

Jordan University of Science & Technology

Department of Electrical Engineering

Digital Signal Processing Laboratory

Using

TMS320C6713 DSP Starter Kit

(EE462)

 2

PREFACE

This Booklet contains a selected and edited laboratory experiments that were taken with
some minor modifications from the book “Digital Signal Processing and Applications
with the TMS320C6713 and TMS320C6416 DSK”, second edition, john Wiley & Sons,
2008 written by Rulph Chassaing and Donald Reay. The book has a wide variety of
digital signal processing and filter design experiments that can be run on the
TMS320C6713 and TMS320C6416 digital signal processing kit (DSK).Our selection of
the experiments was made to achieve some objectives: the ability to analyze signals and
systems in the time and frequency domain, implement real-time signal processing system
and design of FIR and IIR digital falters. In addition, we have included one experiment
based on Matlab in order to have a simulation tool which can be used for comparison
purposes and to start the design of some FIR and IIR design experiments. Another
experiment was included to get the students familiar with the DSK kit.

Dr. Jehad Ababneh
Eng. Yara Obeidat

 3

Labs

Lab 1:
 Experiment 1: Waveform Generation and Digital Filter Design and Analysis in Time

and Frequency Domains Using Matlab.

Lab 2:
 Experiment 2A: Introduction to the Digital Signal Processing Kit (DSK) and the Code

Composer Studio (CCS).
 Experiment 2B: Sine Wave Generation Using Eight points with DIP Switch Control.

 Experiment 2C: Generation of sinusoid and Plotting with CCS (sine8_buf).

Lab 3:
 Experiment 3A: Basic Input and Output Using Polling (loop_poll).
 Experiment 3B: Basic Input and Output Using Interrupts (loop_intr).
 Experiment 3C: Sine Wave Generation Using sin() Function, Reconstruction,

Aliasing, and the Properties of the AIC 23 Codec.

Lab 4:
 Experiment 4: FIR Filter I

Lab 5:
 Experiment 5: FIR Filter II.

Lab 6:
 Experiment 6: IIR Filter I.

Lab 7:
 Experiment 7: IIR Filter II.

Lab 8:
 Experiment 8: Discrete Time and Fast Fourier Transform

 4

Experiment 1
Waveform Generation and Digital Filter Design and Analysis in Time

and Frequency Domains Using Matlab

Objectives:

1- Generation and analysis of different basic signals in time and frequency domain.
2- Design and analysis of typical FIR and IIR digital filters.
3- Filters application and implementation.

Lab Equipments:
1- PC with Matlab software installed.
2- Headphone.

Description:

In this experiment, we will use signal processing toolbox commands and analysis tools in
Matlab to visualize signals in time and frequency domains, compute FFTs for spectral
analysis of signals and filters, design FIR and IIR filters. Most toolbox functions require
you to begin with a vector representing a time base. Consider generating data with a 1000
Hz sample frequency, for example. An appropriate time vector is t = (0:0.001:1)';where
the MATLAB colon operator creates a 1001-element row vector that represents time
running from 0 to 1 s in steps of 1 ms. The transpose operator (') changes the row vector
into a column; the semicolon (;) tells MATLAB to compute, but not display the result.
Given t, you can create a sample signal y consisting of two sinusoids, one at 50 Hz and
one at 120 Hz with twice the amplitude. y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);. You
may also generate discrete-time signals by first generating a sample axis using the
command n = (0:1:1024);. Then, to generate a sinusoidal signal sampled at twice the
Nyquist rate (or a signal that has a frequency that is one forth the sampling frequency),
use the command: X=cos(n*pi/2);. You may plot the signal in the time domain using the
command: plot (n,X). Since MATLAB is a programming language, an endless variety of
different signals is possible. Here are some statements that generate several commonly
used sequences, including the unit impulse, unit step, and unit ramp functions: t =
(0:0.001:1)';
y = [1; zeros(99,1)]; % impulse
y = ones(100,1); % step (filter assumes 0 initial cond.)
y = t; % ramp
Some applications, however, may need to import data from outside MATLAB. To load
data from an ASCII file or MAT-file, use the MATLAB load command. You may also
use this command to load wave files.

The single sided amplitude spectrum of a signal can be evaluated using the FFT function
which computes the Fast Fourier Transform. A simple Matlab function named
single_sided_amplitude_spectrum was written for this purpose. This function is stored in
the directory C:\DSPLaboratory. To calculate and plot single sided amplitude spectrum of
the signal Y sampled at FS frequency, type the command:

 5

HY= Single_Sided_Amplitude_Spectrum(Y,FS);
We will also learn how to graphically design and implement digital filters using Signal
Processing Toolbox. Filter design is the process of creating the filter coefficients to meet
specific frequency specifications. Although many methods exist for designing the filter
coefficients, this experiment focuses on using the basic features of the Filter Design and
Analysis Tool (FDATool) GUI. This experiment includes a brief discussion of applying
the completed filter design and filter implementation using MATLAB command line
functions, such as filter. The analysis and design process in this experiment will be used
in later experiments for design and analysis of real time filters implemented on the
TMS320C6713 DSP starter kit.

LAB WORK:

1- Waveform Generation and Analysis

1. Launch Matlab by double - clicking on its desktop icon

2. Generate 1024 samples of 1kHz sinusoidal (cos) signal sampled at 8kHz with the
command: n=(0:1023);X=cos(2*n*pi*1000/8000);

3. Plot 100 samples of the generated signal in the time domain using both the plot and
stem Matlab functions using the commands: plot(n(1:100),X(1:100)),
stem(n(1:100),X(1:100)). Use appropriate title and axis labeling.

4. Evaluate and plot the amplitude spectrum of the generated signal using fft Matlab
function with the command: HX= Single_Sided_Amplitude_Spectrum(X,8000);

5. Use the Matlab function load to load the word “Aspect” uttered by male speaker with
the command: [Y,FS,NBITS]=wavread('aspect11');

6. Plot three 250 samples of three different segments (frames) of the loaded signal in the
time domain using the plot Matlab function with the commands:

plot(Y(1000:1250))
plot(Y(3200:3450))
plot(Y(5000:5250))

 Use appropriate title and axis labeling

7. Evaluate and plot the amplitude spectrum of these different segments using the
commands:

HY= Single_Sided_Amplitude_Spectrum(Y(1000:1250),FS);
HY= Single_Sided_Amplitude_Spectrum(Y(3200:3450),FS);
HY= Single_Sided_Amplitude_Spectrum(Y(5000:5250),FS);

 Use appropriate title and axis labeling.

 6

8. Compare and discuss the results obtained in steps 3 through 7 in your lab report.

9. Generate and analyze 100 samples of unit impulse and unit step function in the time
and frequency domain using the same procedure

2- Filters Design with FDATool GUI

In this part, first we will exactly follow and use the Matlab example to design and analyze
an octave-band filter in the Getting Started With Signal Processing Toolbox to get
familiar with this powerful tool. Then, we will use similar procedure to design a notch
filter and export its coefficients to be used in the last part of this experiment to suppress a
single tone from a corrupted spoken word.
An octave is the interval between two frequencies having a ratio of 2:1. An octave-band
filter is a bandpass filter with high cutoff frequency approximately twice that of the low
cutoff frequency. The class of an octave filter is determined by its allowable passband
ripple and its stopband attenuation.

2.1. Designing the Octave-band Filter

10. Start FDATool from the MATLAB command line by typing:
Fdatool

The FDATool dialog opens with a default filter. Its filter information is summarized in
the upper left (Current Filter Information) and its filter specifications are depicted in the
upper right. In addition to displaying filter specification, this upper right pane displays
filter responses and filter coefficients.

The bottom half of FDATool shows the Filter Design panel, where you specify the filter
parameters. Other panels, such as Import filter from workspace and Pole/Zero Editor,
which you access with the buttons on the lower left, are also displayed in this area. If you
have other products installed, you may see additional buttons. Note that when you open
FDATool, Design Filter is not enabled. You must make a change to the default filter
design in order to enable Design Filter. This is true each time you want to change the
filter design. Changes to radio button items or drop down menu items such as those under
Response Type or Filter Order enable Design Filter immediately. Changes to
specifications in text boxes such as Fs, Fpass, and Fstop require you to click outside the
text box to enable Design Filter.

 7

11. In the Response Type pane, select Bandpass.

12. In the Design Method pane, select IIR, and then select Butterworth.

13. For the Filter Order, select Specify order, and then enter 6.

 8

14. Set the Frequency Specifications as follows:

15. After specifying the filter design parameters, click the Design Filter button at the
bottom of the design panel to compute the filter coefficients. The display updates to
show the magnitude response of the designed filter.

 9

Notice that the Design Filter button is disabled after you compute the coefficients for
your filter design. This button is enabled again if you make any changes to the filter
specifications.

16. Click the Store Filter button.

17. In the Store Filter dialog, change the filter name to Bandpass Butterworth-1 and click
OK to save the filter in the Filter Manager.

2.2. Analyzing the Octave-band Filter

After designing the filter, you can view the following filter responses in the display
region by clicking on the associated toolbar button or by selecting the desired response
from the Analysis menu.

 10

18. Examine the displayed magnitude response of the filter.

19. Display other responses, as desired. Click the appropriate buttons, shown in the table

above or select the desired response from the Analysis menu.

20. Click the Filter coefficients button to display the filter coefficients.

2.3. Designing and Analyzing the Notch Filter

21. Start FDATool from the MATLAB command line by typing fdatool.

 11

22. In the Response Type pane, select Notching.

23. In the Design Method pane, select IIR, and then select single notch.

24. In the frequency specifications pane, type 11025 for Fs and 3000 for Fnotch, select

Bandwidth and type 200.

25. Click the Design Filter button at the bottom of the design panel to compute the filter

coefficients.

26. From the View menu, select filter visualization too, a new window is opened and

showing the magnitude response. You need to print or save this figure to include it in
your report.

27. In the filter visualization window, select phase response, impulse response and filter

coefficients and save or print this information to include it in your report.

28. In the filter design and analysis tool window, select Export from the File menu, a

small window with Export title will be opened.

29. In the Export window, select Workspace for Export to, Coefficients for Export As.

30. In the Variable Names, type NumNotch for Numerator and type DenNotch for

Denominator, then click Export. The filter coefficients are now available in the
present Workspace and can be verified by typing whos.

3- Filter Application

In this part, we will use the notch filter designed in the previous part to suppress a single
tone from a corrupted speech signal.

31. Load the speech signal stored as a wave signal using the command:
 [Y,FS,NBITS]=wavread('aspect11');

32. Listen to this speech signal using the command:

sound(Y,FS)

33. Generate a 3kHz single tone sinusoidal signal with the same length of the speech
signal with the command:
n=(0:length(Y)-1);X=cos(2*n*pi*3000/FS);

34. Mix the speech signal with the single tone signal with the command:
Mix=0.05*X+Y';

35. Listen to the Mixed speech signal using the command:
sound(Mix,FS)

 12

36. Evaluate and plot the amplitude spectrum of both the original speech signal and the

mixed signal with the command:
HY= Single_Sided_Amplitude_Spectrum(Y,FS);
HMix= Single_Sided_Amplitude_Spectrum(Mix,FS);
Notice the presence of high spike at frequency 3kHz in the later spectrum.

37. To suppress the single tone from the corrupted speech signal use the notch filter

designed in the previous part. First, verify the response of the filter using the
command:
freqz(NumNotch,DenNotch)
A figure of both the amplitude and phase response of the filter will be created. Then,
use the following command to apply the notch filter to the mixed signal:
YF=filter(NumNotch,DenNotch,Mix);

38. Verify the suppression of the single tone from the mixed signal by plotting and
listening to the filtered signal YF using the Single_Sided_Amplitude_Spectrum and
the sound functions

 13

Experiment 2A
Introduction to the Digital Signal Processing Kit (DSK) and

the Code Composer Studio (CCS)

Objectives:

1- To become familiar with the DSK and its audio connections.
2- Test the operation of the DSK and CCS.

Lab Equipments:
1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphone.

Description:

1- The C6713 DSK Board

The DSK packages are powerful, yet relatively inexpensive, with the necessary hardware
and software support tools for real - time signal processing. They are complete DSP
systems. A simplified block diagram of the DSK is shown in Figure 2A.1.

The major DSK hardware features are:

• A TMS320C6713 DSP operating at 225 MHz.

 14

• 16 - bit stereo codec TLV320AIC23 (AIC23) for analog input and output. The
onboard codec AIC23 uses sigma – delta technology that provides analog - to -
digital conversion (ADC) and digital - to - analog conversion (DAC) functions.
It uses a 12 - MHz system clock and its sampling rate can be selected from a
range of alternative settings from 8 to 96 kHz.

• A daughter card expansion facility

• Two 80 - pin connectors provide for external peripheral and external memory
interfaces.

• 16 MB (megabytes) of synchronous dynamic RAM (SDRAM).

• 512 Kbytes of Flash memory (256 Kbytes usable in default configuration).

• Four connectors on the boards provide analog input and output: MIC IN for
microphone input, LINE IN for line input, LINE OUT for line output, and
HEADPHONE for a headphone output (multiplexed with line output).

• Four user accessible LEDs and DIP switches.

• Voltage regulators that provide 1.26 V for the DSP cores and 3.3 V for their
memory and peripherals.

2- Software Support for the DSK Board and ’C6x DSP’s

 2.1 The Board Support Library (BSL)

A special Board Support Library (BSL) is supplied with the TMS320C6713 DSK. The
BSL provides C-language functions for configuring and controlling all the on-board
devices. The library includes modules for general board initialization, access to the
AIC23 codec, reading the DIP switches, controlling the LED’s, and programming and
erasing the Flash memory. The source code for this library is also included. The version
of Code Composer supplied with the DSK is set up to automatically use the BSL. You
can get complete documentation for the BSL by connecting the DSK to your PC, bring up
Code Composer, and going to Help, Contents, TMS320C6713DSK, Software, Board
Support Library.

 2.2 The Chip Support Library (CSL)

Chip Support Library contains C functions and macros for configuring and interfacing
with all the ’C6713 on-chip peripherals and CPU interrupt controller. This library is
loaded onto the PC when the DSK software is installed. The CSL header files provide a
complete symbolic description of all peripheral registers and register fields.

3- Code Composer Studio (CCS)

Code Composer Studio (CCS) provides an integrated development environment (IDE) for
real - time digital signal processing applications based on the C programming language. It

 15

incorporates a C compiler, an assembler, and a linker. It has graphical capabilities and
supports real - time debugging. The C compiler compiles a C source program with
extension .c to produce an assembly source file with extension .asm. The assembler
assembles an .asm source file to produce a machine language object file with extension
.obj. The linker combines object files and object libraries as input to produce an
executable file with extension .out. This executable file represents a linked common
object file format (COFF), popular in Unix - based systems and adopted by several
makers of digital signal processors. This executable file can be loaded and run directly on
the digital signal processor.
A Code Composer Studio project comprises all of the files (or links to all of the files)
required in order to generate an executable file. A variety of options enabling files of
different types to be added to or removed from a project are provided. In addition, a Code
Composer Studio project contains information about exactly how files are to be used in
order to generate an executable file. Compiler/linker options can be specified. A number
of debugging features are available, including setting breakpoints and watching variables,
viewing memory, registers, and mixed C and assembly code, graphing results, and
monitoring execution time. One can step through a program in different ways (step into,
or over, or out). Real - time analysis can be performed using CCS’s real - time data
exchange (RTDX) facility. This allows for data exchange between the host PC and the
target DSK as well as analysis in real - time without halting the target.

 3.1 Project Files and Building Programs

You can build a project in CCS to easily manage an application involving multiple source
files, libraries, memory maps, and special command files. The file containing all the
project information is given the extension pjt. By clicking on the Rebuild All or
Incremental build task bar buttons or by menu selections.

 3.2 The Optimizing Compiler and Assembler

Code Composer Studio includes a C/C++ optimizing compiler that converts standard
ANSI C source programs into C6000 assembly language source. The compiler has
several extensions to ANSI C. Assembly statements can be included inline with the C
source code. This is useful for manipulating registers in the DSP and using special
hardware features that are not efficiently accessible thorough C. TI has created a
language called linear assembly that is part way between pure assembly language and C.
Linear assembly source files have the extension sa. In linear assembly you do not have to
be concerned with assigning registers. Symbolic names can be used for registers. The
assembly optimizer assigns registers and optimizes loops to generate highly parallel
assembly code. The assembly source code files generated by the compiler and optimizing
assembler must then be passed through the assembler to generate relocatable object
modules.

 3.3 The Linker

The final step in building a program is to link all the relocatable modules together. The
linker, lnk6x.exe, combines relocatable object modules to form an executable output

 16

program. The default extension for executable programs is out. In addition, the linker can
generate a map file showing the absolute memory addresses of all global variables. A
very important input to the linker is a linker command file which has the extension cmd.
The command file can contain names of additional object modules to link, paths to
libraries, names for the map and out files, a memory map for the target hardware system,
and commands describing where to put specific program sections in memory.

4- File Types

You will be working with a number of files with different extensions. They include:
1. file.pjt : to create and build a project named file.
2. file.c : C source program.
3. file.asm : assembly source program created by the user, by the C compiler,or by the

linear optimizer.
4. file.sa : linear assembly source program. The linear optimizer uses file.sa as input to

produce an assembly program file.asm .
5. file.h : header support file.
6. file.lib : library file, such as the run - time support library file rts6700.lib .
7. file.cmd : linker command file that maps sections to memory.
8. file.obj : object file created by the assembler.
9. file.out : executable file created by the linker to be loaded and run on the C6713

processor.
10. file.cdb : configuration file when using DSP/BIOS.

LAB WORK:

1- QUICK TESTS OF THE DSK (ON POWER ON AND USING CCS)

1. Check out the hardware. Find the three audio connectors for the DSK. They are MIC

IN, LINE IN, and LINE OUT. The MIC IN jack is for low level signals from a
microphone.

You will be using the commercial signal generator for this course and should use only
the LINE IN and LINE OUT connectors for these larger signal levels. Beware that a
common mistake of lab students is to make the input too large and saturate the input
amplifiers resulting in strange outputs.

2. On power on, a power on self - test (POST) program, stored by default in the onboard
flash memory, uses routines from the board support library (BSL) to test the DSK. It
tests the internal, external, and flash memory, the two multichannel buffered serial
ports (McBSP), DMA, the onboard codec, and the LEDs. If all tests are successful, all
four LEDs blink three times and stop (with all LEDs on). During the testing of the
codec, a 1 - kHz tone is generated for 1 second.

3. Launch CCS from the icon on the desktop. A USB enumeration process will take
place and the Code Composer Studio window will open.

 17

4. Click on Debug →Connect and you should see the message “The target is now
connected” appear (for a few seconds) in the bottom left - hand corner of the CCS
window.

5. Click on GEL →Check DSK →QuickTest . The Quick Test can be used for
confirmation of correct operation and installation. A message of the following form
should then be displayed in a new window within CCS:

Switches:15 Board Revision:2 CPLDRevision: 2

The value displayed following the label Switches reflects the state of the four DIP
switches on the edge of the DSK circuit board. A value of 15 corresponds to all four
switches in the up position. Change the switches to (1110) 2, that is, the first three
switches (0, 1, 2) up and the fourth switch (3) down. Click again on GEL →Check DSK
→QuickTest and verify that the value displayed is now 7 (“Switches: 7”). You can set
the value represented by the four user switches from 0 to 15. Programs running on the
DSK can test the state of the DIP switches and react accordingly. The values displayed
following the labels Board Revision and CPLD Revision depend on the type and revision
of the DSK circuit board.

6. Click on Debug → Disconnect

2- Alternative Quick Test of DSK

7. Open/launch CCS from the icon on the desktop if not done already.

8. Select Debug →Connect and check that the symbol in the bottom left – hand corner
of the CCS window indicates connection to the DSK.

9. Select File →Load Program and load the file c: \ CCStudio_v3.1 \ MyProjects
\sine8_LED \ Debug \ sine8_LED.out. This loads the executable file sine8_LED.out
into the digital signal processor.

10.Select Debug →Run.

Check that the DSP is running. The word RUNNING should be displayed in the
bottom left - hand corner of the CCS window.
Press DIP switch #0 down. LED #0 should light and a 1 - kHz tone should be generated
by the codec. Connect the LINE OUT (or the HEADPHONE) socket on the DSK board
to a speaker, an oscilloscope, or headphones and verify the generation of the 1 - kHz tone.
The four connectors on the DSK board for input and output (MIC, LINE IN, LINE OUT,
and HEADPHONE) each use a 3.5 - mm jack audio cable.
Halt execution of program sine8_LED.out by selecting Debug →Halt.

11.Select Debug →Disconnect.

12.Close the CCS program.

 18

Experiment 2B
Sine Wave Generation Using Eight points with DIP Switch Control

Objectives:

1- To generate a sinusoidal analog output waveform using a table-
lookup method.

2- To illustrate some of the features of the CCS for editing source
files, building a project, accessing the code generation tools, and
running a program on the C6713 processor.

Lab Equipments:

1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphone.

Description:

The C source file sine8_LED.c listed in Figure 2B.1 is included in the folder sine8_LED .

 19

The operation of program sine8_LED.c is as follows. An array, sine_table, of eight 16 -
bit signed integers is declared and initialized to contain eight samples of exactly one
cycle of a sinusoid. The value of sine_table[i] is equal to

Within function main(), calls to functions comm_poll(), DSK6713_LED_init() ,and
DSK6713_DIP_init() initialize the DSK, the AIC23 codec onboard the DSK, and the two
multichannel buffered serial ports (McBSPs) on the C6713 processor.
Function comm_poll() is defined in the file c6713dskinit.c , and functions
DSK6713_LED_init() and DSK6713_DIP_init() are supplied in the board support library
(BSL) file dsk6713bsl.lib .
The program statement while (1) within the function main() creates an infinite loop.
Within that loop, the state of DIP switch #0 is tested and if it is pressed down, LED #0 is
switched on and a sample from the lookup table is output. If DIP switch #0 is not pressed
down then LED #0 is switched off. As long as DIP switch #0 is pressed down, sample
values read from the array sine_table will be output and a sinusoidal analog output
waveform will be generated via the left - hand channel of the AIC23 codec and the LINE
OUT and HEADPHONE sockets. Each time a sample value is read from the array
sine_table , multiplied by the value of the variable gain , and written to the codec, the
index, loopindex , into the array is incremented and when its value exceeds the allowable
range for the array (LOOPLENGTH - 1), it is reset to zero.
 Each time the function output_left_sample() , defined in source file C6713dskinit.c , is
called to output a sample value, it waits until the codec, initialized by the function
comm_poll() to output samples at a rate of 8 kHz, is ready for the next sample. In this
way, once DIP switch #0 has been pressed down it will be tested at a rate of 8 kHz. The
sampling rate at which the codec operates is set by the program statement
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;
One cycle of the sinusoidal analog output waveform corresponds to eight output samples
and hence the frequency of the sinusoidal analog output waveform is equal to the codec
sampling rate (8 kHz) divided by eight, that is, 1 kHz.

LAB WORK:

1- Creating a Project

This experiment illustrates how to create a project, adding the necessary files to generate
an executable file sine8_LED.out. a file named sine8_LED.pjt is already exist at
c:\CCStudio_v3.1\MyProjects\sine8_LED. However, for the purposes of gaining
familiarity with CCS, this experiment will illustrate how to create that project file from
scratch.

1. Delete the existing project file sine8_LED.pjt in folder

c:\CCStudio_v3.1\myprojects\sine8_LED. Do this from outside CCS.

2. Launch CCS by double - clicking on its desktop icon.

 20

3. Make a quick test on the DSK.

4. Create a new project file sine8_LED.pjt by selecting Project→New and typing

sine8_LED as the project name, as shown in Figure 2B.2. Set Target to
TMS320C67XX before clicking on Finish. The new project file will be saved in the
folder c:\CCStudio_v3.1\Myprojects\sine8_LED. The .pjt file stores project
information on build options, source filenames, and dependencies. The names of the
files used by a project are displayed in the Project View window, which, by default,
appears at the left - hand side of the Code Composer window.

5. Add the source file sine8_LED.c to the project. sine8_LED.c is the top level C

source file containing the definition of function main(). This source file is stored in
the folder sine8_LED and must be added to the project if it is to be used to generate
the executable file sine8_LED.out. Select Project→Add Files to Project and look
for Files of Type C Source Files (* .c, * .ccc). Open, or double - click on,
sine8_LED.c. It should appear in the Project View window Source folder.

6. Add the source file c6713dskinit.c to the project. c6713dskinit.c contains the

function definitions for a number of low level routines including comm._poll() and
output_left_sample(). This source file is stored in the folder
c:\CCStudio_v3.1\Myprojects\Support. Select Project→Add Files to Project and
look for Files of Type C Source Files (* .c, * .ccc). Open , or double - click on,
c6713dskinit.c . It should appear in the Project View window in the Source folder.

7. Add the source file vectors__poll.asm to the project. vectors_poll.asm contains the

interrupt service table for the C6713. This source file is stored in the folder
c:\CCStudio_v3.1\myprojects\Support. Select Project→Add Files to Project and

 21

look for Files of Type ASM Source Files (* .a *). Open, or double - click on,
vectors_poll.asm. It should appear in the Project View window in the Source folder.

8. Add library support files rts6700.lib, dsk6713bsl.lib, and csl6713.lib to the

project. Three more times, select Project→Add Files to Project and look for Files
of Type Object and Library Files (* .o * , * .l *) The three library files are stored in
folders c:\CCStudio_v3.1\c6000\cgtools\lib, c:\ CCStudio_v3.1\c6000\dsk6713\lib,
and c:\CCStudio_v3.1\c6000\csl\lib, respectively. These are the run - time support
(for C67x architecture), board support (for C6713 DSK), and chip support (for C6713
processor) library files.

9. Add the linker command file c6713dsk.cmd to the project. This file is stored in the

folder c:\CCStudio_v3.1\myprojects\Support. Select Project→Add Files to Project
and look for Files of Type Linker Command File (* .cmd; * .lcf) . Open, or double -
click on, c6713dsk.cmd. It should then appear in the Project View window.

10. No header files will be shown in the Project View window at this stage. Selecting

Project→Scan All File Dependencies will rectify this. You should now be able to
see header files c6713dskinit.h, dsk6713.h, and dsk6713_aic23.h , in the Project View
window.

11. The Project View window in CCS should look as shown in Figure 2B.3. The GEL

file dsk6713.gel is added automatically when you create the project. It initializes the
C6713 DSK invoking the board support library to use the PLL to set the CPU clock to
225 MHz (otherwise the C6713 runs at 50 MHz by default). Any of the files (except
the library files) listed in the Project View window can be displayed (and edited) by
double - clicking on their name in the Project View window. You should not add
header or include files to the project. They are added to the project automatically
when you select Scan All File Dependencies . (They are also added when you build
the project.)
Verify from the Project View window that the project (.pjt) file, the
linker command (.cmd) file, the three library (.lib) files, the two C
source (.c) files, and the assembly (.asm) file have been added to
the project.

 22

2- Code Generation and Build Options

The code generation tools underlying CCS, that is, C compiler, assembler, and linker,
have a number of options associated with each of them. These options must be set
appropriately before attempting to build a project. Once set, these options will be stored
in the project file.

 2.1. Setting Compiler Options
Select Project→Build Options and click on the Compiler tab. Set the following options,
as shown in Figures 2B.4, 2B.5, and 2B.6.In the Basic category set Target Versionto
C671x (- mv6710). In the Advanced category set Memory Models to Far (– mem_
model:data=far) . In the Preprocessor category set Pre - Defi ne Symbol to CHIP_6713
and Include Search Path to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include. Click on OK.

 23

 24

 2.2. Setting Linker Options

Click on the Linker tab in the Build Options window, as shown in Figure 2B.7. The
Output Filename should default to .\ Debug \ sine8_LED.out based on the name of the
project file and the Autoinit Model should default to Run - Time Autoinitialization. Set the
following options (all in the Basic category). Set Library Search Path to c:\
CCStudio_v3.1 \ C6000 \ dsk6713 \ lib and set Include Libraries to
rts6700.lib;dsk6713bsl.lib;csl6713.lib . The map file can provide useful information for
debugging (memory locations of functions, etc.). The –c option is used to initialize
variables at run time, and the –o option is to name the linked executable output file
sine8_LED.out . Click on OK .

 25

3- Building , Downloading and Running the Project

The project sine8_LED can now be built, and the executable file sine8_LED.out can be
downloaded to the DSK and run.

12. Build this project as sine8_LED. Select Project→Rebuild All. Or press the toolbar

button with the three downward arrows. This compiles and assembles all the C files
using cl6x and assembles the assembly file vectors_poll.asm using asm6x. The
resulting object files are then linked with the library files using lnk6x . This creates an
executable file sine8_LED.out that can be loaded into the C6713 processor and run.
Note that the commands for compiling, assembling, and linking are performed with
the Build option. A log file cc_build_Debug.log is created that shows the files that are
compiled and assembled, along with the compiler options selected. It also lists the
support functions that are used. The building process causes all the dependent files to
be included (in case one forgets to scan for all the file dependencies). You should see

 26

a number of diagnostic messages, culminating in the message “ Build Complete, 0
Errors, 0 Warnings, 0 Remarks ” appear in an output window in the bottom left - hand
side of the CCS window. It is possible that a warning about the Stack Size will have
appeared. This can be ignored or can be suppressed by unchecking the Warn About
Output Sections option in the Advanced category of Linker Build Options.
Alternatively, it can be eliminated by setting the Stack Size option in the Advanced
category of Linker Build Options to a suitable value (e.g., 0x1000).
Connect to the DSK . Select Debug→Connect and check that the symbol in the
bottom left - hand corner of the CCS window indicates connection to the DSK.

13. Select File→Load Program in order to load sine8_LED.out. It should be stored in
the folder c:\CCStudio_v3.1\MyProjects\sine8_LED\Debug. Select Debug→Run.
In order to verify that a sinusoidal output waveform with a frequency of 1 kHz is
present at both the LINE OUT and HEADPHONE sockets on the DSK, when DIP
switch #0 is pressed down, use an oscilloscope connected to the LINE OUT socket
and a pair of headphones connected to the HEADPHONE socket.

4- Monitoring the Watch Window

Ensure that the processor is still running (and that DIP switch #0 is pressed down). Note
the message “RUNNING” displayed at the bottom left of CCS. The Watch window
allows you to change the value of a parameter or to monitor a variable:

14. Select View →Quick Watch. Type gain, and then click on Add to Watch. The gain

value of 10 set in the program in Figure 2B.1 should appear in the Watch window.

15. Change gain from 10 to 30 in the Watch window. Press enter. Verify that the

amplitude of the generated tone has increased (with the processor still running and
DIP switch #0 pressed down). The amplitude of the sine wave should have increased
from approximately 0.9 V p - p to approximately 2.5 V p - p.

5- Using a GEL Slider to Control the Gain

The General Extension Language (GEL) is an interpreted language similar to (a subset
of) C. It allows you to change the value of a variable (e.g., gain) while the processor is
running.

16. Select File →Load GEL and load the file gain.gel (in folder sine8_LED).

17. Double - click on the filename gain.gel in the Project View window to view it within

CCS. The file is listed in Figure 2B.8. The format of a slider GEL function is

 27

where param_definition identifies the slider and is displayed as the name of the slider
window, minVal is the value assigned to the GEL variable param-Name when the slider
is at its lowest level, maxVal is the value assigned to the GEL variable paramName when
the slider is at its highest level, increment specifies the incremental change to the value of
the GEL variable paramName made using the up - or down - arrow keys, and
pageIncrement specifies the incremental change to the value of the GEL variable
paramName made by clicking in the slider window. In the case of gain.gel , the statement
gain = gain_parameter; assigns the value of the GEL variable gain_parameter to the
variable gain in program sine8_LED . The line menuitem “Sine Gain”sets the text that
will appear as an option in the CCS GEL menu when gain.gel is loaded.

18. Select GEL→Sine Gain →Gain. This should bring out the slider window shown

in Figure 2B.9, with the minimum value of 0 set for the gain.

19. Press the up - arrow key three times to increase the gain value from 0 to 12. Verify

that the peak - to - peak value of the sine wave generated is approximately 1.05 V.
Press the up - arrow key again to continue increasing the slider, incrementing by 4
each time. The amplitude of the sine wave should be about 2.5 V p - p with the value
of gain set to 30. Clicking in the Gain slider window above or below the current
position of the slider will increment or decrement its value by 1. The slider can also
be dragged up and down. Changes to the value of gain made using the slider are
reflected in the Watch window.

 28

6- Changing the Frequency of the Generated Sinusoid

There are several different ways in which the frequency of the sinusoid generated by
program sine8_LED.c can be altered.

20. Change the AIC23 codec sampling frequency from 8 kHz to 16 kHz by changing the

line that reads
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;
to read
Uint32 fs = DSK6713_AIC23_FREQ_16KHZ;
Rebuild (use incremental build) the project, load and run the new executable file, and
verify that the frequency of the generated sinusoid is 2 kHz. The sampling
frequencies supported by the AIC23 codec are 8, 16, 24, 32, 44.1, 48, and 96 kHz.

21. Change the number of samples stored in the lookup table to four. By changing the

lines that read
#define LOOPLENGTH 8
short sine_table[LOOPLENGTH]={0,707,1000,707,0, -707,0,-1000,-707};
to read
#define LOOPLENGTH 4
short sine_table[LOOPLENGTH]={0,1000,0, -1000};
Verify that the frequency of the sinusoid generated is 2 kHz (assuming an 8 - kHz
sampling frequency).

Remember that the sinusoid is no longer generated if the DIP switch #0 is not pressed
down. A different DIP switch can be used to control whether or not a sinusoid is
generated by changing the value of the parameter passed to the functions
DSK6713_DIP_get(), DSK6713_LED_on(), and DSK6713_LED_off() . Suitable values
are 0, 1, 2, and 3.

 29

Two sliders can readily be used, one to change the gain and the other to change the
frequency. A different signal frequency can be generated, by changing the incremental
changes applied to the value of loopindex within the C program (e.g., stepping through
every two points in the table). When you exit CCS after you build a project, all changes
made to the project can be saved. You can later return to the project with the status as you
left it before. For example, when returning to the project, after launching CCS, select
Project→Open to open an existing project such as sine8_LED.pjt (with all the
necessary files for the project already added).

 30

Experiment 2C
Generation of sinusoid and Plotting with CCS (sine8_buf)

Objectives:

1- To generate a sinusoidal analog output waveform using eight pre-
calculated and pre-stored sample values.

2- To illustrate the capabilities of CCS for plotting data in both time
and frequency domains.

Lab Equipments:

1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphone.

Description:

This example generates a sinusoidal analog output signal using eight pre[calculated and
pre[stored sample values. However, it differs fundamentally from sine8_LED in that its
operation is based on the use of interrupts. In addition, it uses a buffer to store the
BUFFERLENGTH most recent output samples. It is used to illustrate the capabilities of
CCS for plotting data in both time and frequency domains. All the files necessary to build
and run an executable file sine8_BUF.out are stored in folder sine8_buf. Program file
sine8_buf.c is listed in Figure 2C.1.

This program uses interrupt- driven input/output rather than polling, so that the file
vectors_intr.asm is used in place of vectors_poll.asm. The interrupt service table
specified in vectors_intr.asm associates the interrupt service routine c_int11() with
hardware interrupt INT11, which is asserted by the AIC23 codec on the DSK at each
sampling instant. Within function main() , function comm_intr() is used in place of
comm_poll() . This function is defined in file c6713dskinit.c. Essentially, it initializes the
DSK hardware, including the AIC23 codec, such that the codec sampling rate is set
according to the value of the variable fs and the codec interrupts the processor at every
sampling instant. The statement while(1) in function main() creates an infinite loop,
during which the processor waits for interrupts. On interrupt, execution proceeds to the
interrupt service routine (ISR) c_int11() , which reads a new sample value from the array
sine_table and writes it both to the array out_buffer and to the DAC using function
output_left_sample().

Because a project file sine8_buf.pjt is supplied, there is no need to create a new project
file, add files to it, or alter compiler and linker build options. In order to build, download
and run program sine8_buf.c.

 31

LAB WORK:

1. Launch CCS by double - clicking on its desktop icon.

2. Make a quick test on the DSK.

3. Open project sine8_buf.pjt by selecting Project →Open and double – clicking on

file sine8_buf.pjt in folder sine8_buf.

4. Build this project as sine8_buf. Load and run the executable file sine8_buf.out and

verify that a 1 - kHz sinusoid is generated at the LINE OUT and HEADPHONE
sockets

Graphical Displays in CCS

The array out_buffer is used to store the BUFFERLENGTH most recently output sample
values. Once program execution has been halted, the data stored in out_buffer can be
displayed graphically in CCS.

 32

5. Select View→Graph →Time/Frequency and set the Graph Property Dialog
properties as shown in Figure 2C.2.a. Figure 2C.2.b. shows the resultant Graphical
Display window.

6. Figure 2C.3.a shows the Graph Property Dialog window that corresponds to the

frequency domain representation of the contents of out_buffer shown in Figure
2C.3.b. The spike at 1 kHz represents the frequency of the sinusoid generated by
program sine8_buf.c .

 33

Viewing and Saving Data from Memory into File

7. To view the contents of out_buffer, select View→Memory. Specify out_buffer as

the Address and select 32 - bit Signed Integer as the Format , as shown in Figure
2C.4.a. The resultant Memory window is shown in Figure 2C.4.b.

8. To save the contents of out_buffer to a file, select File→Data →Save. Save the

file as sine8_buf.dat , selecting data type Integer , in the folder sine8_buf. In the
Storing Memory into File window, specify out_buffer as the Address and a Length of
256. The resulting file is a text file and you can plot this data using other applications
(e.g., MATLAB).

 34

Although the values stored in array sine_table and passed to function
output_left_sample() are 16 - bit signed integers, array out_buffer is declared as type int
(32 - bit signed integer) in program sine8_buf.c to allow for the fact that there is no 16 -
bit Signed Integer data type option in the Save Data facility in CCS.

 35

Experiment 3A
Basic Input and Output Using Polling (loop_poll)

Objectives:

1- Sampling and reconstruction of real time signals.
2- Gain change of the line input.

Lab Equipments:
1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphone.
5- Signal Generator.

Description:

A basic DSP system, suitable for processing audio frequency signals, comprises a digital
signal processor and analog interfaces as shown in Figure 2A.1. The C6713 provides just
such a system, using the TMS320C6713 (C6713) floating - point processor and the
TLV320AIC23 (AIC23) codec. The term codec refers to the coding of analog waveforms
as digital signals and the decoding of digital signals as analog waveforms. The AIC23
codec performs both the analog - to - digital conversion (ADC) and digital - to - analog
conversion (DAC) functions shown in Figure 3A.1. Alternatively, I/O daughter cards,
plugged into the External Peripheral Interface 80 - pin connector J3 on the DSK board
can be used for analog input and output.

Within digital signal processors, signals are represented as sequences of discrete samples
and whenever signals are sampled, the possibility of aliasing arises. Aliasing is
undesirable phenomena and it may be avoided by the use of an antialiasing filter placed at
the input to the system shown in Figure 3A.1 and by suitable design of the DAC. In a
baseband system, an effective antialiasing filter is one that allows frequency components
below half of the sampling frequency to pass but which attenuates greatly, or stops,
frequency components equal to or greater than half of the sampling frequency. A suitable
DAC for a baseband system essentially comprises a lowpass filter having characteristics
similar to the aforementioned antialiasing filter. The AIC23 codec contains digital
antialiasing and reconstruction filters.

 36

The C6713 DSK makes use of the TLV320AIC23 (AIC23) codec for analog input and
output. The analog - to - digital converter (ADC), or coder, part of the codec converts an
analog input signal into a sequence of sample values (16 – bit signed integer) to be
processed by the digital signal processor. The digital - to – analog converter (DAC), or
decoder, part of the codec reconstructs an analog output signal from a sequence of sample
values (16 - bit signed integer) that have been processed by the digital signal processor.
The AIC23 is a stereo audio codec based on sigma – delta technology.

A 12 - MHz crystal supplies the clock to the AIC23 codec (also to the DSP and the USB
interface). Using this 12 - MHz master clock, with oversampling rates of 250Fs and
272Fs , exact audio sample rates of 48 kHz (12 MHz/250) and the CD rate of 44.1 kHz
(12 MHz/272) can be obtained. The sampling rate of the AIC23 can be configured to be
8, 16, 24, 32, 44.1, 48, or 96 kHz.

Communication with the AIC23 codec for input and output uses two multichannel
buffered serial ports (McBSPs) on the C6713. McBSP0 is used as a unidirectional
channel to send a 16 - bit control word to the AIC23. McBSP1 is used as a bidirectional
channel to send and receive audio data. The codec can be configured for data - transfer
word-lengths of 16, 20, 24, or 32 bits. The LINE IN and HEADPHONE OUT signal
paths within the codec contain configurable gain elements with ranges of 12 to − 34 dB in
steps of 1.5 dB, and 6 to − 73 dB in steps of 1 dB, respectively. Most of the programming
examples in this booklet configure the codec for a sampling rate of 8 kHz, 32 - bit data
transfer, and 0 - dB gain in the LINE IN and HEADPHONE OUT signal paths. The
maximum allowable input signal level at the LINE IN inputs to the codec is 1 V rms.
However, the C6713 DSK contain a potential divider circuit with a gain of 0.5 between
their LINE IN sockets and the codec itself with the effect that the maximum allowable
input signal level at the LINE IN sockets on the DSK is 2 V rms. Above this level, input
signals will be distorted. Input and output sockets on the DSK are ac coupled to the
codec.

The C language source file for a program, loop_poll.c , that simply copies input samples
read from the AIC23 codec ADC back to the AIC23 codec DAC as output samples is
listed in Figure3A.2. Effectively, the MIC input socket is connected straight through to
the HEADPHONE OUT socket on the DSK via the AIC23 codec and the digital signal
processor. loop_poll.c uses the same polling technique for real - time input and output as
program sine8_LED.c , presented in previous experiment .

 37

Input and Output Functions Defined in Support File c6713dskinit.c

The functions input_left_sample() , output_left_sample() , and comm_poll()
are defined in the support file c6713dskinit.c. This way the C source file loop_poll.c is
kept as small as possible and potentially distracting low level detail is hidden. The
implementation details of these, and other, functions defined in c6713dskinit.c need not
be studied in detail in order to carry out the examples presented in this booklet but are
described here for completeness.

Further calls are made by input_left_sample() and output_left_sample() to lower level
functions contained in the board support library DSK6713bsl.lib. Function comm_poll()
initializes the DSK and, in particular, the AIC23 codec such that its sample rate is set
according to the value of the variable fs (assigned in loop_poll.c), its input source
according to the value of the variable inputsource (assigned in loop_poll.c), and polling
mode is selected. Other AIC23 configuration settings are determined by the parameters
specified in file c6713dskinit.h. These parameters include the gain settings in the LINE
IN and HEADPHONE out signal paths, the digital audio interface format, and so on.
Similar values for all of these parameters are used by almost all of the program examples
in this booklet. Only rarely will they be changed and so it is convenient to hide them out
of the way in file c6713dskinit.h .

The two settings, sampling rate and input source, are changed sufficiently frequently,
from one program example to another, that their values are set in each example program
by initializing the values of the variables fs and inputsource. In function dsk6713_init() in
file c6713dskinit.c , these values are used by functions DSK6713_AIC23_setFreq() and
DSK6713_AIC23_rset(), respectively. In polling mode, function input_left_sample()

 38

polls, or tests, the receive ready bit (RRDY) of the McBSP serial port control register (
SPCR) until this indicates that newly converted data is available to be read using
function MCBSP_read(). Function output_left_sample() polls, or tests, the transmit ready
bit (XRDY) of the McBSP serial port control register (SPCR) until this indicates that
the codec is ready to receive a new output sample. A new output sample is sent to the
codec using function McBSP_write() .

Although polling is simpler than the interrupt technique used in sine8_buf.c, it is less
efficient since the processor spends nearly all of its time repeatedly testing whether the
codec is ready either to transmit or to receive data.

LAB WORK:

1. Launch CCS by double - clicking on its desktop icon.

2. Make a quick test on the DSK.

3. Open project loop_poll.pjt by selecting Project →Open and double – clicking on

file loop_poll.pjt in folder loop_poll.

4. Load and run the executable file loop_poll.out.

5. Use a microphone and headphones to verify that the program operates as intended.

6. Rebuild the program having changed the line that reads

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC;
to read
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
in order to select the LINE IN rather than the MIC socket on the
DSK.

7. Input a sinusoidal waveform to the LINE IN connector on the DSK, with amplitude of

approximately 2.0 V p - p and a frequency of approximately 1 kHz.

8. Connect the output of the DSK, LINE OUT, to an oscilloscope, and verify the

presence of a tone of the same frequency, but attenuated to approximately 1.0 V p - p.

9. Explain the attenuation occurred.

10. Increase the amplitude of the input sinusoidal waveform (at the LINE IN socket)

beyond 5V p – p. and verify that the output signal becomes distorted. Why?

Changing the LINE IN Gain of the AIC23 Codec

The AIC23 codec allows for the gain on left - and right - hand line - in input channels to
be adjusted independently in steps of 1.5 dB by writing different values to the left and

 39

right line input channel volume control registers. The values assigned to these registers
by function comm_poll() are defined in the header file c6713dskinit.h . In order to change
the values written, that file must be modified.

11. Copy the files c6713dskinit.h and C6713dskinit.c from the Support folder into the

folder loop_poll so that you don’t modify the original header file.

12. Remove these two files from the loop_poll project by right - clicking on

c6713dskinit.c in the Project View window and then selecting Project→ Remove
from Project.

13. Add the copy of the file c6713dskinit.c in folder loop_poll to the project by selecting

Project → Add Files to Project.

14. Check that you have added the copy of file c6713dskinit.c to the project by right -

clicking on it in the Project View window and selecting Properties.

15. Select Project→ Scan all Dependencies in order to replace the file c6713dskinit.h

with the copy in folder loop_poll .

16. Edit the copy of file c6713dskinit.h included in the project (and stored in folder

loop_poll), changing the line that reads
0x0017 / * Set -Up Reg 0 Left line volume control */
to read
0x001B / * Set -Up Reg 0 Left line volume control */

This modifies the value written to the AIC23 left line input channel gain register
from 0x0017 to 0x001B and this increases the gain from 0 dB to 6 dB.

17. Build the project, making sure that the copy of the file c6713dskinit.c used in the

project is the copy in folder loop_poll. The header file c6713dskinit.h that will be
included will come from that same folder

18. Load and run the executable file loop_poll.out and verify that the output signal is not

attenuated, but has the same amplitude as the input signal, that is, 2 V p - p.

 40

Experiment 3B
Basic Input and Output Using Interrupts (loop_intr)

Objectives:

1- Sampling and reconstruction of real time signals using the
interrupt driven model.

2- Demonstration of echo and delay effects.

Lab Equipments:

1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphone.
5- Signal Generator.

Description:

Program loop_intr.c is functionally equivalent to program loop_poll.c but makes use of
interrupts. This simple program is important because many of the other example
programs in this booklet are based on the same interrupt - driven model. Instead of
simply copying the sequence of samples representing an input signal to the codec output,
a digital filtering operation can be performed each time a new input sample is received. It
is worth taking time to ensure that you understand how program loop_intr.c works. In
function main() , the initialization function comm_intr() is called. comm_intr() is very
similar to comm_poll() but in addition to initializing the DSK, codec, and McBSP, and
not selecting polling mode, it sets up interrupts such that the AIC23 codec will sample the
analog input signal and interrupt the C6713 processor, at the sampling frequency defined
by the line
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

It also initiates communication with the codec via the McBSP. In this example, a
sampling rate of 8 kHz is used and interrupts will occur every 0.125 ms. (Sampling rates
of 16, 24, 32, 44.1, 48, and 96 kHz are also possible.)

Following initialization, function main() enters an endless while loop, doing nothing but
waiting for interrupts. The functions that will act as interrupt service routines for the
various different interrupts are specified in the interrupt service table contained in file
vectors_intr.asm. This assembly language file differs from the file vectors_poll.asm in
that function c_int11() is specified as the interrupt service routine for interrupt INT11. On
interrupt, the interrupt service routine (ISR) c_int11() is called and it is within that routine
that the most important program statements are executed. Function output_left_sample()
is used to output a value read from the codec using function input_left_sample() .

 41

Format of Data Transferred to and from AIC 23 Codec

The AIC23 ADC converts left - and right - hand channel analog input signals into 16 - bit
signed integers and the DAC converts 16 - bit signed integers to left - and right - hand
channel analog output signals. Left - and right - hand channel samples are combined to
form 32 - bit values that are communicated via the multichannel buffered serial port
(McBSP) to and from the C6713. Access to the ADC and DAC from a C program is via
the functions Uint32 input_sample(), short input_left_sample(), short
input_right_sample(), void output_sample(int out_data) , void output_left_sample(short
out_data), and void output_right_sample(short out_data).
The 32 - bit unsigned integers (Uint32) returned by input_sample() and passed to
output_sample() contain both left and right channel samples. The statement

In file dsk6713init.h declares a variable that may be handled either as one 32 - bit
unsigned integer (AIC_data.uint) containing left and right channel sample values, or as
two 16 - bit signed integers (AIC_data.channel[0] and AIC_data.channel[1]).

Most of the program examples in this booklet use only one channel for input and output
and for clarity most use the functions input_left_sample() and output_left_sample() .
These functions are defined in the file c6713dskinit.c, where the unpacking and packing

 42

of the signed 16 - bit integer left - hand channel sample values out of and into the 32 - bit
words received and transmitted from and to the codec are carried out.

Modifying Program loop_intr.c to Create a Delay (delay)

Some simple, yet striking, effects can by achieved simply by delaying the samples as they
pass from input to output. Program delay.c, listed in Figure 3B.2 , demonstrates this. A
delay line is implemented using the array buffer to store samples as they are read from
the codec. Once the array is full, the program overwrites the oldest stored input sample
with the current, or newest, input sample. Just prior to overwriting the oldest stored input
sample in buffer , that sample is retrieved, added to the current input sample, and output
to the codec. Figure 3B.3 shows a block diagram representation of the operation of
program delay.c in which the block labeled T represents a delay of T seconds.

 43

Modifying Program loop_intr.c to Create an Echo (echo)

By feeding back a fraction of the output of the delay line to its input, a fading echo effect
can be realized. Program echo.c, listed in Figure 3B.4, does this. Figure 3B.5 shows a
block diagram representation of the operation of program echo.c. The value of the
constant BUF_SIZE determines the number of samples stored in the array buffer and
hence the duration of the delay. The value of the constant GAIN determines the fraction
of the output that is fed back into the delay line and hence the rate at which the echo
effect fades away. Setting the value of GAIN equal to or greater than unity would cause
instability of the loop.

 44

Build and run this project as echo. Experiment with different values of GAIN (between
0.0 and 1.0) and BUF_SIZE (between 100 and 8000). Source file echo.c must be edited
and the project rebuilt in order to make these changes.

Loop Program with Input Data Stored in a Buffer (loop_buf)

Program loop_buf.c , listed in Figure 3B.6 , is an interrupt - based program and is stored
in folder loop_buf . It is similar to program loop_intr.c except that it maintains a circular
buffer in array buffer containing the BUF_SIZE most recent input sample values.
Consequently, it is possible to display this data in CCS after halting the program.

 45

LAB WORK:

1. Launch CCS by double - clicking on its desktop icon.

2. Make a quick test on the DSK.

3. Open project loop_intr.pjt by selecting Project →Open and double – clicking on

file loop_intr.pjt in folder loop_intr.

4. Load and run the executable file loop_intr.out.

5. Use a microphone and headphones to verify that the program operates as intended.

6. Halt the executable file loop_intr.out.

7. Open project delay.pjt by selecting Project →Open and double – clicking on file

delay.pjt in folder delay.

8. Load and run the executable file delay.out.

9. Use a microphone and headphones to verify that the program operates as intended.

10. Halt the executable file delay.out.

11. Open project echo.pjt by selecting Project →Open and double – clicking on file

echo.pjt in folder delay.

12. Load and run the executable file echo.out.

13. Experiment with different values of GAIN (between 0.0 and 1.0) and BUF_SIZE

(between 100 and 8000). Source file echo.c must be edited and the project rebuilt in
order to make these changes.

14. Halt the executable file echo.out.

15. Use a signal generator connected to the LINE IN socket to input a sinusoidal signal

with a frequency between 100 and 3500 Hz.

16. Open project loop_buf.pjt by selecting Project →Open and double – clicking on file

loop_buf.pjt in folder loop_buf.

17. Load and run the executable file loop_buf.out.

18. Halt the program after a short time.

19. Select View → Graph → Time/Frequency in order to display the contents of array buffer.

 46

Experiment 3C
Sine Wave Generation Using sin() Function,

Reconstruction, Aliasing, and the Properties of the AIC 23
Codec

Objectives:

1- To generate sinusoidal signal using mathematical function.
2- Demonstration of aliasing in real time system.
3- To visualize the step response of the AIC23 Codec Anti-aliasing

Filter

Lab Equipments:
1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Signal Generator.

Description:

Generating analog output signals using programs such as sine_intr.c (Figure 3C.1) is a
useful means of investigating the characteristics of the AIC23 codec.

 47

At each sampling instant, that is, within function c_int11() , a new output sample value is
calculated using a call to the math library function sin() . The floating - point parameter,
theta, passed to that function is incremented at each sampling instant by the value
theta_increment = 2 * PI * frequency/SAMPLING_FREQ and when value of theta
exceeds 2 π the value 2 π is subtracted from it.

Changing the value of the variable frequency in program sine_intr.c to an arbitrary value
between 100.0 and 3500.0, you should find that a sine wave of that frequency is
generated. While changing the value of the variable frequency to 7000.0, you will find
that a 1 - kHz sine wave is generated. The same is true if the value of frequency is
changed to 9000.0 or 15000.0. These effects are due to the phenomenon of aliasing.
Sequences of samples calculated using function sin() at frequencies 8000 n ± 1000 Hz,
where n = 0, ± 1, ± 2, ± 3, . . . are identical and all are reconstructed by the codec as a 1 -
kHz sine wave.A graphical representation of this is shown in Figure 3C.2.

In the time domain, the sampling process may be represented by multiplication of the
analog input waveform sin(2 * pi * 1000 * t) (Figure 3C.2a) by a sequence of impulses at
intervals of Ts = 0.125 ms (Figure 3C.2c), resulting in a sequence of weighted impulses
(Figure 3C.2e).

In the frequency domain, the analog input waveform is represented by two discrete values
at ± 1 kHz (Figure 3C.2b) and the sequence of time - domain impulses by a sequence of
impulses in the frequency domain at intervals of 1/ Ts = 8 kHz (Figure 3C.2d).
Multiplication in the time domain is equivalent to convolution in the frequency domain.
Convolving the signals of Figures 3C.2.b and 3C.2d, the frequency – domain
representation of the sampled sinusoid (Figure 3C.2e) is an infinitely repeated sequence
of copies of the two impulses at ± 1 kHz centered at 0 Hz, ± 8 kHz, ± 16 kHz, . . . (Figure
3C.2f). Next, consider the case of a 7 - kHz sine wave sampled at 8 kHz. Time – and
frequency - domain representations of the analog input signal sin(2 * pi * 7000 * t) are
shown in Figures 3C.2g and 3C.2h.

Convolving the signal shown in Figure 3C.2h with that shown in Figure 3C.2d results in
the signal shown in Figure 3C.2j. This comprises an infinitely repeated sequence of
copies of the two impulses at ± 7 kHz centered at 0 Hz, ± 8 kHz, ± 16 kHz, Despite
their different derivations, Figures 3C.2f and 3C.2j are identical. This corresponds to the
equivalence of the time - domain sample sequences shown in Figures 3C.2e and 3C.2i.
The lowpass characteristic of the DAC can be represented by the attenuation, or blocking,
of frequency components outside the range ± 4 kHz. This results, in this example, in the
lowpass filtered or reconstructed versions of the signals in Figures 3C.2f and 3C.2j being
identical to that shown in Figure 3C.2b.

 48

Since the reconstruction (digital - to - analog conversion) process is one of lowpass
filtering, it follows that the bandwidth of signals output by the codec is limited.

LAB WORK:

1. Launch CCS by double - clicking on its desktop icon.

2. Make a quick test on the DSK.

3. Connect the oscilloscope to LINE OUT on the DSK.

4. Open project sine_intr.pjt by selecting Project →Open and double – clicking on file

sine_intr.pjt in folder sine_intr.

 49

5. Change the value of the variable frequency in program sine_intr.c to an arbitrary
value between 100.0 and 3500.0.

6. Rebuild the project sine_intr.pjt.

7. Load and run the executable file sine_intr.out.

8. Record the frequency of the output sine wave.

9. Change the value of the variable frequency to 7000.0, then rebuild the project.

10. Load and run the executable file sine_intr.out.

11. Record the frequency of the output sine wave.

12. Change the value of the variable frequency to 3500.0, then rebuild the project.

13. Load and run the executable file sine_intr.out.

14. Record the frequency of the output sine wave.

15. Change the value of the variable frequency to 4500.0, then rebuild the project.

16. Load and run the executable file sine_intr.out.

17. Record the frequency of the output sine wave.

Step Response of the AIC23 Codec Antialiasing Filter (loop_buf)

18. Connect a signal generator to the DSK LINE IN socket.

19. Adjust the signal generator to give a square wave output of frequency 270 Hz and

amplitude 0.2 V.

20. Load and run program loopbuf.c on the DSK.

21. Halting the DSP after a few seconds.

22. View the most recent 64 input sample values by selecting View→ Graph and setting

the Graph Properties as shown in Figure 3C.3.

 50

 51

Experiment 4
FIR Filter I

Objectives:

1- To implement FIR filters in real time signal processing system.
2- To assess the magnitude frequency response of FIR filters.

Lab Equipments:
1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphones.

Theory:

The moving average filter is widely used in DSP and arguably is the easiest of all digital
filters to understand. It is particularly effective at removing (high frequency) random
noise from a signal or at smoothing a signal.
The moving average filter operates by taking the arithmetic mean of a number of past
input samples in order to produce each output sample. This may be represented by the
equation

Where x (n) represents the n th sample of an input signal and y (n) the n th sample of
the filter output. The moving average filter is an example of convolution using a very
simple filter kernel or impulse response comprising N coefficients each of value 1 /N. The
above equation may be thought of as a particularly simple case of the more general
convolution sum implemented by a finite impulse response filter; that is,

where the FIR filter coefficients h (i) are samples of the filter impulse response and in the
case of the moving average filter each is equal to 1 /N . As far as implementation is
concerned, at the nth sampling instant we multiply N past input samples individually by
1/N and sum the N products.

Program average.c, listed in Figure 4.1, uses this approach, even though it is not the most
computationally efficient. The value of N defined near the start of the source file
determines the number of previous input samples to be averaged.

A more rigorous method of assessing the magnitude frequency response of the filter is to
use a signal generator and an oscilloscope or spectrum analyzer to measure its gain at
different individual frequencies. By using this method, it is straightforward to identify the
distinct notches in the magnitude frequency response at 1600 Hz (corresponding to the

 52

tone in test file mefsin.wav that is stored in folder average.c) and at 3200 Hz. The
theoretical frequency response of the filter can be found using Matlab by running the
following two lines:

>> [H W]=freqz([0.2 0.2 0.2 0.2 0.2],1);
>> plot(W*4000/pi,20*log10(abs(H)))

This frequency response is shown in Figure 4.2

 53

Another method of assessing the magnitude frequency response of a filter is to use
wideband noise as an input signal. Program averagen.c demonstrates this technique. A
pseudorandom binary sequence (PRBS) is generated within the program and used as an
input to the filter in lieu of samples read from the ADC. The filtered noise can be viewed
on a spectrum analyzer and whereas the frequency content of the PRBS input is uniform
across all frequencies, the frequency content of the filtered noise will reflect the
frequency response of the filter.

 54

The frequency response of the moving average filter can be changed by altering the
number of previous input samples that are averaged, or by altering the values of the
coefficients.

LAB WORK I:

1. Launch CCS by double - clicking on its desktop icon.

2. Make a quick test on the DSK.

3. Open project average.pjt by selecting Project →Open and double – clicking on file

average.pjt in folder average.

 55

4. Connect the output of a function generator to the LINE IN socket on the DSK.

5. Connect the LINE OUT socket on the DSK to an oscilloscope.

6. Load and run the executable file average.out.

7. Construct a table to assess the magnitude frequency response of the filter.

i. Set the output of the function generator to 1 P PV − sinusoidal waveform.
ii. Change the frequency of the sinusoidal signal at the output of a function from 100

Hz to 4000 Hz in steps and record the peak value of the signal on the scope.

Frequency Peak Value dB value

8. A test file mefsin.wav, stored in folder average, contains a recording of speech

corrupted by the addition of a sinusoidal tone. Listen to this file using Goldwave,
Windows Media Player, or similar.

9. Connect the PC soundcard output to the LINE IN socket on the DSK and listen to the

filtered test signal (LINE OUT or HEADPHONE).

10. Halt the executable file average.out.

11. Open project averagen.pjt by selecting Project →Open and double – clicking on

file averagen.pjt in folder averagen.

12. Load and run the executable file averagen.out.

13. Using the FFT feature of the scope, capture the output of program averagen.c,

compare the plot with figure 4.2.

 56

14. Halt the executable file averagen.out.

15. Modify program averagen.c so that it implements an eleven point moving average

filter; that is, change the line that reads
#define N 5
to read
#define N 11

16. Build and run the project and verify that the frequency response of the filter has

changed using the FFT feature of the scope.

17. Build and run the project and verify that the frequency response of the filter has

changed using the FFT feature of the scope.

18. Use Matlab to verify the frequency response of this new filter.

19. Halt the executable file averagen.out.

20. Modify program averagen.c again, changing the lines that read

#define N 11
float h[N];
to read
#define N 5
float h[N] = {0.0833, 0.2500, 0.3333. 0.2500, 0.0833};
and comment out the following line
for (i=0 ; i < N ; i++) h[i] = 1.0/N;

21. Build and run the project and verify that the frequency response of the filter has

changed using the FFT feature of the scope.
 Use Matlab to verify the frequency response of this new filter. Record your notes.

FIR Filter with Moving Average, Bandstop, and Bandpass Characteristics (fir)

Description

The mechanism used by program fir.c (Figure 4.4) to calculate each output sample is
identical to that employed by program average.c. Function c_int11() has exactly the same
definition in both programs. Whereas program average.c calculated the values of its
coefficient in function main() , program fir.c reads the values of its coefficients from a
separate file. Using this mechanism, we can implement any FIR filter with its coefficients
stored in a separate file.

LAB WORK II:

22. Open project fir.pjt by selecting Project →Open and double – clicking on file fir.pjt

in folder fir.

 57

23. Connect the output of a function generator to the LINE IN socket on the DSK.

24. Connect the LINE OUT socket on the DSK to an oscilloscope.

25. Load and run the executable file fir.out. Coefficient file ave5f.cof is listed in Figure

4.5. Using that file, program fir.c implements the same five point moving average
filter implemented by program average.c. The number of filter coefficients is
specified by the value of the constant N, defined in the .cof file and the coefficients
are specified as the initial values in an N element array, h, of type float.

26. Run the program and verify that it implements a five point moving average filter

using an assessment method similar to that in LAB WORK I above. You need only to
take some selected frequencies as a test such as 1600 Hz. Record your note.

27. To implement a band-pass filter at 2700 Hz change the line that reads
 #include “ ave5f.cof ”
 To read
 #include “ bs2700f.cof ”

28. Build and run this project.

29. Input a sinusoidal signal and vary the input frequency slightly below and above 2700

Hz. Verify that the output is a minimum at 2700 Hz. The values of the coefficients for
this filter were calculated using MATLAB’s filter design and analysis tool, fdatool.

30. Edit program fir.c again to include the coefficient file bp1750f.cof in place of

bs2700f.cof. File bp1750f.cof represents an FIR bandpass filter (81 coefficients)
centered at 1750 Hz. Again, this filter was designed using MATLAB ’ s fdatool .

31. Select Project → Build, and the new coefficient file bp1750.cof will automatically be

included in the project. Run again and verify an FIR bandpass filter centered at 1750
Hz using an assessment method similar to that in LAB WORK I above. You need
only to take some selected frequencies as a test such as 1600 Hz. Record your note.

 58

Generating Filter Coefficient (.cof) Files Using MATLAB

If the number of filter coefficients is small, a coefficient (.cof) file can be edited by hand.
For larger numbers of coefficients the MATLAB function dsk_fir67() , supplied on the
CD accompanying the text book as file dsk_fir67.m , can be used. This function, listed in
Figure 4.6, expects to be passed a MATLAB vector of coefficient values and prompts the
user for an output filename.
For example, the coefficient file ave5f.cof was created by typing the following at the
MATLAB command prompt:

 59

>> x = [0.2, 0.2, 0.2, 0.2, 0.2];
>> dsk_fir67(x)

Enter filename for coefficients ave5f.cof
Note that the coefficient filename must be entered in full, including the suffix .cof.

 60

LAB WORK III:

32. Open project fir.pjt by selecting Project →Open and double – clicking on file fir.pjt

in folder fir.

33. Connect the output of the PC speaker to the LINE IN socket on the DSK.

34. Connect the HP OUT socket on the DSK to a headphone.

35. Design a bandstop filter to approximately reject 3 kHz tone from a corrupted speech

signal using the Matlab filter design tool (fdatool).

36. In the filter design and analysis tool window, select Export from the File menu, a

small window with Export title will be opened.

37. In the Export window, select Workspace for Export to, Coefficients for Export As.

38. In the Variable Names, type Num3000, then click Export. The filter coefficients are

now available in the present Workspace and can be verified by typing whos.

39. Create a coefficient file by typing

>> dsk_fir67(Num3000)
enter filename for coefficients Num3000f.cof

40. To implement this filter edit file fir.c and change the line that reads
 #include “ ave5f.cof ”
 To read
 #include “Num3000f.cof

41. Build and run this project.

42. On Matlab, play the corrupted speech signal with the command

>> sound(CorrAspect,8000) or using RealPlayer while listening to the speech signal
using the headphone. Record your notes.

 61

Experiment 5
FIR Filter II

Objectives:
1- To implement real time signal processing system based on FIR

filters.

Lab Equipments:
1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphones.

1- Effects on Voice or Music Using Three FIR Lowpass Filters (fir3LP)

In this part of the experiment, three FIR lowpass filters with cutoff frequencies at 600,
1500, and 3000 Hz, respectively are implemented. The program fir3lp.c used in this part
is listed in Figure 5.1. The three lowpass filters were designed using MATLAB.
LP_number selects the desired lowpass filter to be implemented. For example, if
LP_number is set to 0, h[0][i] is equal to hlp600[i] (within the for loop in function main()
), which is the address of the first set of coefficients. The coefficient file LP600.cof
represents an 81 - coefficient FIR lowpass filter with a 600 - Hz cutoff frequency, using
the Kaiser window function. Figure 5.2 shows a listing of coefficient file LP600.cof. Note
that the FIR filters in this experiment are implemented using fixed - point arithmetic and
use 16 - bit integer type coefficients. Coefficient files LP600.cof, LP1500.cof, and
LP3000.cof are incompatible with programs fir.c. The value of LP_number can be
changed to 1 or 2 to implement the 1500 – or 3000 - Hz lowpass filter, respectively. With
the GEL file fir3lp.gel, the value of LP_number can be varied while the program is
running.

 62

 63

LAB WORK I:

1. Launch CCS by double - clicking on its desktop icon.

2. Make a quick test on the DSK.

3. Open project fir3lp.pjt by selecting Project →Open and double – clicking on file

fir3lp.pjt in folder fir3lp.

4. Edit the file fir3lp.c and change the line that reads

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC;//select MIC IN
to read
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select LINE IN

5. Connect the microphone to the LINE IN and headphone to the HP OUT sockets on

the DSK.

6. Rebuild the project, load and run program fir3lp.out.

7. Select File →Load GEL and load the file fir3lp.gel (in folder fir3lp).

8. Double - click on the filename fir3lp.gel in the Project View window to view it within

CCS.

9. Select GEL→Filter Characteristics→filter. The value of LP_number can be varied

while the program is running.

10. Vary the value of the LP_number and note the effect of the three different lowpass

filters while talking into a microphone and listening on the headphone.

11. Halt the executable file fir3lp.out.

12. The effect of the filters is particularly striking if applied to a voice signal input,

connect the PC soundcard output to the LINE IN socket on the DSK. Run the file

 64

lab5.wav which stored in the DSP laboratory directory and note the effect of the three
different lowpass filters.

13. Use the file lab5.wav as a source connected to the LINE IN socket on the DSK. With

the lower bandwidth of 600 Hz, using the first set of coefficients, the frequency
components of the input signal above 600 Hz are suppressed. Connect the output to a
speaker or a spectrum analyzer (use the FFT feature of the scope) to verify such
results, and listen to the effect of the different bandwidths of the three FIR lowpass
filters.

14. Alternatively, the effects of the filters can be illustrated using an oscilloscope and a

signal generator set to input a 200 - Hz square wave to the LINE IN socket.

15. Monitor the effect of the different bandwidths of the three FIR lowpass filters on the

input a 200 - Hz square wave by monitoring the output signal on the scope in the time
and the frequency domain (use the FFT feature of the scope).

2- Two Notch Filters to Recover a Corrupted Speech Recording (notch2)

This part of the experiments illustrates the use of two notch (bandstop) FIR filters in
series to recover a speech recording corrupted by the addition of two sinusoidal signals at
frequencies of 900 and 2700 Hz. Program notch2.c is listed in Figure 5.3. Two coefficient
files, bs900.cof and bs2700.cof , each containing 89 coefficients and designed using
MATLAB, are used by the program. They implement two FIR notch filters, centered at
900 and 2700 Hz, respectively. The output of the first notch filter, centered at 900 Hz, is
used as the input to the second notch filter, centered at 2700 Hz.

 65

LAB WORK II:

16. Open project notch2.pjt by selecting Project →Open and double – clicking on file

notch2.pjt in folder notch2.

 66

17. Connect the PC soundcard output to the LINE IN socket and the scope to the LINE
OUT sockets on the DSK.

18. Load and run program notch2.out.

19. The file corrupt.wav, stored in folder notch2, contains a recording of speech corrupted

by the addition of 900 - and 2700 - Hz sinusoidal tones. Use the FFT feature of the
scope to see the 900 and 2700Hz before and after the filter.

20. A GEL slider (notch2.gel) can be used to select either the output of the two cascaded

notch filters (default) or the output of the first notch filter. Make these different
selections and record your notes.

21. Compare the results of this example with those obtained using a moving average

filter.

3- Voice Scrambling Using Filtering and Modulation (scrambler)

This part of the experiment illustrates a voice scrambling/descrambling scheme. The
approach makes use of basic algorithms for filtering and modulation. With voice as input,
the resulting output is scrambled voice. The original descrambled voice is recovered
when the output of the DSK is used as the input to a second DSK running the same
program. The scrambling method used is commonly referred to as frequency inversion. It
takes an audio range, in this case 300 Hz to 3 kHz, and “ folds ” it about a 3.3 – kHz
carrier signal. The frequency inversion is achieved by multiplying (modulating) the audio
input by a carrier signal, causing a shift in the frequency spectrum with upper and lower
sidebands. In the lower sideband that represents the audible speech range, the low tones
are high tones, and vice versa.

Figure 5.4 is a block diagram of the scrambling scheme. At point A we have an input
signal, band limited to 3 kHz. At point B we have a double - sideband signal with
suppressed carrier. At point C the upper sideband and the section of the lower sideband
between 3 and 3.3 kHz are filtered out. The scheme is attractive because of its simplicity.
Only simple DSP algorithms — namely, filtering, sine wave generation, and amplitude
modulation — are required for its implementation.

 67

Figure 5.5 shows a listing of program scrambler.c, which operates at a sampling rate, fs ,
of 16 kHz. The input signal is first lowpass filtered using an FIR filter with 65
coefficients.h, defined in the file lp3k64.cof. The filtering algorithm used is identical to
that used in, for example, program fir.c. The filter delay line is implemented using array
x1 and the output is assigned to variable yn1. The filter output (at point A in Figure 5.4)
is multiplied (modulated) by a 3.3 - kHz sinusoid stored as 160 samples (exactly 33
cycles) in array sine160 (file sine160.h) . Finally, the modulated signal (at point B) is
lowpass filtered again, using the same set of filter coefficients.h (lp3k64.cof) but a
different filter delay line implemented using array x2 and the output variable yn2 . The
output is a scrambled signal (at point C).

 68

Using this scrambled signal as the input to a second DSK running the same algorithm, the
original descrambled input is recovered as the output of the second DSK.

LAB WORK III:

22. Open project scrambler.pjt by selecting Project →Open and double – clicking on

file scrambler.pjt in folder scrambler.

23. Connect the output of a function generator to the LINE IN socket on the DSK.

24. Connect the LINE OUT socket on the DSK to an oscilloscope.

25. Set the function generator output to 2 – kHz sine wave.

26. Edit the file c6713dskinit.h included in the project changing the line that reads

0x0017 / * Set -Up Reg 0 Left line volume control */
to read
0x001B / * Set -Up Reg 0 Left line volume control */

27. Rebuild the project then load and run program scrambler.out. The resulting output is

a lower sideband signal at 1.3 kHz. The upper sideband signal at 5.3 kHz is filtered
out by the second lowpass filter.

28. Vary the frequency of the sinusoidal input in the range 300 – 3000 Hz and verify that

output frequencies appear as in the inverted range 3000 to 300 Hz. A second DSK
running the same program can be used to recover the original signal (simulating the
receiving end). Use the output of the first DSK as the input to the second DSK.

29. Change the input source used by the program on each DSK from LINE IN to MIC.

By editing the file scrambler.c and change the line that reads
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;//select LINE IN
to read

 Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select MIC

30. Test the scrambler and descrambler using speech from a microphone as the input.

Run exactly the same program on each DSK, and connect HEADPHONE on the first
DSK (scrambler) to MIC IN on the second DSK (descrambler).

 69

Experiment 6
IIR Filter I

Objectives:
1- To design an IIR filter using the impulse invariance transformation method.
2- To assess the magnitude frequency response of IIR filter.

Lab Equipments:

1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphones.

1- Design of a Simple IIR Low pass Filter Using Impulse Invariance

Transformation Method

Traditionally, IIR filter design is based on the concept of transforming a continuous-
time, or analog, design into the discrete - time domain. Butterworth, Chebyshev, Bessel,
and elliptical classes of analog filter are widely used. In this part of the experiment, we
will design a second order, type 1 Chebyshev, lowpass continuous-time filter with 2 dB
of passband ripple and a cutoff frequency of 1500 Hz (9425 rad/s). Then, the designed
continuous-time filter is transformed into digital filter using the impulse invariance
method. In impulse invariance method, the impulse response of the digital filter is the
samples of the impulse response of the continuous-time filter
(mathematically:)(][nTThnh = , where T represents the sampling interval.
Program iirsos.c, stored in folder iirsos and listed in Figure 6.1, implements ageneric IIR
filter using cascaded direct form II second order stages (sections) and coefficient values
stored in a separate file. The program uses the following two expressions:

Implemented by the lines

 70

LAB WORK I:

1. Design the continuous-time filter using the Matlab command:

>> [b,a] = cheby1(2,2,2 * pi * 1500, ’ s ’);

The continuous - time transfer function of such a filter is given by:

 71

2. Draw the frequency response of this filters using the Matlab command:
>> freqs(b,a)

3. Transfer the designed continuous-time filter into digital filter using the Matlab

command:

>> [bz,az] = impinvar(b,a,8000);. Here a sampling frequency of 8000 Hz is assumed.

The filter coefficients bz and az are used to create the coefficient filter file impinv.cof
(listed in Figure 6.2) which is then used in the main program iirsos.c.

4. Use Matlab to assess the magnitude frequency response of the digital filter by typing

the command:
 >> freqz(bz,az).

5. Compare the gain of the analog prototype filter (step 2) with that of the transformed

digital filter.

6. Launch CCS by double - clicking on its desktop icon.

7. Make a quick test on the DSK.

8. Open file iirsos.c by selecting File →Open and double – clicking on file iirsos.c in

folder iirsos.

9. Connect the output of a function generator to the LINE IN socket on the DSK.

10. Connect the LINE OUT socket on the DSK to an oscilloscope.

11. Load and run the executable file iirsos.out.

12. Construct a table to assess the magnitude frequency response of the filter.

i. Set the output of the function generator to sinusoidal.
ii. Change the frequency of the sinusoidal signal at the output of a function

from 100 Hz to 4000 Hz in steps and record the peak value of the signal on
the scope.

iii. Make sure to include frequency 3000 Hz in your table.

 72

Frequency Peak Value dB value

You will find that the attenuation of frequencies above 2500 Hz is not very
pronounced. That is due to the low order of the filter and to inherent shortcomings
of the impulse invariant transformation method.

13. In your report, explain the difference between the designed digital filter and the

analog prototype filter.

14. Alternatively, we can estimate the frequency response of the digital filter using

Pseudorandom Noise as input. In real time, it generates a pseudorandom binary
sequence and uses this wideband noise signal as the input to an IIR filter. The output
of the filter is written to the DAC in the AIC23 codec and the resulting analog signal
(filtered noise) can be analyzed using an oscilloscope or spectrum analyzer. Halt the
executable file iirsos.out.

15. Open file iirsosprn.c by selecting File →Open and double – clicking on file

iirsoprns.c in folder iirsosprn.

16. Load and run the executable file iirsosprn.out.

17. Using the FFT feature of the scope, capture the output of program iirsosprn.out,

compare the plot with your results in steps 4 and 12.

2- Estimating the Frequency Response of an IIR Filter Using a Sequence of

Impulses as Input (iirsosdelta)

Instead of a pseudorandom binary sequence, program iirsosdelta.c generates a sequence
of discrete - time impulses as the input to an IIR filter. The resultant output is an
approximation to a repetitive sequence of filter impulse responses. This relies on the filter
impulse response decaying practically to zero within the period between successive input
impulses. The filter output is written to the DAC in the AIC23 codec and the resulting
analog signal can be analyzed using an oscilloscope, spectrum analyzer, Goldwave , or
other instrument. In addition, program iirsosdelta.c stores BUFSIZE samples of the filter
output in buffer response and we can use the View→ Graph facility in Code Composer to
view that data in both time and frequency domains.

 73

 74

LAB WORK II:

18. Open project iirsosdelta.pjt by selecting Project →Open and double – clicking on

file iirsosdelta.pjt in folder iirsosdelta.

19. Connect the LINE OUT socket on the DSK to an oscilloscope.

20. Load and run the executable file iirsosdelta.out.

21. Monitor the output (impulse response of the filter) on the scope and make your notes.

The output waveform is shaped both by the IIR filter and by the AIC23 codec reconstruction
filter.

22. Using the FFT feature of the scope, capture the magnitude of the frequency response

of the filter.
In the frequency domain, the codec reconstruction filter is responsible for the steep
roll – off of gain at frequencies above 3500 Hz and the ac coupling of the codec
output is responsible for the steep roll - off of gain at frequencies below 100 Hz.

23. Halt the program and select View→ Graph. Set the Graph Properties as indicated in

Figure 6.4 and you should see something similar to the right - hand graph shown in
Figure 6.5. You need to set the Graph Properties differently to see something similar
to the left - hand graph shown in Figure 6.5.

 75

 76

Experiment 7
IIR Filter II

Objectives:
1- To design an IIR filter using the bilinear transformation method.
2- To assess the magnitude frequency response of IIR filter.

Lab Equipments:

1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphones.

1- Bilinear Transform Method of Digital Filter Implementation.

The bilinear transform method of converting an analog filter design to discrete time is
relatively straightforward, often involving less algebraic manipulation than the impulse
invariant method. It is achieved by making the substitution

In H (s), where T is the sampling period of the digital filter; that is,

 The concept behind the bilinear transform is that of compressing the frequency response
of an analog filters design such that its response over the entire range of frequencies from
zero to infinity is mapped into the frequency range zero to half the sampling frequency of
the digital filter. This may be represented by

And

As a result of the frequency warping inherent in the bilinear transform, the cutoff
frequency of the discrete - time filter obtained is not equal to the cutoff frequency of the
analog filter. A technique called prewarping the prototype analog design (used by default
in the MATLAB filter design and analysis tool fdatool) can be used in such a way that the
bilinear transform maps an analog frequency cA ww = , in the range 0 to 2/sw , to exactly
the same digital frequency cD ww = . This technique is based on the selection of T
according to csc wwwT /)/tan(2 π= .

In this part of the experiment, we will design a second order, type 1 Chebyshev, lowpass
continuous-time filter with 2 dB of passband ripple and a cutoff frequency of 1500 Hz
(9425 rad/s). Then, the designed continuous-time filter is transformed into digital filter
using the bilinear transformation method. We will also use the same programs in
experiment 10 (iirsos.c, iirsoprns.c and iirsosdelta.c)

 77

LAB WORK I:

1. Design the continuous-time filter using the Matlab command:

>> [b,a] = cheby1(2,2,2 * pi * 1500, ’ s ’);

2. Draw the frequency response of this filters using the Matlab command:

>> freqs(b,a)

3. Transfer the designed continuous-time filter into digital filter using the Matlab

command:
>> [bd,ad] = bilinear(b,a,8000);. Here a sampling frequency of 8000 Hz is assumed.
 The filter coefficients bz and az are used to create the coefficient filter file bilinear.cof
which is then used in the main program iirsos.c.

4. Use Matlab to assess the magnitude frequency response of the digital filter by typing

the command:
 >> freqz(bz,az).
 In your report, explain the difference between the designed digital filter and the analog

prototype filter.

5. Launch CCS by double - clicking on its desktop icon.

6. Make a quick test on the DSK.

7. Connect the output of a function generator to the LINE IN socket on the DSK.

8. Connect the LINE OUT socket on the DSK to an oscilloscope.

9. Open file iirsos.c by selecting File →Open and double – clicking on file iirsos.c in

folder iirsos.

10. Change the line that reads #include “impinv.cof” to read #include “bilinear.cof”.

11. Build the project.

12. Load and run the executable file iirsos.out.

13. Construct a table to assess the magnitude frequency response of the filter.

i. Set the output of the function generator to sinusoidal.
ii. Change the frequency of the sinusoidal signal at the output of a function

from 100 Hz to 4000 Hz in steps and record the peak value of the signal on
the scope.

 78

Frequency Peak Value dB value

You will find that the cutoff frequency of the discrete - time filter obtained is not
1500 Hz but 1356 Hz. In addition, you will find that the gain of the analog filter at a
frequency of 4500 Hz is equal to the gain of the digital filter at a frequency of 2428
Hz and that the digital frequency 1500 Hz corresponds to an analog frequency of
1702 Hz.

14. Alternatively, we can estimate the frequency response of the digital filter using

Pseudorandom Noise as input. Halt the executable file iirsos.out.

15. Open file iirsosprn.c by selecting File →Open and double – clicking on file

iirsoprns.c in folder iirsosprn.

16. Change the line that reads #include “impinv.cof” to read #include “bilinear.cof”.

17. Build the project.

18. Load and run the executable file iirsosprn.out.

19. Using the FFT feature of the scope, capture the output of program iirsosprn.out,

compare the plot with your results in steps 4 and 13.

2- Estimating the Frequency Response of an IIR Filter Using a Sequence of
Impulses as Input (iirsosdelta).

LAB WORK II:

20. Launch CCS by double - clicking on its desktop icon.

21. Connect the LINE OUT socket on the DSK to an oscilloscope.

22. Open project iirsosdelta.pjt by selecting Project →Open and double – clicking on

file iirsosdelta.pjt in folder iirsosdelta.

23. Edit file iirsosdelta.c and change the line that reads #include “impinv.cof” to read

#include “bilinear.cof”.

24. Build the project.

 79

25. Load and run the executable file iirsosdelta.out.

26. Monitor the output (impulse response of the filter) on the scope and make your notes.

The output waveform is shaped both by the IIR filter and by the AIC23 codec
reconstruction filter.

27. Using the FFT feature of the scope, capture the magnitude of the frequency response

of the filter.

28. Halt the program and select View→ Graph. Set the Graph Properties as indicated in

Figure 7.1, save the obtained graph and used in your report.

29. You need to set the Graph Properties differently to see the impulse response of the

filter in the time domain.

3- Design of IIR Filters Using MATLAB ’s Filter Design and Analysis Tool

MATLAB provides a filter design and analysis tool, fdatool, that makes the design of IIR
filter coefficients simple. Coefficients can be exported in direct form II, second order
section format and a MATLAB function dsk_sos_iir67() written by the author of the text
book can be used to generate coefficient files compatible with the programs (iirsos.c,
iirsoprns.c and iirsosdelta.c).

 80

LAB WORK III:

30. Start FDATool from the MATLAB command line by typing:
 >>fdatool.

31. In the Response Type pane, select Lowpass.

32. In the Design Method pane, select IIR, and then select Butterworth

33. For the Filter Order, select Specify order, and then enter 6.

34. Set frequency specifications to Fs to 8000 and Fc to 1500.

35. Click the Design Filter button, you will shortly be able to see the magnitude response

of the designed filter, make your not and save it to use it in your report.

36. Click on Export in the fdatool File menu.

37. Select Workspace, Coefficients, SOS , and G and click Export .

38. At the MATLAB command line, type dsk_sos_iir67(SOS,G) and enter a filename

Butterworth.cof .

39. Launch CCS by double - clicking on its desktop icon.

40. Connect the LINE OUT socket on the DSK to an oscilloscope.

41. Open project iirsosdelta.pjt by selecting Project →Open and double – clicking on

file iirsosdelta.pjt in folder iirsosdelta.

42. Edit file iirsosdelta.c and change the line that reads #include “ impinv.cof ” to read

#include “Butterworth.cof ”.

43. Build the project.

44. Load and run the executable file iirsosdelta.out.

45. Monitor the output (impulse response of the filter) on the scope and make your notes.

46. Using the FFT feature of the scope, capture the magnitude of the frequency response

of the filter.

47. Halt the program and select View→ Graph. Set the Graph Properties as indicated in

Figure 7.1, save the obtained graph and compare it with that in step 35.

48. You need to set the Graph Properties differently to see the impulse response of the

filter in the time domain.

 81

Experiment 8
Discrete Time and Fast Fourier Transforms

Objectives:

1- To compute the Discrete Fourier Transform (DTF) of real signal.
2- To compute the Fast Fourier Transform (FFT) of real signal.
3- To estimate the execution time for the DFT and FFT functions

Lab Equipments:

1- DSK Board.
2- CCS software installed on the computer.
3- Oscilloscope.
4- Headphones.

1- DFT of a Sequence of Real Numbers with Output in the

CCS Graphical Display Window (dft)

This part of the experiment illustrates the DFT of an N - point, real - valued sequence.
Program dft.c, listed in Figure 8.1, calculates the complex DFT:

Using Euler ’ s relation to represent a complex exponential

The real and imaginary parts of X (k) are computed by the program:

A structured data type COMPLEX is used by the program to represent the complex
valued time - and frequency - domain values of X(k) and x(n).

The function dft() has been written such that it replaces the input samples x(n), stored in
array samples with their frequency - domain representation X(k).

The time - domain sequence x(n) consists of exactly 10 cycles of a real - valued cosine
wave (assuming a sampling frequency of 8 kHz, the frequency of the cosine wave is 800
Hz). The DFT of this sequence, X (k), is equal to zero for all k , except at k = 10 and at
k = 90. These two real values correspond to frequency components at ± 800 Hz. Different
time - domain input sequences can be used in the program, most readily by changing the
value of the constant TESTFREQ .

 82

 83

LAB WORK I:

1. Launch CCS by double - clicking on its desktop icon.

2. Open project dft.pjt by selecting Project →Open and double – clicking on file

dft.pjt in folder dft.

3. Load the executable file dft.out.

4. Place a breakpoint at the line

printf(“\n”); // place breakpoint here
by clicking on that line in the source file dft.c and then either right – clicking and
selecting Toggle Software Breakpoint , or clicking on the Toggle Breakpoint toolbar
button. A red dot should appear to the left of that line of code.

5. Select Debug→ Run. The program should halt at the breakpoint just before calling
function dft() and at this point the initial, time - domain contents of array samples will
be displayed in the Graphical Display window.

6. Select View→ Graph → Time/Frequency and set the Graph Properties as shown in

Figure 8.2. Note that this will display only the real part of the complex values stored
in array samples. The Graph Property Data Plot Style is set to Bar in order to
emphasize that the DFT operates on discrete data.

7. Select Debug→ Run again. The program should run to completion at which point the

contents of array samples will be equal to the frequency – domain representation X(k)
of the input data x(n). The real part of X(k) will now be displayed in the Graphical
Display window and you should be able to see two distinct spikes at k = 10 and k =
90, representing frequency components at ± 800 Hz, as shown in Figure 8.3.

8. Change the frequency of the input waveform to 900 Hz (#define TESTFREQ 900.0)

and repeat the procedure listed above. You should see a number of nonzero values in
the frequency - domain sequence X(k), as shown in Figure 8.4 . This effect is referred
to as spectral leakage and is due to the fact that the N sample time - domain sequence
stored in array samples does not now contain an integer number of cycles of a
sinusoid. Correspondingly, the frequency of that sinusoid is not exactly equal to one
of the N discrete frequency components, spaced at intervals of (8000.0/N) Hz in the
frequency - domain representation X (k).

 84

 85

2- DFT of a Sequence of Real Numbers Using Twiddle Factors with Output

in the CCS Graphical Display Window (dftw)

Whereas the radix - 2 FFT is applicable if N is an integer power of 2, the DFT can be
applied to an arbitrary length sequence (e.g., N = 100), as illustrated by program dft.c .
However, the FFT is widely used because of its computational efficiency. Part of that
efficiency is due to the use of precalculated twiddle factors, stored in a lookup table,
rather than the repeated evaluation of sin() and cos() functions during computation of the
FFT. The use of precalculated twiddle factors can be applied to the function dft() to give
significant efficiency improvements to program dft.c. Calls to the math library functions
sin() and cos() are computationally very expensive and are made a total of 4 N2 times in
function dft(). In program dftw.c, listed in Figure 8.5, these function calls are replaced by
reading precalculated twiddle factors from array twiddle.
 The source file dftw.c is stored in folder dft and can be substituted for source file dft.c in
project dft. Verify that program dftw.c gives similar results.
(Change the Output Filename to dftw.out.)

LAB WORK II:

9. Open project dft.pjt by selecting Project →Open and double – clicking on file

dft.pjt in folder dft.

10. Remove file dft.c from the project by double – clicking on Source from the project

view, then right click on the file dft.c and select remove file from project.

11. Add file dftw.c to the project by right clicking on Source and select Add files to

project and select the file dftw.c.

 86

12. Select Project→ Build Options. In the Compiler tab in the Basic category set the Opt
Level to Function(− o2) and in the Linker tab set the Output Filename to
.\Debug\dftw.out .

 87

13. Build the project.

14. Load the executable file dftw.out.

15. Place a breakpoint at the line

printf(“\n”); // place breakpoint here
by clicking on that line in the source file dftw.c and then either right – clicking and
selecting Toggle Software Breakpoint , or clicking on the Toggle Breakpoint toolbar
button. A red dot should appear to the left of that line of code.

16. Select Debug→ Run. The program should halt at the breakpoint just before calling

function dftw() and at this point the initial, time - domain contents of array samples
will be displayed in the Graphical Display window.

17. Select View→ Graph → Time/Frequency and set the Graph Properties as shown in

Figure 8.2. Note that this will display only the real part of the complex values stored
in array samples. The Graph Property Data Plot Style is set to Bar in order to
emphasize that the DFT operates on discrete data.

18. Select Debug→ Run again. The program should run to completion at which point the

contents of array samples will be equal to the frequency – domain representation X(k)
of the input data x(n). The real part of X(k) will now be displayed in the Graphical
Display window and you should be able to see two distinct spikes at k = 10 and k =
90, representing frequency components at ± 800 Hz, as shown in Figure 8.3.

19. Change the frequency of the input waveform to 900 Hz (#define TESTFREQ 900.0)

and repeat the procedure listed above. You should see a number of nonzero values in
the frequency - domain sequence X(k), as shown in Figure 8.4 . This effect is referred
to as spectral leakage and is due to the fact that the N sample time - domain sequence
stored in array samples does not now contain an integer number of cycles of a
sinusoid. Correspondingly, the frequency of that sinusoid is not exactly equal to one
of the N discrete frequency components, spaced at intervals of (8000.0/N) Hz in the
frequency - domain representation X (k).

3- Estimating Execution Times for DFT and FFT Functions (fft)

The computational expense of function dft() can be illustrated using Code Composer’s
Profile Clock. In this part of the experiment, the functions dft() and dftw() used in Lab
Work I and II are compared with a third function, fft() , which implements the FFT in C.

LAB WORK III:

20. Edit the lines in programs dft.c and dftw.c that read

#define N 100
to read
#define N 128

 88

21. Ensure that source file dft.c and not dftw.c is present in the project.

22. Select Project→ Build Options. In the Compiler tab in the Basic category set the Opt

Level to Function (− o2) and in the Linker tab set the Output Filename to
.\Debug\dft.out .

23. Build the project and load dft.out.

24. Open source file dft.c by double - clicking on its name in the Project View window

and set breakpoints at the lines
dft(samples);
and
printf(“done!\n”); .

25. Select Profile → Clock → Enable.

26. Select Profile → Clock View. A small clock icon and the number of processor

instruction cycles that the Profile Clock has counted should appear in the bottom right
- hand corner of the Code Composer window.

27. Run the program. It should halt at the first breakpoint.

28. Reset the Profile Clock by double - clicking on its icon in the bottom right – hand

corner of the CCS window.

29. Run the program. It should stop at the second breakpoint. The number of instruction

cycles counted by the Profile Clock gives an indication of the computational expense
of executing function dft().

30. Repeat the preceding experiment (step 22 to step 27) substituting file dftw.c for file

dft.c.

31. Finally, repeat the preceding experiment (step 22 to step 27) using file fft.c (also

stored in folder dft) (see Figure 8.6). This program computes the FFT using a function
written in C and defined in the file fft.h (Figure 8.7). The advantage, in terms of
execution time, of the FFT over the DFT should increase with the number of points,
N, used. Repeat this example using different values of N (e.g., 256 or 512).

 89

 N=128 N=256 N=512
 Number of

Instruction
Cycles

Execution
Time

Number of
Instruction

Cycles

Execution
Time

Number of
Instruction

Cycles

Execution
Time

dft.c

dftw.c

fft.c

 90

