(a) $cos(n\pi x/a)$ (b) $sin(n\pi x/b)$

(c) $\cos(n\pi x/a)$

(e) $\cosh(n\pi x/a)$

(d) $sin(n\pi x/a)$

1. A vector of magnitude 10 points from the point (5, $5\pi/4$, 0) in cylindrical coordinates toward the origin. This vector in Cartesian coordinates is:							
(a) 5a _x -5a _y	(b) -7.07a _x -7.07a _y	(c) $5a_x + 5a_y$	(d) 7.07a _x +7.07a _y	(e) 10a _x +10a _y			
2. The volume of the parallelepiped whose edges are the vectors A, B, and C, is given by the magnitude of:							
(a) $A \cdot (B \times C)$	(b) $A \times (B \times C)$	(c) $\mathbf{A} \times (\mathbf{B} \cdot \mathbf{C})$	(d) A × (B + C)	(e) A· (B·C)			
3. A charge distribution in spherical coordinates is given by $\rho_{\nu}(r) = 5re^{-2r}$ (C/m ³). Using Gauss's law, the value of $\nabla \cdot (\varepsilon E)$ at the point (0.5, $2\pi/3$, 0) is:							
(a) $2.5e^{-1}$ (C/m ²) (b) 2.5e ⁻¹ (V/m) (c) 2.5e ⁻¹ (C/m ³)	(d) 5e ⁻¹ (C/m ²)	(e) We need the value of ϵ			
4. One of the following is not a property of a conservative electrostatic field:							
(a) $E = -\nabla V$	(b) $\nabla \times \mathbf{E} = 0$	(c) $q \oint E \cdot dl =$	$0 (d) \int_{0}^{\infty} E \cdot dl = 0$	(e) None of these			
5. When lightening occurs between the clouds themselves, or between the clouds and the earth, very large current flows through the air. This is an example of a conduction current:							
	(a) True		(b) False				
6. When a potential of 10 V is applied to a mercury column in a cylindrical container, the current is 2 A. If the mercury is now poured into another cylindrical container of twice the radius, and the same potential of 10 V is applied across its ends, what is the current now?							
(a) 32 <mark>A</mark>	(b) 8 A	(c) 0.125 A	(d) 4 Å	(e) 0.5 A			
7. Kirchhoff's current law has its origin in the following equation:							
	(b) $\nabla \cdot \mathbf{J} = 0$ (c) $\nabla \times \mathbf{F}$		- 63				
8. A parallel-plate capacitor connected to a battery stores twice as much energy with a given dielectric as it does with air as dielectric. The susceptibility of the dielectric is:							
(a) 0	(b) 3	(c) 2	(d) 4	(e) 1			
9. If a point charge of +2 pC is brought near (but not contacting) a neutral, isolated conducting sphere of radius a, the total charge on the surface of the sphere will be:							
(a) +2 pC	″(b) –2 pC	(c) +4 pC	(d) -1 pC (e) 0				
10. The electric flux density at a point on the surface of a conductor is given by $\mathbf{D} = 0.2a_x - 0.3a_y - 0.2a_z$ (pC/m ²). The charge density on the surface of the conductor at the point is:							
(a) 0.276 pC/m ²	(b) -0.325 pC/m ²	(c) 0.412	<mark>2 pC/m² (d)</mark> -0.2 pC/m²	(e) -0.3 pC/m ²			
11. The capacitance of two conducting spherical shells of radius a in air and separated by a distance $d >> a$, is:							
(a) $2\pi\varepsilon_0$ a	(b) 4πε ₀ a	(c) $\pi \varepsilon_0 a$	(d) 8πε ₀ a	(e) none of these			
12. When M point charges were placed between two semi-infinite conducting planes inclined to each other at an angle of 120°, the total number of charges (original+images) was 12. Therefore, M is equal to:							
(a) 4	(b) 6 (c) 3	(d) 2	(e) l				
13. The two dimensional Laplace equation $V_{xx} + V_{yy} = 0$ in the region $0 \le x \le a$, $0 \le y \le b$, has a solution of the form $V(x,y) = X(x)Y(y)$ subject to the B.C.s $V(0,y) = V(a,y) = 0$. Therefore, $X(x)$ could be:							

14. In cylindrica 2.5 m and $0 \le z$		(T). The magnet	ic flux that crosses the plar	ne surface defined by $0.5 \le \rho \le$			
(a) 8 Wb	(b) 6.44 Wb	(c) 5.32 Wb	(d) -5.32 Wb	(e) 10.1 Wb			
15. A current strip 2 cm wide lies in the x-y plane, and carries a current of 15 A in the a_x direction. Assuming the current is uniformly distributed over the strip width and $B = 0.2a_y$ T, then the force on the strip per unit length is:							
(a) $-3.0a_y$ N/m	(b) 30a _y N/m	(c) 30a _z N/m	(d) 3.0a _z N/m	(e) 60a _z N/m			
16. Two infinite current sheets, each of constant density K ₀ , are parallel and have their currents oppositely directed. The force per unit area on either sheet is:							
(a) $\mu_0 K_0^2/2$ repul	Ision (b) $\mu_0 K_0^2/2$ attrac	tion (c) μ ₀ K ₀	√2 attraction (d) 2µ₀	K_0^2 repulsion			
17. In a certain region, E and B fields are uniform and oriented at right angles to each other. A proton enters the region with a speed of 10^6 m/s at right angle to both fields and passes the region undeflected. If $ \mathbf{B} = 0.5$ mT, then $ \mathbf{E} = 0.5$							
(a) 2 KV/m	(b) 50 V/m (c) 500	V/m (d) 200	V/m (e) We need Q a	nd m of the proton			
18. The positive x-axis carries a current of -12a _x A. The magnetic field H at the point (0, 0, -3m) is:							
(a) $(-1/\pi)a_y$ (A/m	(b) (4/π)a _y (A/m)	(c) (-1/π)a _x (A/	(d) (-2/π)a _z (A/m	(e) (3/π)a _y (A/m)			
19. A toroid with H inside the toro	a mean radius of 10cm car	ries a current of 5.	A and has a turn density of	4 tu <mark>rns/rad. The magnetic</mark> field			
(a) 31.83 <mark>A/m</mark>	(b) 200 A/m	(c) 1256.6 A/m	(d) 100 A/m	(e) 20 A/m			
20. A bar magnet is successively divided in half 10 times. At the end, how many separate magnetic dipoles do we have?							
(a) 40	(b) 0 (c) 20		(d) (1024) ²	(e) 1024			
21. Since $\nabla \cdot \mathbf{B} = 0$, then we can write $\mathbf{B} = \nabla \times \mathbf{A}$, and therefore the magnetic flux can be written as							
$\Psi_m = \iiint (\nabla \cdot)$	<mark>4) dv.</mark> (a) True	(b) False	484				
22. One of the fo	llowing is <u>not</u> a Maxwell eq		40	On cours mostly as			
			40. 11.				
(a) $\mathbf{V} \cdot \mathbf{H} = 0$	(b) $\nabla \times \mathbf{J} = \mathbf{H}_{\mathbf{v},\mathbf{v},\mathbf{v},\mathbf{v}}$ (c) $\nabla \times \mathbf{D}$	$= 0 \qquad \text{(d) } \mathcal{G}B.$	$dl = \mu_0 I \qquad \text{(e) } \nabla \cdot \mathbf{E} = \mathbf{E} \cdot \mathbf{E}$	<mark>= ρ√</mark> ε			
23. An electron is orbiting in a circular path of radius 0.5×10^{-10} m with an angular velocity of 4×10^{16} rad/s. If $ B = 0.4$ nT, what is the maximum torque on this electron?							
(a) 2×10 ⁶ N.m	(b) 5.25×10 ⁻¹⁶ N.m (c)	3.2×10 ⁻²⁷ N.m (c	d) 8×10 ²⁶ N.m (e) 1.25×	10 ⁻²⁷ N.m			
24. In a ferromagnetic material ($\mu = 20\mu_0$), B = $4a_y$ mT. In this material, the magnetization vector M is =:							
(a) 3024a _y (A/m)	(b) $335 \log_{y} (A/m)$ (c)	3.8a _y (mA/m)	(d) 3664a _y (A/m) (e) 2414a _y (A/m)			
25. The unit of inductance is:							
(a) F/m	(b) Joule/C	(c) Ohm.s	(d) Wb/m	(e) A/s			