Number of 
Instruction 

Cycles 

Execution 
Time 

Number of 
Instruction 

Cycles 

Execution 
Time 

dft.c       

dftw.c       

fft.c       

 
 
 

 
 
 
 
 



 90 

 
 
 
 
 
 

 
 


