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Preface

We are pleased to offer this 5 " edition of Theory and Design for Mechanical Measurements. This text provides
a well-founded background in the theory of engineering measurements. Integrated throughout are the necessary
elements for the design of measurement systems and measurement test plans, with an emphasis on the role of
statistics and uncertainty analyses in design. The measurements field is very broad, but through careful
selection of the topical coverage we establish the physical principles and practical techniques for many
engineering applications while keeping page count and text cost manageable. Our aim is not to offer a manual
for instrument construction and assembly. Instead, we develop the conceptual design framework for selecting
and specifying equipment and test procedures and for interpreting test results, which we feel are necessary and
common bases for the practice of test engineering. The text is appropriate for undergraduate and graduate level
study in engineering, but is also suitably advanced and oriented to serve as a reference source for professional
practitioners. The pedagogical approach invites independent study or use in related fields requiring an
understanding of instrumentation and measurements.

The organization of the text develops from our view that certain aspects of measurements can be
generalized, such as test plan design, signal analysis and reconstruction, and measurement system response.
Topics such as statistics and uncertainty analysis require a basic development of principles but are then best
illustrated by integrating these topics throughout the text material. Other aspects are better treated in the context
of the measurement of a specific physical quantity, such as strain or temperature.

PEDAGOGICAL TOOLS TO AID LEARNING
In this textbook:

¢ Each chapter begins by defining a set of learning outcomes.

¢ The text develops an intuitive understanding of measurement concepts with its focus on test system
modeling, test plan design, and uncertainty analysis.

e Each chapter includes carefully constructed example problems that illustrate new material and
problems that build on prior material.

¢ Each example makes use of a KNOWN, FIND, SOLVE approach as an organizational aid to a
problem’s solution. This methodology for problem solutions helps new users to link words and concepts
with symbols and equations. Many problems contain COMMENTS that expand on the solution,
provide a proper context for application of the principle, or offer design application insight.

¢ End-of-Chapter practice problems are included for each chapter to exercise new concepts.

o Practice problems range from those focused on concept development, to building of advanced skills,

to open-ended design applications.

With each chapter, we have added new practice problems but have substantially “refreshed”” many

problems from previous editions.

o We provide a detailed Instructors Manual for instructors who have adopted the book. We have
carefully reviewed the solutions in this edition to minimize typographical and arithmetical errors. The
manual is available on-line at the Wiley Instructor’s website.

o Answers to selected problems will be posted on the Wiley website.

o

* Use of the software in problem solving allows in-depth exploration of key concepts that would be
prohibitively time consuming otherwise. The text includes on-line access to interactive software of

iii
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Preface

focused examples based on software using National Instruments Labview® for exploring some of the
text concepts, while retaining our previous efforts using Matlab®. The Labview programs are available
as executables so they can be run directly without a Labview license. The software is available on both
the Wiley Student and Instructor’s websites.

NEW TO THIS 5™ EDITION

With this 5 edition, we have new or expanded material on a number of topics. As highlights:

* We introduce Monte Carlo simulation methods in Chapter 4 and tie their use with uncertainty estima-
tions in Chapter 5.

Treatment of uncertainty analysis in Chapter 5 has been updated to include changes in test standards
methodology relative to ASME PTC 19.1 Test Uncertainty and the International Standards Organization
(ISO) Guide to Uncertainty in Measurements. These changes have been carried into the other chapters
both in language and in example problems. Where we deviate from the methodology of the Standards,
we do so for pedagogical reasons.

o Discussion has been added on using rectangular (uniform) distributions in uncertainty estimation.

o The treatment of non-symmetric uncertainty intervals and methods for treating correlated errors in
Chapter 5 has been expanded and revisited in other chapters.

o We have updated our symbol usage for closer consistency with the standards.

We have added a section presenting image acquisition and processing using digital techniques in
Chapter 7.

* We have changed our presentation of pressure transmission line effects to make better use of the lumped
parameter methods of Chapter 3 that engineering students are familiar with, including discussion of the
ideal elements of inertance, resistance, and compliance.

e We have revised our treatment of Butterworth filters, including added coverage, in Chapter 6.

Wehave added anintroductionto the analysis of strain gauge datato compute principal stresses in Chapter 11.

SUGGESTED COURSE COVERAGE

To aid in course preparation, Chapters 1 through 5 provide an introduction to measurement theory with statistics
and uncertainty analysis, Chapters 6 and 7 provide a broad treatment of analog and digital sampling methods,
and Chapters 8 through 12 are instrumentation focused.

Many users report to us that they use different course structures, so many that it makes a preferred order of
topical presentation difficult to anticipate. To accommodate this, we have written the text in a manner that allows
any instructor to customize the order of material presentation. While the material of Chapters 4 and 5 are integrated
throughout the text and should be taught in sequence, the other chapters tend to stand on their own. The text is
flexible and can be used in a variety of course structures at both the undergraduate and graduate levels.

For a complete measurements course, we recommend the study of Chapters 1 through 7 with use of the
remaining chapters as appropriate. For a lab-course sequence, we recommend using chapters as they best
illustrate the course exercises while building complete coverage over the several lab courses normally within a
curriculum. The manner of the text allows it to be a resource for a lab-only course with minimal lecture. Over
the years, we have used it in several forums, as well as professional development courses, and simply rearrange
material and emphasis to suit the audience and objective.

We express our sincerest appreciation to the students, teachers, and engineers who have used our earlier
editions. We are indebted to the many who have written us with their constructive comments and encouragement.

Richard S. Figliola
Donald E. Beasley
Clemson, South Carolina
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Chapter 1

Basic Concepts of Measurement
Methods

1.1 INTRODUCTION

We make measurements every day. Consider the common measurements illustrated in Figure 1.1.
We routinely read the temperature of an outdoor thermometer to choose appropriate clothing for
the day. We expect to have exactly 10 gallons or liters of fuel added to our tank when that volume
is indicated on a fuel pump. And we expect measuring cups to yield correct quantities of
ingredients in cooking. We put little thought into the selection of instruments for these routine
measurements. After all, the direct use of the data is clear to us, the type of instruments and
techniques are familiar to us, and the outcome of these measurements is not important enough to
merit much attention to features like improved accuracy or alternative methods. But when the
stakes become greater, the selection of measurement equipment and techniques and the interpre-
tation of the measured data can demand considerable attention. Just contemplate how you might
verify that a new engine is built as designed and meets the power and emissions performance
specifications required.

But first things first. The objective in any measurement is to answer a question. So we take
measurements to establish the value or the tendency of some variable, the results of which are
specifically targeted to answer our question. The information acquired is based on the output of the
measurement device or system. There are important issues to be addressed to ensure that the output
of the measurement device is a reliable indication of the true value of the measured variable. In
addition, we must address the following important questions:

1. How can a measurement or test plan be devised so that the measurement provides the
unambiguous information we seek?

2. How can a measurement system be used so that the engineer can easily interpret the
measured data and be confident in their meaning?

There are procedures that address these measurement questions.

At the onset, we want to stress that the subject of this text is real-life oriented. Specifying a
measurement system and measurement procedures represents an open-ended design problem whose
outcome will not have one particular solution. That means there may be several approaches to
solving a measurement problem, and some will be better than others. This text emphasizes accepted
procedures for analyzing a measurement problem to assist in the selection of equipment,
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Figure 1.1 Common devices that
involve measurements.

methodology, and data analysis to meet the design objectives. Perhaps more than in any other
technical field, the approach taken in measurement design and the outcome achieved will often
depend on the attention and experience of the designer.

Upon completion of this chapter, the reader will be able to

« identify the major components of a general measurement system, and state the function of
each,

« develop an experimental test plan,

e distinguish between random and systematic errors,

e describe and define the various error types,

« define a standard and distinguish among primary, secondary, and transfer standards, and

e clearly delineate defined and derived dimensions in various unit systems.

1.2 GENERAL MEASUREMENT SYSTEM

A measurement' is an act of assigning a specific value to a physical variable. That physical variable
is the measured variable. A measurement system is a tool used for quantifying the measured
variable. As such, a measurement system is used to extend the abilities of the human senses that,
while they can detect and recognize different degrees of roughness, length, sound, color, and smell,
are limited and relative; they are not very adept at assigning specific values to sensed variables.

A system is composed of components that work together to accomplish a specific objective. We
begin by describing the components that make up a measurement system, using specific examples.
Then we will generalize to a model of the generic measurement system.

! There are many new engineering measurement terms introduced. A glossary of the italicized terms is located in the back of
the text for your reference.
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Figure 1.2 Sensor stage of an atomic-force
microscope.

An increasingly important area of scientific inquiry is the characteristics of matter at the nanoscale.
Suppose we want to measure the profile of a surface at a nanometer scale. We discover that a small
(very small) cantilever beam placed near the surface is deflected by atomic forces. Let’s assume for
now that they are repulsive forces. If this cantilever is translated over the surface, the cantilever will
deflect, indicating the height of the surface. This concept is illustrated in Figure 1.2; the device is
called an atomic force microscope. The cantilever beam is a sensor, a physical element that employs
some natural phenomenon, in this case deflection under the action of a force, to sense the variable

being measured, in this case the height of the surface.

So, we have a sensor to measure at the nanometer scale. But we have no means of getting an output
from the sensor that we can record. Suppose that the upper surface of the cantilever is reflective, and we
shine a laser onto the upper surface, as shown in Figure 1.3. The movement of the cantilever will deflect
the laser. Employing a number of light sensors, also shown in Figure 1.3, the deflection of the laser can
be sensed and that deflection corresponds to the height of the surface. Together the laser and the light
sensors (photodiodes) form the transducer component of the measurement system. A transducer
converts the sensed information into a detectable signal. The signal might be mechanical, electrical,
optical, or may take any other form that can be meaningfully recorded.

We should note that sensor selection, placement, and installation are particularly important to
ensure that the sensor output accurately reflects the measurement objective. The familiar phrase

Detector and
feedback
electronics

Photodiodes

P

. L
Cantilever and tip o

Sample surface =

Figure 1.3 Atomic-force microscope with
sensor and transducer stages.
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associated with hot days, “100°F in the shade” implies a specific sensor placement. Accordingly,
the interpretation of all information passed through and indicated by the system depends on what is
actually sensed by the sensor. For example, the interpretation of the output of a medical thermometer
depends on where its sensor is placed.

Output Stage

The goal of a measurement system is to convert the sensed information into a form that can be
easily quantified. Consider a familiar example, the liquid-in-glass bulb thermometer. The liquid
contained within the bulb on the common bulb thermometer of Figure 1.4 exchanges energy with
its surroundings until the two are in thermal equilibrium. At that point they are at the same
temperature. This energy exchange is the input signal to this measurement system. The phenome-
non of thermal expansion of the liquid results in its movement up and down the stem, forming an
output signal from which we determine temperature. The liquid in the bulb acts as the sensor.
By forcing the expanding liquid into a narrow capillary, this measurement system transforms
thermal information into a mechanical displacement. Hence, the bulb’s internal capillary design
acts as a transducer.

The output stage indicates or records the value measured. This might be a simple readout
display, a marked scale, or even a recording device such as a computer disk drive. The readout scale
of the bulb thermometer in Figure 1.4 serves as the output stage of that measurement system.

It is worth noting that the term “transducer” is also often used in reference to a packaged
device, which may contain a sensor, transducer, and even some signal conditioning elements. While
such terminology is not true to our presentation, the context in which the term is used prevents
ambiguity.

Output stage S

Stem %

Bulb
Sensor-transducer stage

Figure 1.4 Components of bulb thermometer
equivalent to sensor, transducer, and output
Sensor Stages.
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General Template for a Measurement System

A general template for a measurement system is illustrated in Figure 1.5. Basically such a system
consists of part or all of four general stages: (1) sensor—transducer stage, (2) signal-conditioning
stage, (3) output stage, and (4) feedback-control stage. These stages form the bridge between the
input to the measurement system and the system output, a quantity that is used to infer the value of
the physical variable measured. We discuss later how the relationship between the input informa-
tion, as acquired by the sensor, and the system output is established by a calibration. We have already
discussed the sensor—transducer stage, so let’s move on to the signal-conditioning stage.

The signal-conditioning stage takes the transducer signal and modifies it to a desired
magnitude. This optional intermediate stage might be used to perform tasks such as increasing
the magnitude of the signal by amplification, removing portions of the signal through some filtering
technique, or providing mechanical or optical linkage between the transducer and the output stage.
For example, the translational displacement of a mechanic’s caliper (sensor) is often converted into a
rotational displacement of a pointer. This stage can consist of one or more devices, which are often
connected in series. For example, the diameter of the thermometer capillary relative to the bulb
volume (see Fig. 1.4) determines how far up the stem the liquid moves with increasing temperature.
It “conditions” the signal by amplifying the liquid displacement.

In those measurement systems involved in process control, a fourth stage, the feedback-control
stage, contains a controller that interprets the measured signal and makes a decision regarding the
control of the process. This decision results in a signal that changes the process parameter that
affects the magnitude of the sensed variable. In simple controllers, this decision is based on the
magnitude of the signal of the sensed variable, usually whether it exceeds some high or low set point,
a value set by the system operator. For example, a simple measurement system with control stage is a
household furnace thermostat. The operator fixes the set point for temperature on the thermostat
display, and the furnace is activated as the local temperature at the thermostat, as determined by the

Calibration

Signal conditioning stage

|

|

I I I

| | |

: | |
| |

: : I |

Signal | |

| Sensor stage -l ena Transducer | | Lol : Output |

: : path stage | | stage
| |

| | | |

| | e e |

| |

| Process |

| |

|

| \ Control signal Control

|
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Figure 1.5 Components of a general measurement system.
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sensor within the device, rises or falls above or below the set point. In a more sophisticated
controller, a signal from a measurement system can be used as an input to an “expert system”
controller that, through an artificial intelligence algorithm, determines the optimum set conditions
for the process. Mechatronics deals with the interfacing of mechanical and electrical components
with microprocessors, controllers, and measurements. We will discuss some features of mechatronic
systems in detail in Chapter 12.

1.3 EXPERIMENTAL TEST PLAN

An experimental test serves to answer a question, so the test should be designed and executed to
answer that question and that question alone. This is not so easy to do. Let’s consider an example.

Suppose you want to design a test to answer the question, ‘“What is the fuel use of my new car?”’
What might be your test plan? In a test plan, you identify the variables that you will measure, but you
also need to look closely at other variables that will influence the result. Two important variables to
measure would be distance and fuel volume consumption. Obviously, the accuracy of the odometer
will affect the distance measurement, and the way you fill your tank will affect your estimate of the
fuel volume. But what other variables might influence your results? If your intended question is to
estimate the average fuel usage to expect over the course of ownership, then the driving route you
choose would play a big role in the results and is a variable. Only highway driving will impose a
different trend on the results than only city driving, so if you do both you might want to randomize
your route by using various types of driving conditions. If more than one driver uses the car, then the
driver becomes a variable because each individual drives somewhat differently. Certainly weather
and road conditions influence the results, and you might want to consider this in your plan. So we see
that the utility of the measured data is very much impacted by variables beyond the primary ones
measured. In developing your test, the question you propose to answer will be a factor in developing
your test plan, and you should be careful in defining that question so as to meet your objective.

Imagine how your test conduct would need to be different if you were interested instead in
providing values used to advertise the expected average fuel use of a model of car. Also, you need to
consider just how good an answer you need. Is 2 liters per 100 kilometers or 1 mile per gallon close
enough? If not, then the test might require much tighter controls. Lastly, as a concomitant check, you
might compare your answer with information provided by the manufacturer or independent agency
to make sure your answer seems reasonable. Interestingly, this one example contains all the same
elements of any sophisticated test. If you can conceptualize the factors influencing this test and how
you will plan around them, then you are on track to handle almost any test. Before we move into the
details of measurements, we focus here on some important concepts germane to all measurements
and tests.

Experimental design involves itself with developing a measurement test plan. A test plan draws
from the following three steps:?

1. Parameter design plan. Determine the test objective and identify the process variables and
parameters and a means for their control. Ask: ‘“What question am I trying to answer? What
needs to be measured?” ‘“What variables and parameters will affect my results?”

2 These three strategies are similar to the bases for certain design methods used in engineering system design (1).
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2. System and tolerance design plan. Select a measurement technique, equipment, and
test procedure based on some preconceived tolerance limits for error.® Ask: “In what
ways can I do the measurement and how good do the results need to be to answer my
question?”’

3. Data reduction design plan. Plan how to analyze, present, and use the anticipated data.
Ask: “How will Iinterpret the resulting data? How will I use the data to answer my question?
How good is my answer? Does my answer make sense?”’

Going through all three steps in the test plan before any measurements are taken is a useful
habit for a successful engineer. Often, step 3 will force you to reconsider steps 1 and 2! In this
section, we focus on the concepts related to step 1 but will discuss and stress all three throughout
the text.

Variables

Once we define the question that we want the test to answer, the next step is to identify the relevant
process parameters and variables. Variables are entities that influence the test. In addition to the
targeted measured variable, there may be other variables pertinent to the measured process that will
affect the outcome. All known process variables should be evaluated for any possible cause-and-
effect relationships. If a change in one variable will not affect the value of some other variable, the
two are considered independent of each other. A variable that can be changed independently of other
variables is known as an independent variable. A variable that is affected by changes in one or more
other variables is known as a dependent variable. Normally, the variable that we measure depends on
the value of the variables that control the process. A variable may be continuous, in that its value is
able to change in a continuous manner, such as stress under a changing load or temperature in a
room, or it may be discrete in that it takes on discrete values or can be quantified in a discrete way,
such as the value of the role of dice or a test run by a single operator.

The control of variables is important. A variable is controlled if it can be held at a constant value
or at some prescribed condition during a measurement. Complete control of a variable would imply
that it can be held to an exact prescribed value. Such complete control of a variable is not usually
possible. We use the adjective “‘controlled” to refer to a variable that can be held as prescribed, at
least in a nominal sense. The cause-and-effect relationship between the independent variables and
the dependent variable is found by controlling the values of the independent variables while
measuring the dependent variable.

Variables that are not or cannot be controlled during measurement but that affect the value of the
variable measured are called extraneous variables. Their influence can confuse the clear relation
between cause and effect in a measurement. Would not the driving style affect the fuel consumption
of a car? Then unless controlled, this influence will affect the result. Extraneous variables can
introduce differences in repeated measurements of the same measured variable taken under
seemingly identical operating conditions. They can also impose a false trend onto the behavior
of that variable. The effects due to extraneous variables can take the form of signals superimposed
onto the measured signal with such forms as noise and drift.

3 The tolerance design plan strategy used in this text draws on uncertainty analysis, a form of sensitivity analysis. Sensitivity
methods are common in design optimization.
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Boiling point results
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Figure 1.6 Results of a boiling point test for water.

Consider a thermodynamics experiment to establish the boiling point of water. The apparatus
for measuring the boiling point might yield the results shown in Figure 1.6 for three test runs
conducted on separate days. Notice the different outcome for each test.

Why should the data from three seemingly identical tests show such different results?

Suppose we determine that the measurement system accuracy accounts for only 0.1°F of the test
data scatter. So another plausible contributing factor is the effect of an extraneous variable. Indeed,
a close examination of the test data shows a measured variation in the barometric pressure, which
would affect the boiling temperature. The pressure variation is consistent with the trend seen in
the boiling point data. Because the local barometric pressure was not controlled (i.e., it was not
held fixed between the tests), the pressure acted as an extraneous variable adding to the differences in
outcomes between the test runs. Control important variables or be prepared to solve a puzzle!

Parameters

In this text, we define a parameter as a functional grouping of variables. For example, a moment of
inertia or a Reynolds number has its value determined from the values of a grouping of variables. A
parameter that has an effect on the behavior of the measured variable is called a control parameter.
Available methods for establishing control parameters based on known process variables include
similarity and dimensional analysis techniques and physical laws (2—4). A parameter is controlled
if its value can be maintained during a set of measurements.

As an example, the flow rate, Q, developed by a fan depends on rotational speed, n, and the
diameter, d, of the fan. A control parameter for this group of three variables, found by similarity
methods, is the fan flow coefficient, C; = Q/nd3. For a given fan, d is fixed (and therefore
controlled), and if speed is somehow controlled, the fan flow rate associated with that speed can
be measured and the flow coefficient can be determined.
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Noise and Interference

Just how extraneous variables affect measured data can be delineated into noise and interference.
Noise is a random variation of the value of the measured signal as a consequence of the variation of
the extraneous variables. Noise increases data scatter. Interference imposes undesirable determi-
nistic trends on the measured value. Any uncontrolled influence that causes the signal or test
outcome to behave in a manner different from its true behavior is interference.

A common interference in electrical instruments comes from an AC power source and is
seen as a sinusoidal wave superimposed onto the measured signal path. Hum and acoustic
feedback in public address and audio systems are ready examples of interference effects that are
superimposed onto a desirable signal. Sometimes the interference is obvious. But if the period
of the interference is longer than the period over which the measurement is made, the false
trend may go unnoticed. So we want either to control the source of interference or to break up
its trend.

Consider the effects of noise and interference on the signal, y(#) = 2 + sin 2zz. As shown in
Figure 1.7, noise adds to the scatter of the signal. Through statistical techniques and other means, we
can sift through the noise to get at the desirable signal information. But interference imposes a trend
onto the signal. The measurement plan should be devised to break up such trends so that they appear
as random variations in the data set. Although this will increase the scatter in the measured values of
a data set, noise can be handled by statistics. It is far more important to eliminate false trends in the
data set.

With this discussion in mind, recall the boiling point example earlier. Barometric pressure
caused interference in each individual test. The barometric pressure did not change over the conduct
of any one test. But we could discern the effect only because we showed the results of several tests
taken over a period for which the value of this uncontrolled variable did change. This is a form of
randomization in that as barometric pressure changed between tests, its effect was entered into the
data set. Randomization methods are available that can be easily incorporated into the measurement

6
Signal: y(t) = 2 + sin (2nt)
5 —
4 Signal + interference
ks
E 3 Signal + noise
2 &
[%2]
2
1+
0 | | | | Figure 1.7 Effects of noise and
0.0 0.5 1.0 1.5 2.0 interference superimposed on

Time (s) the signal y(f) = 2 + sin 2wt.
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plan and will minimize or eliminate interference trends. Several methods are discussed in the
paragraphs that follow.

Random Tests

Recall our car fuel-usage example in which the question is: “What fuel usage should I expect from
this car?”” Let y be the fuel use, which depends on X, fuel volume consumption, and X, distance
traveled. We determine y by varying these two variables (that is, we drive the car). But the test result
can be affected by discrete extraneous variables such as the route, driver, weather, and road
conditions. For example, driving only on interstate highways would impose a false (untypical) trend
on our intended average fuel estimate, so we could drive on different types of roads to break up this
trend. This approach introduces a random test strategy.

In general, consider the situation in which the dependent variable, y, is a function of several
independent variables, x,, X,, . . . . However, the measurement of y can also be influenced by
several extraneous variables, z;, where j = 1, 2, . . ., such that y :f(xa,x;77 e zj). To find the
dependence of y on the independent variables, they are varied in a controlled manner. Although the
influence of the z; variables on these tests cannot be eliminated, the possibility of their introducing a
false trend on y can be minimized by a proper test strategy. Randomization is one such strategy.

Randomization

We define a random test by a measurement matrix that sets a random order to the change in the value
of the independent variable applied. The effect of the random order on the results of the test is termed
randomization. Trends normally introduced by the coupling of a relatively slow and uncontrolled
variation in the extraneous variables with a sequential application in values of the independent
variable applied will be broken up. This type of plan is effective for the local control of extraneous
variables that change in a continuous manner. Consider Examples 1.1 and 1.2.

Discrete extraneous variables are treated a little differently. The use of different instruments,
different test operators, and different test operating conditions are examples of discrete extraneous
variables that can affect the outcome of a measurement. Randomizing a test matrix to minimize discrete
influences can be done efficiently through the use of experimental design using random blocks. A block
consists of a data set of the measured variable in which the controlled variable is varied but the
extraneous variable is fixed. The extraneous variable is varied between blocks. This enables some
amount of local control over the discrete extraneous variable. In the fuel-usage example, we might
consider several blocks, each comprised of a different driver (extraneous variable) driving similar
routes, and averaging the results. In the example of Figure 1.6, if we cannot control the barometric
pressure in the test, then the imposed strategy of using several tests (blocks) under different values of
barometric pressure breaks up the interference effect found in a single test. Many strategies for
randomized blocks exist, as do advanced statistical methods for data analysis (5-8). In any event, a
random test is useful to assess the influence of an uncontrolled variable. Consider Examples 1.3 and 1.4.

Example 1.1

In the pressure calibration system shown in Figure 1.8, a sensor—transducer is exposed to a known
pressure, p. The transducer, powered by an external supply, converts the sensed signal into a
voltage that is measured by a voltmeter. The measurement approach is to control the applied
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Figure 1.8 Pressure calibration system.

pressure by the measured displacement of a piston that is used to compress a gas contained within
the piston-cylinder chamber. The gas chosen closely obeys the ideal gas law. Hence, piston
displacement, x, which sets the chamber volume, V = (x x area), is easily related to chamber
pressure. Identify the independent and dependent variables in the calibration and possible
extraneous variables.

KNOWN Pressure calibration system of Figure 1.8.
FIND Independent, dependent, and extraneous variables.

SOLUTION The control parameter for this problem can be formed from the ideal gas law:
PVIT = constant, where T is the gas temperature. An independent variable in the calibration is the
piston displacement that sets the volume. This variable can be controlled by locking the piston into
position. From the ideal gas law, gas pressure will also be dependent on temperature, and therefore
temperature is also an independent variable. However, T and V are not in themselves independent
according to the control parameter. Since volume is to be varied through variation of piston
displacement, T and V can be controlled provided a mechanism is incorporated into the scheme to
maintain a constant gas temperature within the chamber. This will also maintain chamber area
constant, a relevant factor in controlling the volume. In that way, the applied variations in V will be
the only effect on pressure, as desired. The dependent variable is the chamber gas pressure. The
pressure sensor is exposed to the chamber gas pressure and, hence, this is the pressure it senses.
Examples of likely extraneous variables would include noise effects due to the room temperature, z,
and line voltage variations, z,, which would affect the excitation voltage from the power supply and
the performance of the voltmeter. Connecting wires between devices will act as an antenna and
possibly will introduce interference, z3, superimposed onto the electrical signal, an effect that can be
reduced by proper electrical shielding. This list is not exhaustive but illustrative. Hence,

p=f(, T;z1,22,23), where ¥V = f(x, T).
COMMENT Even though we might try to keep the gas temperature constant, even slight

variations in the gas temperature would affect the volume and pressure and, hence, will act as an
additional extraneous variable!
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Example 1.2

Develop a test matrix that will minimize the interference effects of any extraneous variables in
Example 1.1.

KNOWN p=f(V,T; z1, z2, z3), where ¥V =f,(x; T). Control variable V is changed.
Dependent variable p is measured.

FIND Randomize possible effects of extraneous variables.

SOLUTION Part of our test strategy is to vary volume, control gas temperature, and measure
pressure. An important feature of all test plans is a strategy that minimizes the superposition of
false trends onto the data set by the extraneous variables. Since z;, z,, and z3 and any inability to
hold the gas temperature constant are continuous extraneous variables, their influence on p can be
randomized by a random test. This entails shuffling the order by which V is applied. Say that we pick
six values of volume, Vi, V5, V3, V4, Vs, and V¢, where the subscripts correspond to an increasing
sequential order of the respective values of volume. Any random order will do fine. One possibility,
found by using the random function features of a hand-held calculator, is

Vo Vs V1 V4 V6 V3

If we perform our measurements in a random order, interference trends will be broken up.

Example 1.3

The manufacture of a particular composite material requires mixing a percentage by weight of
binder with resin to produce a gel. The gel is used to impregnate a fiber to produce the composite
material in a manual process called the lay-up. The strength, o, of the finished material depends
on the percent binder in the gel. However, the strength may also be lay-up operator dependent.
Formulate a test matrix by which the strength to percent binder—gel ratio under production
conditions can be established.

KNOWN o = f (binder; operator)
ASSUMPTION Strength is affected only by binder and operator.
FIND Test matrix to randomize effects of operator.

SOLUTION The dependent variable, o, is to be tested against the independent variable,
percent binder—gel ratio. The operator is an extraneous variable in actual production. As a
simple test, we could test the relationship between three binder—gel ratios, A, B, and C, and
measure strength. We could also choose three typical operators (zy, z,, and z3) to produce N
separate composite test samples for each of the three binder—gel ratios. This gives the three-
block test pattern:

Block
] Z1 A B C
2 Z A B c

3 Z3. A B C
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In the analysis of the test, all of these data can be combined. The results of each block will
include each operator’s influence as a variation. We can assume that the order used within each
block is unimportant. But if only the data from one operator are considered, the results may show a
trend consistent with the lay-up technique of that operator. The test matrix above will randomize the
influence of any one operator on the strength test results by introducing the influence of several
operators.

Example 1.4

Suppose following lay-up, the composite material of Example 1.3 is allowed to cure at a controlled
but elevated temperature. We wish to develop a relationship between the binder—gel ratio and the
cure temperature and strength. Develop a suitable test matrix.

KNOWN o = f (binder, temperature, operator)
ASSUMPTION Strength is affected only by binder, temperature, and operator.
FIND Test matrix to randomize effect of operator.

SOLUTION We develop a simple matrix to test for the dependence of composite strength on
the independent variables of binder—gel ratio and cure temperature. We could proceed as in Example
1.3 and set up three randomized blocks for ratio and three for temperature for a total of 18 separate
tests. Suppose instead we choose three temperatures, T, T,, and T3, along with three binder—gel
ratios, A, B, and C, and three operators, z;, z,, and z3, and set up a 3 x 3 test matrix representing a
single randomized block. If we organize the block such that no operator runs the same test
combination more than once, we randomize the influence of any one operator on a particular binder—
gel ratio, temperature test.

Z1 22 Z3
A T, T, T
B T, T T,
C T T, T,

COMMENT The suggested test matrix not only randomizes the extraneous variable, it has
reduced the number of tests by one-half over the direct use of three blocks for ratio and for
temperature. However, either approach is fine. The above matrix is referred to as a Latin square
(5-8).

If we wanted to include our ability to control the independent variables in the test data
variations, we could duplicate the Latin-square test several times to build up a significant database.

Replication and Repetition

In general, the estimated value of a measured variable improves with the number of measurements.
For example, a bearing manufacturer would obtain a better estimate of the mean diameter and the
variation in the diameters of a batch of bearings by measuring many bearings rather than just a few.
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Repeated measurements made during any single test run or on a single batch are called repetitions.
Repetition helps to quantify the variation in a measured variable as it occurs during any one test or
batch while the operating conditions are held under nominal control. However, repetition will not
permit an assessment of how precisely the operating conditions can be set.

If the bearing manufacturer was interested in how closely bearing mean diameter was
controlled in day-in and day-out operations with a particular machine or test operator, duplicate
tests run on different days would be needed. An independent duplication of a set of measurements
using similar operating conditions is referred to as a replication. Replication allows for quantifying
the variation in a measured variable as it occurs between different tests, each having the same
nominal values of operating conditions.

Finally, if the bearing manufacturer were interested in how closely bearing mean diameter was
controlled when using different machines or different machine operators, duplicate tests using these
different configurations holds the answer. Here, replication provides a means to randomize the
interference effects of the different bearing machines or operators.

Replication allows us to assess the control of setting the operating conditions, that is, the ability
to reset the conditions to some desired value. Ultimately, replication provides the means to estimate
control over the procedure used.

Example 1.5

Consider a room furnace thermostat. Set to some temperature, we can make repeated measurements
(repetition) of room temperature and come to a conclusion about the average value and the variation
in room temperature at that particular thermostat setting. Repetition allows us to estimate the
variation in this measured variable. This repetition permits an assessment of how well we can
maintain (control) the operating condition.

Now suppose we change the set temperature to some arbitrary value but sometime later
return it to the original setting and duplicate the measurements. The two sets of test data are
replications of each other. We might find that the average temperature in the second test differs
from the first. The different averages suggest something about our ability to set and control the
temperature in the room. Replication permits the assessment of how well we can duplicate a set
of conditions.

Concomitant Methods

Is my test working? What value of result should I expect? To help answer these, a good strategy is to
incorporate concomitant methods in a measurement plan. The goal is to obtain two or more
estimates for the result, each based on a different method, which can be compared as a check for
agreement. This may affect the experimental design in that additional variables may need to be
measured. Or the different method could be an analysis that estimates an expected value of the
measurement. For example, suppose we want to establish the volume of a cylindrical rod of known
material. We could simply measure the diameter and length of the rod to compute this. Alternatively,
we could measure the weight of the rod and compute volume based on the specific weight of the
material. The second method complements the first and provides an important check on the
adequacy of the first estimate.
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1.4 CALIBRATION

A calibration applies a known input value to a measurement system for the purpose of observing the
system output value. It establishes the relationship between the input and output values. The known
value used for the calibration is called the standard.

Static Calibration

The most common type of calibration is known as a static calibration. In this procedure, a known
value is input to the system under calibration and the system output is recorded. The term “‘static”
implies that the values of the variables involved remain constant; that is, they do not vary with time
or space. In static calibrations, only the magnitudes of the known input and the measured output are
important.

By applying a range of known input values and by observing the system output values, a direct
calibration curve can be developed for the measurement system. On such a curve the input, X, is
plotted on the abscissa against the measured output, y, on the ordinate, such as indicated in
Figure 1.9. In a calibration the input value is usually a controlled independent variable, while the
measured output value is the dependent variable of the calibration.

The static calibration curve describes the static input—output relationship for a measurement
system and forms the logic by which the indicated output can be interpreted during an actual
measurement. For example, the calibration curve is the basis for fixing the output display scale on a
measurement system, such as that of Figure 1.4. Alternatively, a calibration curve can be used as part
of developing a functional relationship, an equation known as a correlation, between input and
output. A correlation will have the form y = f(x) and is determined by applying physical reasoning
and curve fitting techniques to the calibration curve. The correlation can then be used in later
measurements to ascertain the unknown input value based on the output value, the value indicated by
the measurement system.

10
®  Measured values
— Curve fit, y = flx)
8 —
¥ =flx)
6 —

Output value, y (units)

@)
x=x1

| |
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Input value, x (units) static calibration curve.
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Dynamic Calibration

When the variables of interest are time (or space) dependent and such varying information is
sought, we need dynamic information. In a broad sense, dynamic variables are time (or space)
dependent in both their magnitude and frequency content. A dynamic calibration determines the
relationship between an input of known dynamic behavior and the measurement system output.
Usually, such calibrations involve applying either a sinusoidal signal or a step change as the
known input signal. The dynamic nature of signals and measurement systems is explored fully in
Chapter 3.

Static Sensitivity

Range

The slope of a static calibration curve provides the static sensitivity* of the measurement system. As
depicted graphically in the calibration curve of Figure 1.9, the static sensitivity, K, at any particular
static input value, say X, is evaluated by

K =K(x) = (Z—i)x_xl (1.1)

where K is a function of x. The static sensitivity is a measure relating the change in the indicated
output associated with a given change in a static input.

A calibration applies known inputs ranging from the minimum to the maximum values for which the
measurement system is to be used. These limits define the operating range of the system. The input
operating range is defined as extending from X, to X.x. The input operating range may be
expressed in terms of the difference of the limits as

7i = Xmax — Xmin (12)

This is equivalent to specifying the output operating range from y,,;, to Ymax. The output span or
full-scale operating range (FSO) is expressed as

Fo = Ymax — Ymin (13)

It is important to avoid extrapolation beyond the range of known calibration during measure-

ment since the behavior of the measurement system is uncharted in these regions. As such, the range
of calibration should be carefully selected.

Resolution

The resolution represents the smallest increment in the measured value that can be discerned. In
terms of a measurement system, it is quantified by the smallest scale increment or least count (least
significant digit) of the output readout indicator.

*Some texts refer to this as the static gain.
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Accuracy and Error

The exact value of a variable is called the frue value. The value of the variables as indicated by a
measurement system is called the measured value. The accuracy of a measurement refers to the
closeness of agreement between the measured value and the true value. But the true value is rarely
known exactly, and various influences, called errors, have an effect on both of these values. So the
concept of the accuracy of a measurement is a qualitative one.

An appropriate approach to stating this closeness of agreement is to identify the measurement
errors and to quantify them by the value of their associated uncertainties, where an uncertainty is the
estimated range of value of an error. We define an error, e, as the difference between the measured
value and the true value, that is

e = Measured value — True value (1.4)

While the true value is rarely known exactly, Equation 1.4 serves as a reference definition.
Errors exist and they have a magnitude as given by Equation 1.4. The concept is something we
discuss next and then develop extensively in Chapter 5.

Often an estimate for the value of error is based on a reference value used during the
instrument’s calibration as a surrogate for the true value. A relative error based on this reference
value is estimated by

le]
~ Reference value | 100 (15)
A few vendors may still refer to this term as the “‘relative accuracy.”

A special form of a calibration curve is the deviation plot, such as shown in Figure 1.10. Such a
curve plots the error or deviation between a reference or expected value, y , and the measured value,
y, versus the measured value. Deviation curves are extremely useful when the differences between
the reference and the measured value are too small to suggest possible trends on direct calibration

plots. As an example, a deviation plot of the calibration of a temperature-sensing thermocouple is
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given in Figure 1.10. The voltage output during calibration is compared with the expected values
obtained from reference tables. The trend of the errors can be correlated, as shown by the curve fit.
We see the maximum errors are two orders of magnitude smaller than the measured values, but we
also see that the errors are smallest at either limit of the measuring range. We also see that the error
varies in magnitude. The range over which it varies is the uncertainty in the measurement.

Random and Systematic Errors and Uncertainty

Errors are effects that cause a measured value to differ from its true value. Random error causes a
random variation in measured values found during repeated measurements of a variable. Systematic
error causes an offset between the mean value of the data set and its true value. Both random and
systematic errors affect a system’s accuracy.

The concept of accuracy and the effects of systematic and random errors in instruments
and measurement systems can be illustrated by the throw of darts. Consider the dart boards in
Figure 1.11 where the goal will be to throw the darts into the bull’s-eye. For this analogy, the bull’s-
eye can represent the true value and each throw can represent a measured value. In Figure 1.11a,
the thrower displays good repeatability (i.e., a small effect from random error) in that each throw
repeatedly hits the same spot on the board, but the thrower is not accurate in that the dart misses the
bull’s-eye each time. We see that a small amount of random error is not a complete measure of
the accuracy of this thrower. The error in each throw can be computed from the distance between
the bull’s-eye and each dart. The average value of the error gives an estimate of the systematic error
in the throws. This thrower has an offset to the left of the target. If the effect of this systematic error
could be reduced, then this thrower’s accuracy would improve. In Figure 1.11b, the thrower
displays a high accuracy, hitting the bull’s-eye on each throw. Both scatter and offset are near zero.
High accuracy must imply a small influence of both the random and systematic errors as shown. In
Figure 1.11c, the thrower does not show good accuracy, with errant throws scattered around
the board. Each throw contains a different amount of error. While an estimate of the systematic
error is the average of the errors in the throws, the estimate of the random error is related to
the varying amount of error in the throws, a value that can be estimated using statistical methods.
The estimates in the random and systematic errors of the thrower can be computed using the
statistical methods that are discussed in Chapter 4 or the methods of comparison discussed in
Chapter 5.

(a) High repeatability gives (b) High accuracy means low (c) Systematic and random errors
low random error but no random and systematic errors. lead to poor accuracy.
direct indication of accuracy.

Figure 1.11 Throws of a dart: illustration of random and systematic errors and accuracy.
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Suppose we used a measurement system to measure a variable whose value was kept constant
and known almost exactly, as in a calibration. For example, 10 independent measurements are made
with the results as shown in Figure 1.12. The variations in the measurements, the observed scatter in
the data, would be related to the random error associated with the measurement of the variable. This
scatter is mainly due to (1) the measurement system and the measurement method, and (2) any
uncontrolled variations in the variable. However, the offset between the apparent average of the
readings and the true value would provide a measure of the systematic error to be expected from this
measurement system.

Uncertainty

The uncertainty is a numerical estimate of the possible range of the error in a measurement. In any
measurement, the error is not known exactly since the true value is rarely known exactly. But based on
available information, the operator might feel confident that the error is within certain bounds, a plus
or minus range of the indicated reading. This is the assigned uncertainty. Uncertainty is brought about
by all of the errors that are present in the measurement system—its calibration, the data set statistics,
and the measurement technique. Individual errors are properties of the instruments, the test method,
the analysis, and the measurement system. Uncertainty is a property of the test result. In Figure 1.12,
we see that we might assign an estimate to the random error, that is, the random uncertainty, based on
the data scatter. The systematic uncertainty might be based on a comparison against a concomitant
method. A method of estimating the overall uncertainty in the test result is treated in detail in
Chapter 5.

The uncertainty values assigned to an instrument or measurement system specification are usually
the result of several interacting random and systematic errors inherent to the measurement system, the
calibration procedure, and the standard used to provide the known value. An example of the errors
affecting an instrument is given for a typical pressure transducer in Table 1.1. The value assigned to
each error is the uncertainty.
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Table 1.1 Manufacturer’s Specifications: Typical Pressure Transducer

Operation

Input range 0-1000 cm H,O
Excitation +15VDC

Output range 0-5V

Performance

Linearity error +0.5% FSO
Hysteresis error Less than £0.15% FSO
Sensitivity error £0.25% of reading
Thermal sensitivity error £0.02%/°C of reading
Thermal zero drift +0.02%/°C FSO
Temperature range 0-50°C

FSO, full-scale operating range.

Sequential Test

A sequential test applies a sequential variation in the input value over the desired input range. This
may be accomplished by increasing the input value (upscale direction) or by decreasing the input
value (downscale direction) over the full input range.

Hysteresis

The sequential test is an effective diagnostic technique for identifying and quantifying hysteresis
error in a measurement system. Hysteresis error refers to differences between an upscale
sequential test and a downscale sequential test. The hysteresis error of the system is estimated
by its uncertainty uy = (¥)ypscate = (V)downscaler The effect of hysteresis in a sequential test
calibration curve is illustrated in Figure 1.13a. Hysteresis is usually specified for a measurement
system in terms of the maximum hysteresis error as a percentage of full-scale output range, r,,

oty = —mx ¢ 100 (1.6)
rﬂ
such as the value indicated in Table 1.1. Hysteresis occurs when the output of a measurement
system is dependent on the previous value indicated by the system. Such dependencies can be
brought about through some realistic system limitations such as friction or viscous damping in
moving parts or residual charge in electrical components. Some hysteresis is normal for any system
and affects the repeatability of the system.

Random Test

A random test applies a random order in the values of a known input over the intended calibration
range. The random application of input tends to reduce the impact of interference. It breaks up
hysteresis effects and observation errors. It ensures that each application of input value is
independent of the previous. As such, it reduces calibration systematic error, converting it to
random error. Generally, such a random variation in input value will more closely simulate the actual
measurement situation.
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A random test provides an important diagnostic for the delineation of several measurement
system performance characteristics based on a set of random calibration test data. In particular,
linearity error, sensitivity error, zero error, and instrument repeatability error, as illustrated in

Figure 1.13b-e, can be quantified from a static random test calibration.

Linearity Error

Many instruments are designed to achieve a linear relationship between the applied static input and
indicated output values. Such a linear static calibration curve would have the general form

y(x) =ao+ a1x

(1.7)

where the curve fit y; (x) provides a predicted output value based on a linear relation between x and
y. However, in real systems, truly linear behavior is only approximately achieved. As a result,
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measurement device specifications usually provide a statement as to the expected linearity of the
static calibration curve for the device. The relationship between y;(x) and measured value y(x) is a
measure of the nonlinear behavior of a system:

ur(x) = y(x) =y, (x) (1.8)

where u; (x) is a measure of the linearity error that arises in describing the actual system behavior by
Equation 1.7. Such behavior is illustrated in Figure 1.13b in which a linear curve has been fit through
a calibration data set. For a measurement system that is essentially linear in behavior, the extent of
possible nonlinearity in a measurement device is often specified in terms of the maximum expected
linearity error as a percentage of full-scale output range, r,,

Yo, = Lo 100 (1.9)

max
To

This is how the linearity error for the pressure transducer in Table 1.1 was estimated. Statistical
methods of quantifying data scatter about a line or curve fit are discussed in Chapter 4.

Sensitivity and Zero Errors

The scatter in the data measured during a calibration affects the precision in predicting the slope of
the calibration curve. As shown for the linear calibration curve in Figure 1.13c, in which the zero
intercept is fixed, the scatter in the data about the curve fit are random errors. The sensitivity error,
Uk, is a statistical measure of the random error in the estimate of the slope of the calibration curve
(we discuss the statistical estimate further in Chapter 4). The static sensitivity of a device is also
temperature dependent, and this is often specified. In Table 1.1, the sensitivity error reflects
calibration results at a constant reference ambient temperature, whereas the thermal sensitivity error
was found by calibration at different temperatures.

If the zero intercept is not fixed but the sensitivity is constant, then a drift in the zero intercept
introduces a vertical shift of the calibration curve, as shown in Figure 1.13d. This shift is known as
the zero error with uncertainty, u.. Zero error can usually be reduced by periodically adjusting the
output from the measurement system under a zero input condition. However, some random variation
in the zero intercept is common, particularly with electronic and digital equipment subjected to
temperature variations (e.g., thermal zero drift in Table 1.1).

Instrument Repeatability

The ability of a measurement system to indicate the same value on repeated but independent
application of the same input provides a measure of the instrument repeatability. Specific claims of
repeatability are based on multiple calibration tests (replication) performed within a given lab on the
particular unit. Repeatability, as shown in Figure 1.13e, is based on a statistical measure (developed
in Chapter 4) called the standard deviation, s, a measure of the variation in the output for a given
input. The value claimed is usually in terms of the maximum expected error as a percentage of full-
scale output range:

2
Yot = X % 100 (1.10)
r0
The instrument repeatability reflects only the variations found under controlled calibration
conditions.
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Reproducibility

The term “‘reproducibility,” when reported in instrument specifications, refers to the closeness of
agreement in results obtained from duplicate tests carried out under similar conditions of
measurement. As with repeatability, the uncertainty is based on statistical measures. Manufacturer
claims of instrument reproducibility must be based on multiple tests (replication) performed in
different labs on a single unit or model of instrument.

Instrument Precision

k)

The term ““instrument precision,” when reported in instrument specifications, refers to a random
uncertainty based on the results of separate repeatability tests. Manufacturer claims of instrument
precision must be based on multiple tests (replication) performed on different units of the same
manufacture, either performed in the same lab (same-lab precision) or, preferably, performed in
different labs (between-lab precision).

Overall Instrument Error and Instrument Uncertainty

An estimate of the overall instrument error is made by combining the estimates of all known errors
into a term called the instrument uncertainty. The estimate is computed from the square root of the
sum of the squares of all known uncertainty values. For M known errors, the overall instrument
uncertainty, u,, is estimated by

v i+ i) (1.11)

For example, for an instrument having known hysteresis, linearity, and sensitivity errors, the
instrument uncertainty is estimated by

ue = [u, +ui+uﬂl/2 (1.12)

1.5 STANDARDS

When a measurement system is calibrated, its indicated value is compared directly with a reference
value. This reference value forms the basis of the comparison and is known as the standard. This
standard may be based on the output from a piece of equipment, from an object having a well-
defined physical attribute to be used as a comparison, or from a well-accepted technique known to
produce a reliable value. Let us explore how certain standards come to be and how these standards
are the foundation of all measurements.

Primary Standards

A dimension defines a physical variable that is used to describe some aspect of a physical system. A
unit defines a quantitative measure of a dimension. For example, mass, length, and time describe
base dimensions with which we associate the units of kilogram, meter, and second. A primary
standard defines the value of a unit. It provides the means to describe the unit with a unique number
that can be understood throughout the world. The primary standard, then, assigns a unique value to a
unit by definition! As such it must define the unit exactly. In 1960, the General Conference on
Weights and Measures (CGPM), the international agency responsible for maintaining exact uniform
standards of measurements, formally adopted the International System of Units (SI) as the
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international standard of units. The system has been adopted worldwide. Other unit systems are
commonly used in the consumer market and so deserve mention. These other unit systems are not
standards and are treated as conversions from SI. Examples of these include the inch-pound (I-P)
unit system found in the United States and the gravitational mks (meter-kilogram-second or metric)
unit system common to much of the world.

Primary standards are necessary because the value assigned to a unit is actually arbitrary. For
example, over 4500 years ago the Egyptian cubit was used as a standard of length and based on the
length from outstretched fingertips to the elbow. It was later codified with a master of marble, a stick
about 52 cm in length, on which scratches were etched to define subunits of length. This standard
served well for centuries!

So whether today’s standard unit of length, the meter, is the length of a king’s forearm or the
distance light travels in a fraction of a second really only depends on how we want to define it. To
avoid confusion, units are defined by international agreement through the use of primary standards.
Once agreed upon, a primary standard forms the exact definition of the unit until it is changed by
some later agreement. Important features sought in any standard should include global availability,
continued reliability, and stability with minimal sensitivity to external environmental sources. Next
we examine some basic dimensions and the primary standards that form the definition of the units
that describe them (9).

Base Dimensions and Their Units
Mass

The dimension of mass is defined by the kilogram. Originally, the unit of the kilogram was defined
by the mass of one liter of water at room temperature. But today an equivalent yet more consistent
definition defines the kilogram exactly as the mass of a particular platinum-iridium cylindrical bar
that is maintained under very specific conditions at the International Bureau of Weights and
Measures located in Sevres, France. This particular bar (consisting of 90% platinum and 10%
iridium by mass) forms the primary standard for the kilogram. It remains today as the only basic unit
still defined in terms of a material object.

In the United States, the I-P unit system (also referred to as the U.S. customary units) remains
widely used. In the I-P system, mass is defined by the pound-mass, 1b,,,, which is derived directly and
exactly from the definition of the kilogram:

11b,, = 0.4535924 kg (1.13)

Equivalent standards for the kilogram and other standards units are maintained by the U.S.
National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, and other
national labs around the globe. NIST claims that their mass standard is accurate to an uncertainty of
within 1 mg in 27,200 kg.

Time and Frequency

The dimension of time is defined by the unit of a second. One second (s) is defined as the time
elapsed during 9,192,631,770 periods of the radiation emitted between two excitation levels of the
fundamental state of cesium-133 (10). Despite this seemingly unusual definition, this primary
standard can be reliably reproduced at suitably equipped laboratories throughout the world to an
uncertainty of within two parts in 10 trillion.
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The Bureau International de I’Heure (BIH) in Paris maintains the primary standard for clock
time. Periodically, adjustments to clocks around the world are made relative to the BIH clock so as to
keep time synchronous.

The standard for cyclical frequency is derived from the time standard. The standard unit is
the hertz (1 Hz = 1 cycle/s). The cyclical frequency is related to the circular frequency
(radians/s) by

= (1.14)

Both time and frequency standard signals are broadcast worldwide over designated radio stations for
use in navigation and as a source of a standard for these dimensions.

Length

The meter is the standard unit for length. New primary standards are established when our
ability to determine the new standard becomes more accurate (i.e., lower uncertainty) than the
existing standard. In 1982, a new primary standard was adopted by the CGPM to define the
unit of a meter. One meter (m) is now defined exactly as the length traveled by light in
1/299,792,458 of a second, a number derived from the velocity of light in a vacuum (defined as
299,792,458 m/s).

The I-P system unit of the inch and the related unit of the foot are derived exactly from the
meter.

1ft =0.3048 m

lin. = 0.0254 m (1.15)

Temperature

The kelvin, K, is the SI unit of thermodynamic temperature and is the fraction 1/273.16 of the
thermodynamic temperature of the triple point of water. This temperature scale was devised by
William Thomson, Lord Kelvin (1824-1907), and forms the basis for the absolute practical
temperature scale in common use. This scale is based on polynomial interpolation between
the equilibrium phase change points of a number of common pure substances from the triple
point of equilibrium hydrogen (13.81 K) to the freezing point of pure gold (1337.58 K). Above
1337.58 K, the scale is based on Planck’s law of radiant emissions. The details of the standard have
been modified over the years but are governed by the International Temperature Scale—1990 (11).

The I-P unit system uses the absolute scale of Rankine (°R). This and the common scales of
Celsius (°C), used in the metric system, and Fahrenheit (°F) are related to the Kelvin scale by the
following:

(°C) = (K) — 273.15
(°F) = (°R) — 459.67 (1.16)
(°F) = 1.8 x (°C) + 32.0

Current

The ST unit for current is the ampere. One ampere (A) is defined as that constant current which, if
maintained in two straight parallel conductors of infinite length and of negligible circular cross
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section and placed 1 m apart in vacuum, would produce a force equal to 2 x 10~ newtons per meter
of length between these conductors.

Measure of Substance

The unit of quantity of a substance is defined by the mole. One mole (mol) is the amount of
substance of a system that contains as many elementary entities as there are atoms in 0.012 kilogram
of carbon 12.

Luminous Intensity

The intensity of light is defined by the candela. One candela (cd) is the luminous intensity, in a given
direction, of a source that emits monochromatic radiation of frequency 5.40 x 10' hertz and that
has a radiant intensity in that direction of 1/683 watt per steradian.

Derived Units

Other dimensions and their associated units are defined in terms of and derived from the base
dimensions and units (9,12).

Force
From Newton’s law, force is proportional to mass times acceleration:
Mass x Acceleration
8

where g, is a proportionality constant used to maintain consistency in units.
Force is defined by a derived unit called the newton (N), which is derived from the base
dimensions of mass, length, and time:

Force =

IN—ke-m

- (1.17)

So for this system the value of g, must be 1.0 kg-m/s>-N. Note that the resulting expression for
Newton’s second law does not explicitly require the inclusion of g, to make units match and so is
often ignored.

However, in I-P units, the units of force and mass are related through the definition: One pound-
mass (lb,,) exerts a force of 1 pound (Ib) in a standard gravitational field. With this definition,

(11by,)(32.174 ft/s?)
g(,‘

11b = (1.18)

and g, must take on the value of 32.174 Ib,,-ft/Ib-s>. In I-P units, the pound is a defined quantity and
g. must be derived through Newton’s law.
Similarly, in the gravitational mks (metric) system, which uses the kilogram-force (kgy),

(1kg)(9.80665 m/s?)

lkg, =
8¢

(1.19)

and the value for g. takes on a value of exactly 9.80665 kg-m/s*kg;.
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Many engineers have some difficulty with using g, in the non-SI systems. Actually, whenever
force and mass appear in the same expression, just remember to relate them using g, through
Newton’s law:

mg kg — m/s? Ib,, — ft/s? kg — m/s?

go=—C =10 = 30174- " = 9.80665

F N Ib kg (1.20)

Other Derived Dimensions and Units

Energy is defined as force times length and uses the unit of the joule (J), which is derived from base
units as

kg

11=1 =1N-m (1.21)

g2

Power is defined as energy per unit time in terms of the unit of the watt (W), which is derived
from base units as:

kg — m?
3

J
=1- 1.22
S (122)

S

IW=1

Stress and pressure are defined as force per unit area, where area is length squared, in terms of
the pascal (Pa), which is derived from base units as

kg

m-—S

1Pa=1 = 1 N/m? (1.23)

7=

Electrical Dimensions

The units for the dimensions of electrical potential, and resistance, charge, and capacitance are
based on the definitions of the absolute volt (V), and ohm (£2), coulomb (C), and farad (F),
respectively. Derived from the ampere, 1 ohm absolute is defined by 0.9995 times the resistance to
current flow of a column of mercury that is 1.063 m in length and has a mass of 0.0144521 kg at
273.15 K. The volt is derived from the units for power and current, 1 V =1 N-m/s-A = 1W/A. The
ohm is derived from the units for electrical potential and current, 1 Q = 1 kg-m?*/s>-A* =1 V/A. The
coulomb is derived from the units for current and time, 1 C = 1 A-s. One volt is the difference of
potential between two points of an electical conductor when a current of 1 ampere flowing between
those points dissipates a power of 1 watt. The farad (F) is the standard unit for capacitance derived
from the units for charge and electric potential, | F = 1 C/V.

On a practical level, working standards for resistance and capacitance take the form of certified
standard resistors and capacitors or resistance boxes and are used as standards for comparison in the
calibration of resistance measuring devices. The practical potential standard makes use of a standard
cell consisting of a saturated solution of cadmium sulfate. The potential difference of two
conductors connected across such a solution is set at 1.0183 V and at 293 K. The standard cell
maintains constant electromotive force over very long periods of time, provided that it is not
subjected to a current drain exceeding 100 pwA for more than a few minutes. The standard cell is
typically used as a standard for comparison for voltage measurement devices.
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Table 1.2 Dimensions and Units?

Basic Concepts of Measurement Methods

Dimension
Unit SI I-P
Primary
Length meter (m) inch (in.)
Mass kilogram (kg) pound-mass (lby,)
Time second (s) second (s)
Temperature kelvin (K) rankine (°R)
Current ampere (A) ampere (A)
Substance mole (mol) mole (mol)
Light intensity candela (cd) candela (cd)
Derived
Force newton (N) pound-force (1b)
Voltage volt (V) volt (V)
Resistance ohm ({2) ohm (2)
Capacitance farad (F) farad (F)
Inductance henry (H) henry (H)
Stress, pressure pascal (Pa) pound-force/inch2 (psi)
Energy joule (J) foot pound-force (ft-1b)
Power watt (W) foot pound-force/second (ft-1b/s)

“SI dimensions and units are the international standards. I-P units are presented for

convenience.

A chart for converting between units is included inside the text cover. Table 1.2 lists the basic
standard and some derived units used in SI and the corresponding units used in the I-P and
gravitational metric systems.

Hierarchy of Standards

The known value applied to a measurement system during calibration becomes the standard on
which the calibration is based. So how do we pick this standard, and how good is it? Obviously,
actual primary standards are impractical as standards for normal calibration use. But they serve as a
reference for exactness. It would not be reasonable to travel to France to calibrate an ordinary
laboratory scale using the primary standard for mass (nor would it likely be permitted!). So for
practical reasons, there exists a hierarchy of reference and secondary standards used to duplicate the
primary standards. Just below the primary standard in terms of absolute accuracy are the national
reference standards maintained by designated standards laboratories throughout the world. These
provide a reasonable duplication of the primary standard but allow for worldwide access to an
extremely accurate standard. Next to these, we develop transfer standards. These are used to
calibrate individual laboratory standards that might be used at various facilities within a country.
Laboratory standards serve to calibrate working standards. Working standards are used to calibrate
everyday devices used in manufacturing and research facilities. In the United States, NIST
maintains primary, reference, and secondary standards and recommends standard procedures for
the calibration of measurement systems.
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Table 1.3 Hierarchy of Standards”

Primary standard Maintained as absolute unit standard
Transfer standard Used to calibrate local standards
Local standard Used to calibrate working standards
Working standard Used to calibrate local instruments

“There may be additional intermediate standards between each hierar-
chy level.

Each subsequent level of the hierarchy is derived by calibration against the standard at the
previous higher level. Table 1.3 lists an example of such a lineage for standards from a primary or
reference standard maintained at a national standards lab down to a working standard used in a
typical laboratory or production facility to calibrate everyday working instruments. If the facility
does not maintain a local (laboratory or working) standard, then the instruments must be sent off and
calibrated elsewhere. In such a case, a standards traceability certificate would be issued for the
instrument.

As one moves down through the standards lineage, the degree of exactness by which a standard
approximates the primary standard deteriorates. That is, increasing elements of error are introduced
into the standard as one moves from one level of hierarchy of standard to the next. As a common
example, an institution might maintain its own working standard (for some application) that is used
to calibrate the measurement devices found in the individual laboratories throughout the institution.
Periodic calibration of the working standard might be against the institution’s well-maintained local
standard. The local standard would be periodically sent off to be calibrated against the NIST (or
appropriate national standards lab) transfer standard (and traceability certificate issued). NIST will
periodically calibrate its own transfer standard against its reference or primary standard. This is
illustrated for a temperature standard traceability hierarchy in Table 1.4. The uncertainty in the
approximation of the known value increases as one moves down the hierarchy. It follows, then, that
since the calibration determines the relationship between the input value and the output value, the
accuracy of the calibration will depend in part on the accuracy of the standard. But if typical working
standards contain errors, how is accuracy ever determined? At best, this closeness of agreement is
quantified by the estimates of the known uncertainties in the calibration. And the confidence in that
estimate depends on the quality of the standard and the calibration techniques used.

Table 1.4 Example of a Temperature Standard Traceability

Standard
Level Method Uncertainty [°C]*
Primary Fixed thermodynamic points 0
Transfer Platinum resistance thermometer +0.005
Working Platinum resistance thermometer +0.05
Local Thermocouple +0.5

“Typical combined instrument systematic and random uncertainties.
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Test Standards and Codes

The term “‘standard” is also applied in other ways in engineering. Test standards refer to well-
defined test procedures, technical terminology, methods to construct test specimens or test devices,
and/or methods for data reduction. The goal of a test standard is to provide consistency in the
conduct and reporting of a certain type of measurement between test facilities. Similarly, test codes
refer to procedures for the manufacture, installation, calibration, performance specification, and safe
operation of equipment.

Diverse examples of test standards and codes are illustrated in readily available documents
(13-16) from professional societies, such as the American Society of Mechanical Engineers
(ASME), the American Society of Testing and Materials (ASTM), and the International Standards
Organization (ISO). For example, ASME Power Test Code 19.5 provides detailed designs and
operation procedures for flow meters, while ASTM Test Standard F558-88 provides detailed
procedures for evaluating vacuum cleaner cleaning effectiveness and controls the language for
product performance claims. Engineering standards and codes are consensus documents agreed on
by knowledgeable parties interested in establishing, for example, some common basis for
comparing equipment performance between manufacturers. These are not binding legal documents
unless specifically adopted and implemented as such by a government agency. Still, they present a
convincing argument for best practice.

1.6 PRESENTING DATA

Since we use several plotting formats throughout this text to present data, it is best to introduce these
formats here. Data presentation conveys significant information about the relationship between
variables. Software is readily available to assist in providing high-quality plots, or plots can be
generated manually using graph paper. Several forms of plotting formats are discussed next.

Rectangular Coordinate Format

In rectangular grid format, both the ordinate and the abscissa have uniformly sized divisions
providing a linear scale. This is the most common format used for constructing plots and
establishing the form of the relationship between the independent and dependent variable.

Semilog Coordinate Format

In a semilog format, one coordinate has a linear scale and one coordinate has a logarithmic scale.
Plotting values on a logarithmic scale performs a logarithmic operation on those values, for
example, plotting y = f(x) on a logarithmic x-axis is the same as plotting y = log f(x) on rectangular
axes. Logarithmic scales are advantageous when one of the variables spans more than one order of
magnitude. In particular, the semilog format may be convenient when the data approximately follow
a relationship of the form y = ae™ or y = 10" as a linear curve will result in each case. A natural
logarithmic operation can also be conveyed on a logarithmic scale, as the relation Iny = 2.3 log y is
just a scaling operation.

Full-Log Coordinate Format

The full-log or log-log format has logarithmic scales for both axes and is equivalent to plotting log y
vs. log x on rectangular axes. Such a format is preferred when both variables contain data values that
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span more than one order of magnitude. With data that follow a trend of the form y = ax”, a linear
curve will be obtained in log-log format.

Significant Digits

Significant digits refer to the number of digits found before and after the decimal point in a reported
number. While leading zeros are not significant, all trailing zeros are significant. For example, 42.0
has three significant digits, including one decimal digit. The number of significant digits needed
depends on the problem and the close discretion of the engineer. But in the course of working a
problem, there should be consistency in the number of significant digits used and reported. The
number of digits reported reflects a measure of the uncertainty in the value assigned by the engineer.
So to determine the number of significant digits required, just ask yourself: “What value makes
sense to this problem?”” For example, to maintain a relative uncertainty of within 1%, we need to
report values to three significant figures. But because rounding errors tend to accumulate during
calculations, we would perform all intermediate calculations to at least four significant figures, and
then round the final result down to three significant figures.

1.7 SUMMARY

During a measurement the input signal is not known but is inferred from the value of the output
signal from the measurement system. We discussed the process of calibration as the means to
relate a measured input value to the measurement system output value and the role of standards
in that process. An important step in the design of a measurement system is the inclusion of a
means for a reproducible calibration that closely simulates the type of signal to be input during
actual measurements. A test is the process of “‘asking a question.” The idea of a test plan was
developed to answer that question. However, a measured output signal can be affected by many
variables that will introduce variation and trends and confuse that answer. Careful test planning is
required to reduce such effects. A number of test plan strategies were developed, including
randomization. The popular term “accuracy’ was explained in terms of the more useful concepts
of random error, systematic error, random uncertainty, and systematic uncertainty and their
effects on a measured value. We also explored the idea of test standards and engineering codes,
legal documents that influence practically every manufactured product around us.
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NOMENCLATURE

e absolute error Ug
pressure )

repeatability uncertainty; uncertainty assigned
to repeatability error

r;  input span u, zerouncertainty; uncertainty assigned to zero error
r, output span x independent variable; input value; measured
s, standard deviation of x variable
u. overall instrument uncertainty y  dependent variable; output value
u;, hysteresis uncertainty; uncertainty assigned to  y, linear polynomial
hysteresis error A relative error; relative accuracy
ux sensitivity uncertainty; uncertainty assigned to K static sensitivity
sensitivity error T temperature (°)
u; linearity uncertainty; uncertainty assigned to VY volume (1%)
linearity error
PROBLEMS
1.1 Discuss your understanding of the hierarchy of standards beginning with the primary standard. In
general, what is meant by the term *“‘standard’’? Can you cite examples of standards in everyday use?
1.2 What is the purpose of a calibration? Suppose an instrument is labeled as “calibrated.” What should

1.3

14

1.5

1.6

this mean to you as an engineer?

Suppose you found a dial thermometer in a stockroom. Discuss several methods by which you might
estimate random and systematic error in the thermometer? How would you estimate its uncertainty?

Consider the example described in Figure 1.6. Discuss the effect of the extraneous variable,
barometric pressure, in terms of noise and interference relative to any one test and relative to several
tests. Discuss how the interference effect can be broken up into noise.

How would the resolution of the display scale of an instrument affect its uncertainty? Suppose the
scale was somehow offset by one least count of resolution. How would this affect its uncertainty?
Explain in terms of random and systematic error.

How would the hysteresis of an instrument affect its uncertainty? Explain in terms of random and
systematic error.
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1.7 Select three different types of measurement systems with which you have experience, and identify
which attributes of the system comprise the measurement system stages of Figure 1.5.

1.8 Identify the measurement system stages for the following systems (refer back to Figure 1.5 and use
other resources, such as a library or Internet search, as needed to learn more about each system):

. Room thermostat

. Automobile speedometer

. Portable CD stereo system

. Antilock braking system (automobile)
. Automobile cruise control

-0 o T

. Throttle position sensor for a Formula One race car
1.9 What is the range of the calibration data of Table 1.5?

Table 1.5 Calibration Data

X [cm] Y[V] X [cm] Y[V]
0.5 0.4 10.0 15.8
1.0 1.0 20.0 36.4
2.0 2.3 50.0 110.1
5.0 6.9 100.0 253.2

1.10 For the calibration data of Table 1.5, plot the results using rectangular and log-log scales. Discuss the
apparent advantages of either presentation.

1.11 For the calibration data of Table 1.5, determine the static sensitivity of the system at (a) X = 5;
(b) X = 10; and (c) X = 20. For which input values is the system more sensitive? Explain what this
might mean in terms of a measurement and in terms of measurement errors.

1.12  Consider the voltmeter calibration data in Table 1.6. Plot the data using a suitable scale. Specify the
percent maximum hysteresis based on full-scale range. Input X is based on a standard known to be
accurate to better than 0.05 mV.

Table 1.6 Voltmeter Calibration Data

Increasing Input [mV] Decreasing Input [mV]

X Y X Y
0.0 0.1 5.0 5.0
1.0 1.1 4.0 42
2.0 2.1 3.0 32
3.0 3.0 2.0 22
4.0 4.1 1.0 1.2
5.0 5.0 0.0 0.2

1.13 Three clocks are compared to a time standard at three successive hours. The data are given in
Table 1.7. Using Figure 1.12 as a guide, arrange these clocks in order of estimated accuracy. Discuss
your choices.
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1.14

1.15

1.16

1.17

1.18

Table 1.7 Clock Calibration Data

Standard Time
Clock 1:00:00 2:00:00 3:00:00
Indicated Time
A 1:02:23 2:02:24 3:02:25
B 1:00:05 2:00:05 3:00:05
C 1:00:01 1:59:58 3:00:01

Each of the following equations can be represented as a straight line on an x-y plot by choosing
the appropriate axis scales. Plot them both in rectangular coordinate format and then in an appropriate
format to yield a straight line. Explain how the plot operation yields the straight line. Variable y has
units of volts. Variable x has units of meters (use a range of 0:01 < x < 10:0). Note: This is easily done
using a spreadsheet program where you can compare the use of different axis scales.

Ly =x?
.y =1.1x

.y = 10x*

.y = 10>
Plot y = 10e™ > volts on in semilog format (use three cycles). Determine the slope of the equation at
x =0; x =2; and x = 20.
Plot the following data on appropriate axes. Estimate the static sensitivity K at each X.

a
b
c.y= 2x%3
d
e

Y[V] X[Vl
2.9 0.5
35 1.0
4.7 2.0
9.0 5.0

The following data have the form y = ax”. Plot the data in an appropriate format to estimate
the coefficients @ and b. Estimate the static sensitivity K at each value of X. How is K affected
by X?

Y [em] X [m]
0.14 0.5
2.51 2.0
15.30 5.0
63.71 10.0

For the calibration data given, plot the calibration curve using suitable axes. Estimate the static
sensitivity of the system at each X. Then plot K against X. Comment on the behavior of the static
sensitivity with static input magnitude for this system.
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Y [cm] X [kPa]
4.76 0.05
4.52 0.1
3.03 0.5
1.84 1.0

Consider the function

y=-=
X

a. Plot the function on rectangular coordinates.
b. Plot the function on semilog coordinates.
c. Plot the function on log-log coordinates.
d. Discuss the implications of each plot as it would relate to analyzing experimental data.

A bulb thermometer hangs outside a window and is used to measure the outside temperature.
Comment on some extraneous variables that might affect the difference between the actual outside
temperature and the indicated temperature from the thermometer.

A synchronous electric motor test stand permits either the variation of input voltage or output shaft
load and the subsequent measurement of motor efficiency, winding temperature, and input current.
Comment on the independent, dependent, and extraneous variables for a motor test.

The transducer specified in Table 1.1 is chosen to measure a nominal pressure of 500 cm H,0. The
ambient temperature is expected to vary between 18° and 25°C during tests. Estimate the magnitude
of each elemental error affecting the measured pressure.

A force measurement system (weight scale) has the following specifications:

Range: 0to 1000 N
Linearity error: 0.10% FSO
Hysteresis error: 0.10% FSO
Sensitivity error: 0.15% FSO
Zero drift: 0.20% FSO

Estimate the overall instrument uncertainty for this system based on available information. FSO
refers to full-scale operating range.

An engineer ponders a test plan, thinking: “What strategy should I include to estimate any variation
over time of the measured variable? What strategy should I include to estimate my control of the
independent variable during the test?”” What does the engineer mean?

If the outcome of a test was suspected to be dependent on the ability to control the test operating
conditions, what strategy should be incorporated into the test plan to estimate this effect?

State the purpose of using randomization methods during a test. Develop an example to illustrate
your point.

Provide an example of repetition and replication in a test plan from your own experience.
Develop a test plan that might be used to estimate the average temperature that could be maintained
in a heated room as a function of the heater thermostat setting.
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1.29

1.30

1.31

1.32

1.33

1.34

Develop a test plan that might be used to evaluate the fuel efficiency of a production model
automobile. Explain your reasoning.

A race engine shop has just completed two engines of the same design. How might you determine
which engine performs better: (a) on a test stand (engine dynamometer) or (b) at the race track?
Describe some measurements that you feel might be useful and how you might use that information.
Discuss possible differences between the two tests and how these might influence the results (e.g.,
you can control room conditions on a test stand but not at a track).

A large batch of carefully made machine shafts can be manufactured on 1 of 4 lathes by 1 of
12 quality machinists. Set up a test matrix to estimate the tolerances that can be held within a
production batch. Explain your reasoning.

Suggest an approach(es) to estimate the linearity error and the hysteresis error of a measurement
system.

Suggest a test matrix to evaluate the wear performance of four different brands of aftermarket
passenger car tires of the same size, load, and speed ratings on a fleet of eight cars of the same make.
If the cars were not of the same make, what would change?

The relation between the flow rate, Q, through a pipeline of area A and the pressure drop, Ap, across
an orifice-type flow meter inserted in that line (Fig. 1.14) is given by

o ca 2o
P

where p is density and C is a coefficient. For a pipe diameter of 1 m and a flow range of 20°C water
between 2 and 10 m*/min and C = 0.75, plot the expected form of the calibration curve for flow rate
versus pressure drop over the flow range. Is the static sensitivity a constant? Incidentally, such an
instrument test is described by ANSI/ASME Test Standard PTC 19.5.

( g Orifice

Pipe\ meter

Wall /Ivcl g Lcl

pressure
tap

Ap
pressure drop

Figure 1.14 Orifice flow meter setup used for Problem 1.34.
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The sale of motor fuel is an essential business in the global economy. Federal (US) law requires
accurate measurement of the quantity of fuel delivered at a retail establishment. Determine:

a. The federal standard for minimum accuracy of a gas pump.
b. The maximum allowable error in the delivery of 25 gallons of fuel (or 100 L of fuel).

¢. An estimate of the cost of the maximum allowable error over the 10-year life of a vehicle that is
driven 15,000 miles per year at the average fuel mileage of the American passenger car fleet.

For the orifice meter calibration in Problem 1.34: Would the term “linearity error’” have a meaning
for this system? Explain. Also, list the dependent and independent variables in the calibration.

A piston engine manufacturer uses four different subcontractors to plate the pistons for a make of
engine. Plating thickness is important in quality control (performance and part life). Devise a test
matrix to assess how well the manufacturer can control plating under its current system.

A simple thermocouple circuit is formed using two wires of different alloy: one end of the wires is
twisted together to form the measuring junction, while the other ends are connected to a voltmeter
and form the reference junction. A voltage is set up by the difference in temperature between the two
junctions. For a given pair of alloy material and reference junction temperature, the temperature of
the measuring junction is inferred from the measured voltage difference. For a measurement, what
variables need to be controlled? What are the dependent and independent variables?

A linear variable displacement transducer (LVDT) senses displacement and indicates a voltage
output, which is linear to the input. Figure 1.15 shows an LVDT setup used for static calibration. It
uses a micrometer to apply the known displacement and a voltmeter for the output. A well-defined
voltage powers the transducer. What are the independent and dependent variables in this calibration?
Can you suggest any extraneous variables? What would be involved in a replication?

For the LVDT calibration of the previous problem, what would be involved in determining the
repeatability of the instrument? The reproducibility? What effects are different in the two tests?
Explain.

Fixed mounts
[ \ Primary coil
Secondary coil
~

Connector |_Core

e = | 1

1 0

Micrometer Excitation r?\ 1 wor | [
voltage o ™\

in

10

(Nl

—E—>9¢

Output
voltage

10.135

Voltmeter

Figure 1.15 LVDT setup used for Problem 1.39.
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1.41

1.42

1.43

1.44

1.45

1.46

147

1.48

A manufacturer wants to quantify the expected average fuel mileage of a product line of automobiles.
They decide that they can put one or more cars on a chassis dynamometer and run the wheels at
desired speeds and loads to assess this, or they can use drivers and drive the cars over some selected
course instead. (a) Discuss the merits of either approach, considering the control of variables and
identifying extraneous variables. (b) Can you recognize that somewhat different tests might provide
answers to different questions? For example, discuss the difference in meanings possible from the
results of operating one car on the dynamometer and comparing it to one driver on a course. Cite
other examples. (c) Are these two test methods examples of concomitant methods?

We need to measure the coefficient of restitution of a volleyball by dropping the ball from a known
height H and measuring the height of the bounce, /. The coefficient of restitution, Cg, is then
calculated as

h
CR: E

a. Develop a test plan for measuring Cy that includes the range of conditions expected in college-
level volleyball play.

b. Identify extraneous variables that may affect the resulting values of Ck.

Light gates may be used to measure the speed of projectiles, such as arrows shot from a bow. English
long bows made of yew wood in the 1400s achieved launch speeds of 60 m/s. Determine the
relationship between the distance between light gates and the accuracy required for sensing the times
when the light gate senses the presence of the arrow.

You estimate your car’s fuel use by comparing fuel volume used over a known distance. Your brother,
who drives the same model car, disagrees with your claimed results based on his own experience.
How might you justify the differences based on the concepts of control of variables, interference and
noises effects, and test matrix used?

In discussing concomitant methods, we cited an example of computing the volume of a cylindrical
rod based on its average dimensions versus known weight and material properties. While we should
not expect too different an answer with either technique, identify where noise and interference effects
will affect the result of either method.

When a strain gauge is stretched under uniaxial tension, its resistance varies with the imposed strain.
A resistance bridge circuit is used to convert the resistance change into a voltage. Suppose a known
tensile load were applied to the system shown in Figure 1.16 and the output measured on a voltmeter.
What are the independent and dependent variables in this calibration? Can you suggest any
extraneous variables? What would be involved in a replication?
For the strain gauge calibration of the previous problem, what would be involved in determining the
repeatability of the instrument? The reproducibility? What effects are different in the tests? Explain.
A major tennis manufacturer is undertaking a test program for shoes, tennis balls, and tennis
strings. Develop a test plan for the situations described below. In each case provide details for how
the test should be conducted, and describe expected difficulties in interpreting the results. In each
case the tests are to be conducted during college tennis matches. Four teams of six players each are
to test the products under match (as opposed to practice) conditions. A tennis team consists of six
players, and a match consists of six singles matches and three doubles matches.
a. Tennis shoes: Two different sole designs and materials are to be wear tested. The life of the soles
are known to be strongly affected by court surface and playing style.
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Strain

Resistance,
R

L 2.121
Voltmeter
E'O<\
Output
voltage
N\
I| L

— ||t

Excitation Figure 1.16 Strain gauge setup used

voltage for Problem 1.46.

b. Tennis strings: A new tennis string material is to be tested for durability. String failure occurs due
to breakage or due to loss of tension. String life is a function of the racquet, the player’s style, and
string tension.

c. Tennis balls: Two tennis balls are to be play tested for durability. The condition of a tennis ball can
be described by the coefficient of restitution, and the total weight (since the cover material
actually is lost during play). A player’s style and the court surface are the primary determining
factors on tennis ball wear.

The acceleration of a cart down a plane inclined at an angle o to horizontal can be determined by
measuring the change in speed of the cart at two points, separated by a distance s, along the inclined
plane. Suppose two photocells are fixed at the two points along the plane. Each photocell measures
the time for the cart, which has a length L, to pass it. Identify the important variables in this test. List
any assumptions that you feel are intrinsic to such a test. Suggest a concomitant approach. How
would you interpret the data to answer the question?

Is it more fuel efficient to drive a car in warm, humid weather with the air conditioning on and
windows closed, or with the air conditioning off and the windows open for ventilation? Develop a test
plan to address this question. Include a concomitant approach (experimental or analytical) that might
assess the validity of your test results.

Explain the potential differences in the following evaluations of an instrument’s accuracy.
Figure 1.12 will be useful, and you may refer to ASTM E177, if needed.

a. The closeness of agreement between the true value and the average of a large set of measurements.
b. The closeness of agreement between the true value and an individual measurement.

Suggest a reasonable number of significant digits for reporting the following common values and
give some indication as to your reasoning:

a. Your body weight for a passport
b. A car’s fuel usage (use liters per 100 km)
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1.53

1.54

c. The weight of a bar of pure (at least 99.5%) gold (consider a 1 kg bar and a 100 oz bar)
d. Distance traveled by a body in 1 second if moving at 1 m/s (use meters)

Research the following test codes (these are available in most libraries). Write a short (200-word)
report that describes the intent and an overview of the code:

. ASTM F 558-88 (Air Performance of Vacuum Cleaners)

. ANSI 7Z21.86 (Gas Fired Space Heating Appliances)

. ISO 10770-1:1998 (Test Methods for Hydraulic Control Valves)
. ANSIVASME PTC19.1-2005 (Test Uncertainty)

. ISO 7401:1988 (Road Vehicles: Lateral Response Test Methods)
. Your local municipal building code or housing ordinance

R - 0o &0 T oo

. Any other code assigned by your instructor

Show how the following functions can be transformed into a linear curve of the form ¥ = a,X + a,
where a; and a, are constants. Let m, b, and ¢ be constants.

a. y = bx"
b. y = be™*
c.y=b+cix



Chapter 2

Static and Dynamic Characteristics
of Signals

2.1 INTRODUCTION

A measurement system takes an input quantity and transforms it into an output quantity that can be
observed or recorded, such as the movement of a pointer on a dial or the magnitude of a digital
display. This chapter discusses the characteristics of both the input signals to a measurement system
and the resulting output signals. The shape and form of a signal are often referred to as its waveform.
The waveform contains information about the magnitude and amplitude, which indicate the size of
the input quantity, and the frequency, which indicates the way the signal changes in time. An
understanding of waveforms is required for the selection of measurement systems and the
interpretation of measured signals.

2.2 INPUT/OUTPUT SIGNAL CONCEPTS

Two important tasks that engineers face in the measurement of physical variables are (1) selecting a
measurement system and (2) interpreting the output from a measurement system. A simple example of
selecting a measurement system might be the selection of a tire gauge for measuring the air pressure in
a bicycle tire or in a car tire, as shown in Figure 2.1. The gauge for the car tire would be required to
indicate pressures up to 275 kPa (40 1b/in.?), but the bicycle tire gauge would be required to indicate
higher pressures, maybe up to 700 kPa (100 1b/in.?). This idea of the range of an instrument, its lower to
upper measurement limits, is fundamental to all measurement systems and demonstrates that some
basic understanding of the nature of the input signal, in this case the magnitude, is necessary in
evaluating or selecting a measurement system for a particular application.

A much more difficult task is the evaluation of the output of a measurement system when the
time or spatial behavior of the input is not known. The pressure in a tire does not change while we are
trying to measure it, but what if we wanted to measure pressure in a cylinder in an automobile
engine? Would the tire gauge or another gauge based on its operating principle work? We know that
the pressure in the cylinder varies with time. If our task was to select a measurement system to
determine this time-varying pressure, information about the pressure variations in the cylinder
would be necessary. From thermodynamics and the speed range of the engine, it may be possible to
estimate the magnitude of pressures to be expected and the rate with which they change. From that

41
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Figure 2.1 Measurement system selection based on input signal range.

we can select an appropriate measurement system. But to do this we need to develop a way to
express this idea of the magnitude and rate of change of a variable.
Upon completion of this chapter, the reader will be able to

e define the range of an instrument,
« classify signals as analog, discrete time, or digital,
e compute the mean and rms values for time-varying signals, and

e characterize signals in the frequency domain.

Generalized Behavior

Many measurement systems exhibit similar responses under a variety of conditions, which suggests
that the performance and capabilities of measuring systems may be described in a generalized way.
To examine further the generalized behavior of measurement systems, we first examine the possible
forms of the input and output signals. We will associate the term “‘signal’’ with the ““transmission of
information.” A signal is the physical information about a measured variable being transmitted
between a process and the measurement system, between the stages of a measurement system, or as
the output from a measurement system.

Classification of Waveforms

Signals may be classified as analog, discrete time, or digital. Analog describes a signal that is
continuous in time. Because physical variables tend to be continuous, an analog signal provides a
ready representation of their time-dependent behavior. In addition, the magnitude of the signal is
continuous and thus can have any value within the operating range. An analog signal is shown in
Figure 2.2a; a similar continuous signal would result from a recording of the pointer rotation with
time for the output display shown in Figure 2.2b. Contrast this continuous signal with the signal
shown in Figure 2.3a. This format represents a discrete time signal, for which information about the
magnitude of the signal is available only at discrete points in time. A discrete time signal usually
results from the sampling of a continuous variable at repeated finite time intervals. Because
information in the signal shown in Figure 2.3a is available only at discrete times, some assumption
must be made about the behavior of the measured variable during the times when it is not available.
One approach is to assume the signal is constant between samples, a sample and hold method. The
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Signal

Time

(a) Analog signal representation (b) Analog display

Figure 2.2 Analog signal concepts.

resulting waveform is shown in Figure 2.3b. Clearly, as the time between samples is reduced, the
difference between the discrete variable and the continuous signal it represents decreases.

Digital signals are particularly useful when data acquisition and processing are performed
using a digital computer. A digital signal has two important characteristics. First, a digital signal
exists at discrete values in time, like a discrete time signal. Second, the magnitude of a digital signal
is discrete, determined by a process known as quantization at each discrete point in time.
Quantization assigns a single number to represent a range of magnitudes of a continuous signal.

Figure 2.4a shows digital and analog forms of the same signal where the magnitude of the
digital signal can have only certain discrete values. Thus, a digital signal provides a quantized
magnitude at discrete times. The waveform that would result from assuming that the signal is
constant between sampled points in time is shown in Figure 2.4b.

As an example of quantization, consider a digital clock that displays time in hours and minutes.
For the entire duration of 1 minute, a single numerical value is displayed until it is updated at the
next discrete time step. As such, the continuous physical variable of time is quantized in its
conversion to a digital display.

Sampling of an analog signal to produce a digital signal can be accomplished by using an
analog-to-digital (A/D) converter, a solid-state device that converts an analog voltage signal to a
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(a) Discrete time signal (b) Discrete time waveform

Figure 2.3 Discrete time signal concepts.
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Figure 2.4 Digital signal representation and waveform.

binary number system representation. The limited resolution of the binary number that corresponds
to a range of voltages creates the quantization levels and ranges.

For example, a compact disk player is built around technology that relies on the conversion of a
continuously available signal, such as music from a microphone, into a digital form. The digital
information is stored on a compact disk and later read in digital form by a laser playback system (1).
However, to serve as input to a traditional stereo amplifier, and since speakers and the human ear
are analog devices, the digital information is converted back into a continuous voltage signal for
playback.

Signal Waveforms

In addition to classifying signals as analog, discrete time, or digital, some description of the
waveform associated with a signal is useful. Signals may be characterized as either static or
dynamic. A static signal does not vary with time. The diameter of a shaft is an example. Many
physical variables change slowly enough in time, compared to the process with which they interact,
that for all practical purposes these signals may be considered static in time. For example, the
voltage across the terminals of a battery is approximately constant over its useful life. Or consider
measuring temperature by using an outdoor thermometer; since the outdoor temperature does not
change significantly in a matter of minutes, this input signal might be considered static when
compared to our time period of interest. A mathematical representation of a static signal is given by a
constant, as indicated in Table 2.1. In contrast, often we are interested in how the measured variable
changes with time. This leads us to consider time-varying signals further.

A dynamic signal is defined as a time-dependent signal. In general, dynamic signal waveforms,
¥(t), may be classified as shown in Table 2.1. A deterministic signal varies in time in a predictable
manner, such as a sine wave, a step function, or a ramp function, as shown in Figure 2.5. A signal is
steady periodic if the variation of the magnitude of the signal repeats at regular intervals in time.
Examples of steady periodic behaviors are the motion of an ideal pendulum, and the temperature
variations in the cylinder of an internal combustion engine under steady operating conditions.
Periodic waveforms may be classified as simple or complex. A simple periodic waveform contains
only one frequency. A complex periodic waveform contains multiple frequencies and is represented
as a superposition of multiple simple periodic waveforms. Aperiodic is the term used to describe
deterministic signals that do not repeat at regular intervals, such as a step function.
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Table 2.1 Classification of Waveforms

I.  Static y(t) = A
II.  Dynamic
Periodic waveforms
Simple periodic waveform y(t) = Ag + Csin(ot + )
Complex periodic waveform (1) =Ao+ Y Cysin(not + ¢,)

n=1

Aperiodic waveforms

Step* (1) = AoU(1)
=Apfort >0
Ramp y(t) =Aot for 0 <t <ty
Pulse” y(1) = AgU(1) — AgU(t — 11)
00
II. Nondeterministic waveform () = Ag+ Y Cysin (not + ¢,)

n=1

“U(t) represents the unit step function, which is zero for # < 0 and 1 for ¢ > 0.
by, represents the pulse width.

Also described in Figure 2.5 is a nondeterministic signal that has no discernible pattern of
repetition. A nondeterministic signal cannot be prescribed before it occurs, although certain char-
acteristics of the signal may be known in advance. As an example, consider the transmission of data
files from one computer to another. Signal characteristics such as the rate of data transmission and
the possible range of signal magnitude are known for any signal in this system. However, it would
not be possible to predict future signal characteristics based on existing information in such a signal.
Such a signal is properly characterized as nondeterministic. Nondeterministic signals are generally
described by their statistical characteristics or a model signal that represents the statistics of the
actual signal.

Deterministic variables Nondeterministic variable

y(t) y(2)
Ramp

/
i AA A
NV

Sinusoidal

o

~
o

~

Figure 2.5 Examples of dynamic signals.



46 Chapter2 Static and Dynamic Characteristics of Signals

Y Amplitude of the Y
fluctuating or AC

20 VR R

Average value value
(D(|) offset) |

O t, O t, b

(a) (b)

Figure 2.6 Analog and discrete representations of a dynamic signal.

2.3 SIGNAL ANALYSIS

In this section, we consider concepts related to the characterization of signals. A measurement
system produces a signal that may be analog, discrete time, or digital. An analog signal is continuous
with time and has a magnitude that is analogous to the magnitude of the physical variable being
measured. Consider the analog signal shown in Figure 2.6a, which is continuous over the recorded
time period from 7, to ,. The average or mean value' of this signal is found by

r y(t)dt
h (2.1)

15}
J di
1

The mean value, as defined in Equation 2.1, provides a measure of the static portion of a signal over
the time 7, — ¢. It is sometimes called the DC component or DC offset of the signal.

The mean value does not provide any indication of the amount of variation in the dynamic
portion of the signal. The characterization of the dynamic portion, or AC component, of the signal
may be illustrated by considering the average power dissipated in an electrical resistor through
which a fluctuating current flows. The power dissipated in a resistor due to the flow of a current is

y

P=TIR
where
P =power dissipated = time rate of energy dissipated
I = current

R = resistance

If the current varies in time, the total electrical energy dissipated in the resistor over the time ¢, to 7,
would be

Jtz Pdt = r [1(1))*Rdt (2.2)

151 h
The current I(¢) would, in general, include both a DC component and a changing AC component.

! Strictly speaking, for a continuous signal the mean value and the average value are the same. This is not true for discrete
time signals.
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Signal Root-Mean-Square Value

Consider finding the magnitude of a constant effective current, /,, that would produce the same total
energy dissipation in the resistor as the time-varying current, I(¢), over the time period ¢, to t,.
Assuming that the resistance, R, is constant, this current would be determined by equating
(I.)*R(t, — t;) with Equation 2.2 to yield

L= \/ - ! - L () dt (2.3)

This value of the current is called the root-mean-square (rms) value of the current. Based on this
reasoning, the rms value of any continuous analog variable y(¢) over the time, 7, — ?1, is expressed as

1 12 5
Yrms = J yodt (24)
Lh—1 t

Discrete-Time or Digital Signals

A time-dependent analog signal, y(¢), can be represented by a discrete set of N numbers over the time
period from ¢ to ¢, through the conversion

y(t) = {y(rd0)} r=0,1,...,(N—1)

which uses the sampling convolution

{y(rdt)} =y(0)d(t —rdt) ={y;} i=0,1,2,...,(N—1)

Here, 8(z — rd1) is the delayed unit impulse function, 8¢ is the sample time increment between
each number, and N&¢ = t, — t; gives the total sample period over which the measurement of y(#)
takes place. The effect of discrete sampling on the original analog signal is demonstrated in Figure 2.6b
in which the analog signal has been replaced by{y(rd¢) }, which represents N values of a discrete time
signal representing y(?).

For either a discrete time signal or a digital signal, the mean value can be estimated by the
discrete equivalent of Equation 2.1 as

s
y= NZ)’;‘ (25)
i=0

where each y; is a discrete number in the data set of {y(rd7)}. The mean approximates the static
component of the signal over the time interval #; to 7,. The rms value can be estimated by the discrete
equivalent of Equation 2.4 as

yrms =

The rms value takes on additional physical significance when either the signal contains no DC
component or the DC component has been subtracted from the signal. The rms value of a signal
having a zero mean is a statistical measure of the magnitude of the fluctuations in the signal.
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Direct Current Offset

When the AC component of the signal is of primary interest, the DC component can be removed.
This procedure often allows a change of scale in the display or plotting of a signal such that
fluctuations that were a small percentage of the DC signal can be more clearly observed without the
superposition of the large DC component. The enhancement of fluctuations through the subtraction
of the average value is illustrated in Figure 2.7.

Figure 2.7a contains the entire complex waveform consisting of both static (DC) and dynamic
(AC) parts. When the DC component is removed, the characteristics of the fluctuating component of
the signal are readily observed, as shown in Figure 2.7b. The statistics of the fluctuating component
of the signal dynamic portion may contain important information for a particular application.

Example 2.1
Suppose the current passing through a resistor can be described by

I(t) = 10sint
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where [ represents the time-dependent current in amperes. Establish the mean and rms values of
current over a time from O to 7, with #; = m and then with 7y = 2. How do the results relate to the
power dissipated in the resistor?

KNOWN [(t)=10 sint
FIND I and I, with ¢y = 7 and 2
SOLUTION The average value for a time from O to f;is found from Equation 2.1 as

i I
J I(t)dt J 10 sin tdt
7 =20 _Jo

I t
J dt !
0

Evaluation of this integral yields

|
I=—[-10cos
Iy
With #; = m, the average value, 1, is 20/m. For Iy = 2m, the evaluation of the integral yields an
average value of zero.
The rms value for the time period 0 to is given by the application of Equation 2.4, which yields

[f )‘f
Iims = lJ 1(1)%dt = lj (10 sin 7)*dt
Ir Jo trJo

This integral is evaluated as
I 100 1 rsin 4 t
ms = {/— | —=zcostsint + =
Iy 2 2

For #; = m, the rms value is v/50. Evaluation of the integral for the rms value with 7 = 2 also
yields v/50.

COMMENT Although the average value over the period 27 is zero, the power dissipated in the
resistor must be the same over both the positive and negative half-cycles of the sine function. Thus,
the rms value of current is the same for the time period of 7 and 27 and is indicative of the rate at
which energy is dissipated.

ty

0

SIGNAL AMPLITUDE AND FREQUENCY

A key factor in measurement system behavior is the nature of the input signal to the system. A means is
needed to classify waveforms for both the input signal and the resulting output signal relative to their
magnitude and frequency. It would be very helpful if the behavior of measurement systems could be
defined in terms of their response to a limited number and type of input signals. This is, in fact, exactly
the case. A very complex signal, even one that is nondeterministic in nature, can be approximated as an
infinite series of sine and cosine functions, as suggested in Table 2.1. The method of expressing such a
complex signal as a series of sines and cosines is called Fourier analysis.
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Figure 2.8 Separation of white light into its color spectrum. Color corresponds to a particular
frequency or wavelength; light intensity corresponds to varying amplitudes.

Nature provides some experiences that support our contention that complex signals can be
represented by the addition of a number of simpler periodic functions. For example, combining a
number of different pure tones can generate rich musical sound. And an excellent physical analogy for
Fourier analysis is provided by the separation of white light through a prism. Figure 2.8 illustrates the
transformation of a complex waveform, represented by white light, into its simpler components,
represented by the colors in the spectrum. In this example, the colors in the spectrum are represented
as simple periodic functions that combine to form white light. Fourier analysis is roughly the mathematical
equivalent of a prism and yields a representation of a complex signal in terms of simple periodic functions.

The representation of complex and nondeterministic waveforms by simple periodic functions
allows measurement system response to be reasonably well defined by examining the output
resulting from a few specific input waveforms, one of which is a simple periodic. As represented in
Table 2.1, a simple periodic waveform has a single, well-defined amplitude and a single frequency.
Before a generalized response of measurement systems can be determined, an understanding of the
method of representing complex signals in terms of simpler functions is necessary.

Periodic Signals

The fundamental concepts of frequency and amplitude can be understood through the observation and
analysis of periodic motions. Although sines and cosines are by definition geometric quantities related
to the lengths of the sides of a right triangle, for our purposes sines and cosines are best thought of as
mathematical functions that describe specific physical behaviors of systems. These behaviors are
described by differential equations that have sines and cosines as their solutions. As an example,
consider a mechanical vibration of a mass attached to a linear spring, as shown in Figure 2.9. For a
linear spring, the spring force F and displacement y are related by F = ky, where k is the constant of
proportionality, called the spring constant. Application of Newton’s second law to this system yields a
governing equation for the displacement y as a function of time ¢ as

2

dy
mﬁ—i-kyzo (2.7)
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Figure 2.9 Spring-mass system.

This linear, second-order differential equation with constant coefficients describes the motion of the
idealized spring mass system when there is no external force applied. The general form of the solution
to this equation is

y = Acos ot + Bsin ot (2.8)

where o = +/k/m. Physically we know that if the mass is displaced from the equilibrium point and
released, it will oscillate about the equilibrium point. The time required for the mass to finish one
complete cycle of the motion is called the period, and is generally represented by the symbol 7.

Frequency is related to the period and is defined as the number of complete cycles of the motion
per unit time. This frequency, f, is measured in cycles per second (Hz; 1 cycle/s = 1 Hz). The term o
is also a frequency, but instead of having units of cycles per second it has units of radians per second.
This frequency, w, is called the circular frequency since it relates directly to cycles on the unit circle,
as illustrated in Figure 2.10. The relationship among w, f, and the period, 7, is

ro 29
In Equation 2.8, the sine and cosine terms can be combined if a phase angle is introduced such that
y = Ccos (ot — ¢) (2.10a)
or
y = Csin (0t + ¢¥) (2.10b)

The values of C, ¢, and ¢* are found from the following trigonometric identities:
A cos ot + Bsin ot = \/A? + B2cos(ot — ¢)
A cos of 4 Bsin ot = \/A? + B*sin(wt + ¢*) (2.11)

B N A .
d):tan"z d)ztanlE d):E_d)



52

Chapter 2 Static and Dynamic Characteristics of Signals

y
wt=g
. P
sin wt
ot = ot wt=0
wt =27
wt=37w
¥
________ L e <—————y=1
| | | | \/|\
T El B 3m 2w 5w N ot
2 2 2 2
i, < N y=-1
y =sin ot

Figure 2.10 Relationship between cycles on the unit circle and circular frequency.

The size of the maximum and minimum displacements from the equilibrium position, or the value C,
is the amplitude of the oscillation. The concepts of amplitude and frequency are essential for the
description of time-dependent signals.

Frequency Analysis

Many signals that result from the measurement of dynamic variables are nondeterministic in nature
and have a continuously varying rate of change. These signals, having complex waveforms, present
difficulties in the selection of a measurement system and in the interpretation of an output signal.
However, it is possible to separate a complex signal, or any signal for that matter, into a number of
sine and cosine functions. In other words, any complex signal can be thought of as made up of sines
and cosines of differing periods and amplitudes, which are added together in an infinite trigono-
metric series. This representation of a signal as a series of sines and cosines is called a Fourier
series. Once a signal is broken down into a series of periodic functions, the importance of each
frequency can be easily determined. This information about frequency content allows proper choice
of a measurement system, and precise interpretation of output signals.

In theory, Fourier analysis allows essentially all mathematical functions of practical interest to
be represented by an infinite series of sines and cosines.’

2 A periodic function may be represented as a Fourier series if the function is piecewise continuous over the limits of
integration and the function has a left- and right-hand derivative at each point in the interval. The sum of the resulting series
is equal to the function at each point in the interval except points where the function is discontinuous.
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The following definitions relate to Fourier analysis:

1. A function y(¢) is a periodic function if there is some positive number T such that
y(t+T) = (1)
The period of y(t) is T. If both y(¢) and y,(¢) have period 7, then
ay, (1) + by, (1)
also has a period of T (a and b are constants).
2. A trigonometric series is given by
Ap+Ajcost+ Bysint + Arcos2t + By sin2t + ...

where A,, and B,, are the coefficients of the series.

Example 2.2

As a physical (instead of mathematical) example of frequency content of a signal, consider stringed
musical instruments, such as guitars and violins. When a string is caused to vibrate by plucking or
bowing, the sound is a result of the motion of the string and the resonance of the instrument. (The
concept of resonance is explored in Chapter 3.) The musical pitch for such an instrument is the
lowest frequency of the string vibrations. Our ability to recognize differences in musical instruments
is primarily a result of the higher frequencies present in the sound, which are usually integer
multiples of the fundamental frequency. These higher frequencies are called harmonics.

The motion of a vibrating string is best thought of as composed of several basic motions that
together create a musical tone. Figure 2.11 illustrates the vibration modes associated with a string
plucked at its center. The string vibrates with a fundamental frequency and odd-numbered harmonics,
each having a specific phase relationship with the fundamental. The relative strength of each harmonic
is graphically illustrated through its amplitude in Figure 2.11. Figure 2.12 shows the motion, which is
caused by plucking a string one-fifth of the distance from a fixed end. The resulting frequencies are
illustrated in Figure 2.13. Notice that the fifth harmonic is missing from the resulting sound.

Musical sound from a vibrating string is analogous to a measurement system input or output,
which contains many frequency components. Fourier analysis and frequency spectra provide
insightful and practical means of reducing such complex signals into a combination of simple
waveforms. Next, we explore the frequency and amplitude analysis of complex signals.

Available on the companion software site, Program Sound.viuses your computer’s microphone and
sound board to sample ambient sounds and to decompose them into harmonics (try humming a tune).

Fourier Series and Coefficients

A periodic function y(f) with a period T'= 21 is to be represented by a trigonometric series, such that
for any ¢,

y(t) =Ap+ Z (A, cos nt + B, sin nt) (2.12)

n=1
With y(#) known, the coefficients A,, and B,, are to be determined; this requires a well-established
mathematical procedure, but not one that we need to reinvent. For Ay to be determined,
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Figure 2.12 Motion of a string plucked one-fifth of the distance from a fixed end. (From N. H.
Fletcher and T. D. Rossing, The Physics of Musical Instruments. Copyright © 1991 by Springer-

Verlag, New York. Reprinted by permission.)

Log amplitude

of

Figure 2.13 Frequency spectrum for a string
plucked one-fifth of the distance from a fixed end.
(From N. H. Fletcher and T. D. Rossing, The
Physics of Musical Instruments. Copyright ©
1991 by Springer-Verlag, New York. Reprinted
by permission.)
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Equation 2.12 is integrated from —m to m:

w3 (o
™ n=1

T T

J y(t)dt = Ay J cos ntdt + B, J sin ntdl) (2.13)

—m

Since

T

J cosntdt =0 and J sinntdt = 0

Equation 2.13 yields

Ay = %Jj y(t)dt (2.14)

The coefficient A,, may be determined by multiplying Equation 2.12 by cos mf and integrating from
—r to . The resulting expression for A,, is

1 T
Ay = —J y(t)cos mtdt (2.15)
™ -
Similarly, multiplying Equation 2.12 by sin m# and integrating from — to w yields B,,,. Thus,
for a function y(¢) with a period 21, the coefficients of the trigonometric series representing y(7) are
given by the Euler formulas:

1 T

Ay = —

0 - J_WY( )

1 T

A, = —J y(t)cos ntdt (2.16)
™ —T
(" .

B, = —J y(t)sin ntdt
™ —T

The trigonometric series corresponding to y(¢) is called the Fourier series for y(f), and the
coefficients A, and B,, are called the Fourier coefficients of y(t). In the series for y(¢) in Equation
2.12, when n =1 the corresponding terms in the Fourier series are called fundamental and have the
lowest frequency in the series. The fundamental frequency for this Fourier series is w = 27 /2w = 1.
Frequencies corresponding to n=2, 3, 4, . . . are known as harmonics, with, for example, n =2
representing the second harmonic.

Functions represented by a Fourier series normally do not have a period of 2. However, the
transition to an arbitrary period can be affected by a change of scale, yielding a new set of Euler
formulas described below.

Fourier Coefficients for Functions Having Arbitrary Periods

The coefficients of a trigonometric series representing a function having an arbitrary period T are
given by the Euler formulas:
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1 T/2
Ay =— y(t)d[
T) 7p
2 T/2
A, = y(t)cos nwtdt (2.17)
T) 7p
2 T/2
B, = —J y(t)sin nwtdt
T) 7p
wheren=1,2,3, ... ,and T=2m/w is the period of y(¢). The trigonometric series that results from
these coefficients is a Fourier series and may be written as
y(t) =Ag + Z (A, cos not + B, sin nwt) (2.18)

n=1

A series of sines and cosines may be written as a series of either sines or cosines through the

introduction of a phase angle, so that the Fourier series in Equation 2.18,

o0
y(t) = Ao + Z (A, cos not + B, sin nwt)

may be written as

or

where

Even and Odd Functions

A function g(¢) is even if it is symmetric about the origin, which may be stated, for all ¢,

n=1

y(t) =Ao + ZOC: C, cos (nwt — &,,)

n=1

y(t) = Ag + Z Cysin (nwt + ¢;)
n=1

C, = /A2 + B?

B A
tan ¢, = A—" and tand; = B—"
n n

8(=1) = ¢(1)

A function A(t) is odd if, for all ¢,

h(—t) = —h(r)

(2.19)

(2.20)

(2.21)

For example, cos nt is even, while sin nt is odd. A particular function or waveform may be even,

odd, or neither even nor odd.
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Fourier Cosine Series

If y(7) is even, its Fourier series will contain only cosine terms:

y(t) = ZA,, cos q;n = ZA” cos not (2.22)
n=1 n=1

Fourier Sine Series

If y(7) is odd, its Fourier series will contain only sine terms

o0

= 27nt
y(t) = ZB,, sin T;n = ZB” sin nwt (2.23)
n=1 n=1

Note: Functions that are neither even nor odd result in Fourier series that contain both sine and cosine
terms.

Example 2.3
Determine the Fourier series that represents the function shown in Figure 2.14.
KNOWN T=10 (i.e., =5 to +5)
Ay =0
FIND The Fourier coefficients A, A,, . . . and By, By, . . .

SOLUTION Since the function shown in Figure 2.14 is odd, the Fourier series will contain only
sine terms (see Eq. 2.23):
= 27nt

y(t) = ZB,,sin T
n=1

2 (0 (2wt 3 . [2wnt
B, =10 US (—1)sm< 0 )dl+J0(l)51n< 10 )a’t}
2 [[10 (20 0 L [210, (2 5
10 | |2nm 10 )] " [2nm 10 /],
2

B,=5 {%[1 — cos(—n) — cos(nm) + 1]}

where

B, =

a1 Figure 2.14 Function represented by a Fourier
series in Example 2.3.
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The reader can verify that all A,, = 0 for this function. For even values of n, B,, is identically zero
and for odd values of n,

) 4 . 2’n’l+4 . 61T[+ 4 . 10Trl—|—
=—sin—1¢+-——sin—¢+—sin—~¢+---
= 0 320 T 0

2
Note that the fundamental frequency is w = %rad/ s and the subsequent terms are the odd-
numbered harmonics of w.

COMMENT Consider the function given by
yi)=1 0<t<5

We may represent y(¢) by a Fourier series if we extend the function beyond the specified range
(0-5) either as an even periodic extension or as an odd periodic extension. (Because we are
interested only in the Fourier series representing the function over the range 0 < ¢ < 5, we can
impose any behavior outside of that domain that helps to generate the Fourier coefficients!) Let’s
choose an odd periodic extension of y(#); the resulting function remains identical to the function
shown in Figure 2.14.

Example 2.4
Find the Fourier coefficients of the periodic function
y(t) = =5when —mw <t<0
y()=+5when0 <t <
and y(7 + 2m) = y(#). Plot the resulting first four partial sums for the Fourier series.
KNOWN Function y(#) over the range — to
FIND Coefficients A,, and B,

SOLUTION The function as stated is periodic, having a period of T =2 (i.e., ® = 1 rad/s), and
is identical in form to the odd function examined in Example 2.3. Since this function is also odd, the
Fourier series contains only sine terms, and

1 T 1 re0 T
B, = ;J y(#)sin notdt = - J (—5)sin ntdt + J (45)sin nldl}
—T LJ —1 0

which yields upon integration

Thus,
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Figure 2.15 First four partial sums of the Fourier series (20/)(sin ¢ + 1/3 sin 3¢ + 1/5 sin 5¢ + - - -)
in comparison with the exact waveform.
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which is zero for even n, and 20/nw for odd values of n. The Fourier series can then be written®
20 1 1
y(t) = — <sint + gsin3t + gsin5t + - )

Figure 2.15 shows the first four partial sums of this function, as they compare with the function
they represent. Note that at the points of discontinuity of the function, the Fourier series takes on the
arithmetic mean of the two function values.

COMMENT As the number of terms in the partial sum increases, the Fourier series approxi-
mation of the square wave function becomes even better. For each additional term in the series, the
number of “humps” in the approximate function in each half-cycle corresponds to the number of
terms included in the partial sum.

The Matlab™* program file FourCoef with the companion software illustrates the behavior of
the partial sums for several waveforms. The LabView®™ program Waveform-Generation.vi creates
signals from trigonometric series.

Example 2.5

As an example of interpreting the frequency content of a given signal, consider the output voltage
from a rectifier. A rectifier functions to “flip”” the negative half of an alternating current (AC) into
the positive half plane, resulting in a signal that appears as shown in Figure 2.16. For the AC signal
the voltage is given by

E(#) = 120 sin 1207t

The period of the signal is 1/60 s, and the frequency is 60 Hz.
KNOWN The rectified signal can be expressed as

E(t) = |120 sin 120|

FIND The frequency content of this signal as determined from a Fourier series analysis.

SOLUTION The frequency content of this signal can be determined by expanding the function
in a Fourier series. The coefficients may be determined using the Euler formulas, keeping in mind

3If we assume that the sum of this series most accurately represents the function y at ¢t = /2, then

o521 -eds)

or

This series approximation of 1 was first obtained by Gottfried Wilhelm Leibniz (1646-1716) in 1673 from geometrical
reasoning.

4Matlab is a registered trademark of Mathworks, Inc.
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that the rectified sine wave is an even function. The coefficient A is determined from

1 T/2 2 1/120
Ay =2|= Hdt| = —— 120 sin 1207 tdt
=2z, 0| = g, 0w

with the result that

The remaining coefficients in the Fourier series may be expressed as

4 (T2 2nmt
Ay = ?Jo y(t)cosTdt

4 (1120
J 120 sin 120 ¢ cos nartdt

~1/60 ),
For values of n that are odd, the coefficient A,, is identically zero. For values of n that are even, the
result is
120 / -2 2
A, =— 2.24
"om (n -1 + n-+ 1) (224)

The Fourier series for the function |120 sin 1207r¢| is
76.4 — 50.93 cos 240t — 10.10 cos 480wt — 4.37 cos 720ms . ..

Figure 2.17 shows the amplitude versus frequency content of the rectified signal, based on a Fourier
series expansion.

COMMENT The frequency content of a signal is determined by examining the amplitude of
the various frequency components that are present in the signal. For a periodic mathematical
function, expanding the function in a Fourier series and plotting the amplitudes of the contributing
sine and cosine terms can illustrate these frequency contributions.
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The LabView program WaveformGeneration.vi follows Examples 2.4 and 2.5 and provides the
spectra for a number of signals. Several Matlab programs are provided also (e.g., FourCoef,
FunSpect, DataSpect) to explore the concept of superposition of simple periodic signals to create a
more complex signal. The software allows you to create your own functions and then explore their
frequency and amplitude content.

2.5 FOURIER TRANSFORM AND THE FREQUENCY SPECTRUM

The previous discussion of Fourier analysis demonstrates that an arbitrary, but known, function can
be expressed as a series of sines and cosines known as a Fourier series. The coefficients of the
Fourier series specify the amplitudes of the sines and cosines, each having a specific frequency.
Unfortunately, in most practical measurement applications the input signal may not be known in
functional form. Therefore, although the theory of Fourier analysis demonstrates that any function
can be expressed as a Fourier series, the analysis presented so far has not provided a specific
technique for analyzing measured signals. Such a technique for the decomposition of a measured
dynamic signal in terms of amplitude and frequency is now described.

Recall that the dynamic portion of a signal of arbitrary period can be described from Equation 2.17.

2 T/2
A, = —J ¥(t) cos notdt

T) rp
(2.25)

9 (T/2
B, = —J y(¢) sin nwtdt
T ) 1p
where the amplitudes A,, and B,, correspond to the nth frequency of a Fourier series.
If we consider the period of the function to approach infinity, we can eliminate the constraint on
Fourier analysis that the signal be a periodic waveform. In the limit as 7 approaches infinity the
Fourier series becomes an integral. The spacing between frequency components becomes
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infinitesimal. This means that the coefficients A,, and B,, become continuous functions of frequency
and can be expressed as A(w) and B(w) where

Alw) = J y(t)cos tdt
> (2.26)
B(w) = J y(#)sin wtdt
—00
The Fourier coefficients A(w) and B(w) are known as the components of the Fourier transform
of y(1).
To develop the Fourier transform, consider the complex number defined as
Y(w) = A(w) — iB(w) (2.27)
where i = v/—1. Then from Equations 2.26 it follows directly that
Y(o) = J y(t)(cos ot — isin wt)dt (2.28)
Introducing the identity
e = cosh — isinf
leads to
Y(w) = J y(t)e ™ dt (2.29)

Alternately, recalling from Equation 2.9 that the cyclical frequency f, in hertz, is related to the
circular frequency and its period by

[0 1
U T
Equation 2.29 is rewritten as
0 . .
Y(f) = J y(t)e 21t (2.30)

Equation 2.29 or 2.30 provides the two-sided Fourier transform of y(t). If y(¢) is known, then its
Fourier transform will provide the amplitude-frequency properties of the signal, y(#), which
otherwise are not readily apparent in its time-based form. We can think of the Fourier transform
as a decomposition of y(7) into amplitude versus frequency information. This property is analogous
to the optical properties displayed by the prism in Figure 2.8.

If Y(f) is known or measured, we can recover the signal y(¢) from

o= [ e (231)

Equation 2.31 describes the inverse Fourier transform of Y(f). It suggests that given the
amplitude-frequency properties of a signal we can reconstruct the original signal y(¢). The Fourier
transform is a complex number having a magnitude and a phase,

Y(f) = [Y(F)|e®D = A(f) — iB(f) (2.32)
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The magnitude of Y(f), also called the modulus, is given by

YNl = \/RE[Y(f)]Z+Im[Y(f)]2 (2.33)

and the phase by

~y Im[Y(f)]
&(f) = tan”" (2.34)
Re[Y(f)]
As noted earlier, the Fourier coefficients are related to cosine and sine terms. Then the
amplitude of y(7) can be expressed by its amplitude-frequency spectrum, or simply referred to as its
amplitude spectrum, by

C(f) = \A(f)” +B(f)’ (2.35)
and its phase spectrum by

o) = tan~! i(f% (2.36)

Thus the introduction of the Fourier transform provides a method to decompose a measured
signal y(¢) into its amplitude-frequency components. Later we will see how important this method is,
particularly when digital sampling is used to measure and interpret an analog signal.

A variation of the amplitude spectrum is the power spectrum, which is given by magnitude
C(f )2 /2. Further details concerning the properties of the Fourier transform and spectrum functions
can be found in Bracewell (2) and Champeney (3). An excellent historical account and discussion of
the wide-ranging applications are found in Bracewell (4).

Discrete Fourier Transform

As a practical matter, it is likely that if y(¢) is measured and recorded, then it will be stored in the
form of a discrete time or digital signal. A computer-based data-acquisition system is the most
common method for recording data. These data are acquired over a finite period of time rather than
the mathematically convenient infinite period of time. A discrete data set containing N values
representing a time interval from O to #; will accurately represent the signal provided that the
measuring period has been properly chosen and is sufficiently long. We deal with the details for such
period selection in a discussion on sampling concepts in Chapter 7. The preceding analysis is now
extended to accommodate a discrete series.

Consider the time-dependent portion of the signal y(¢), which is measured N times at equally
spaced time intervals &¢. In this case, the continuous signal y(7) is replaced by the discrete time signal
given by y(rd¢) for r=0, 1, ..., (N—1). In effect, the relationship between y(¢) and {y(rd¢)} is
described by a set of impulses of an amplitude determined by the value of y(¢) at each time step rd¢.
This transformation from a continuous to discrete time signal is described by

{y(rde)} = y(1)d(t —rdt) r=0,1,2,...,N—1 (2.37)

where d(¢ — 1d¢) is the delayed unit impulse function and {y(r8¢) } refers to the discrete data set given
by y(rdt) for r=0,1,2,...,N—1.
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An approximation to the Fourier transform integral of Equation 2.30 for use on a discrete data
set is the discrete Fourier transform (DFT). The DFT is given by

N—-1

2 —i2mrk
Y(fk)ZNZY(VSl)e Zark/N
r=0

2.38
£y = kof k:o,l,z,...,g—l) (2.3%)

df = 1/Ndt

Here, 8fis the frequency resolution of the DFT with each value of Y(f;) corresponding to frequency
increments of df. In developing Equation 2.38 from Equation 2.30, ¢ was replaced by rd¢ and f
replaced by k/Ndt. The factor 2/N scales the transform when it is obtained from a data set of finite
length (use 1/N for k=0 only).

The DFT as expressed by Equation 2.38 yields N/2 discrete values of the Fourier transform of
{y(r&1)}. This is the so-called one-sided or half-transform as it assumes that the data set is one-sided,
extending from O to 75 and it returns only positive valued frequencies.

Equation 2.38 performs the numerical integration required by the Fourier integral. Equations
2.35,2.36, and 2.38 demonstrate that the application of the DFT on the discrete series of data, y(rd¢),
permits the decomposition of the discrete data in terms of frequency and amplitude content. Hence,
by using this method a measured discrete signal of unknown functional form can be reconstructed as
a Fourier series through Fourier transform techniques.

Software for computing the Fourier transform of a discrete signal is included in the companion
software. The time required to compute directly the DFT algorithm described in this section increases at a
rate that is proportional to N 2. This makes it inefficient for use with data sets of large N. A fast algorithm
for computing the DFT, known as the fast Fourier transform (FFT), was developed by Cooley and Tukey
(5). This method is widely available and is the basis for most Fourier analysis software packages. The
FFT algorithm is discussed in most advanced texts on signal analysis (6, 7). The accuracy of discrete
Fourier analysis depends on the frequency content® of y(¢) and on the Fourier transform frequency
resolution. An extensive discussion of these interrelated parameters is given in Chapter 7.

Example 2.6

Convert the continuous signal described by y(#) = 10 sin 27¢ V into a discrete set of eight numbers
using a time increment of 0.125 s.

KNOWN The signal has the form y(7) = C, sin2wft
where

fi=w1/2m=1Hz
C(f, = 1Hz) = 10V
&(f1) =0

0t =0.125s

N=38

5 The value of 1/8¢ must be more than twice the highest frequency contained in y(f).
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Table 2.2 Discrete Data Set for y(z) = 10 sin 2t

r y(rdt) r y(rdt)

0 0.000 4 0.000
1 7.071 5 —7.071
2 10.000 6 —10.000
3 7.071 7 —7.071

FIND {y(rdf)}

SOLUTION Measuring y(t) every 0.125 s over 1 s produces the discrete data set {y(#d7)} given
in Table 2.2. Note that the measurement produces four complete periods of the signal and that the
signal duration is given by Ndf=1 s. The signal and its discrete representation as a series of
impulses in a time domain are plotted in Figure 2.18. See Example 2.7 for more on how to create this
discrete series by using common software.
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Figure 2.18 Representation of a simple periodic function as a discrete signal.
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Example 2.7
Estimate the amplitude spectrum of the discrete data set in Example 2.6.

KNOWN Discrete data set {y(rd7)} of Table 2.2

81 =0.1255
N=28
FIND C(f)

SOLUTION We can use either the Matlab Fourier transform software (file FunSpect), the
LabView program WaveformGeneration, or a spreadsheet program to find C(f) (see the Comment
for details). For N= 8, a one-sided Fourier transform algorithm will return N/2 values for C(f),
with each successive amplitude corresponding to a frequency spaced at intervals of
1/Ndt=0.125 Hz. The amplitude spectrum is shown in Figure 2.19 and has a spike of 10 V
centered at a frequency of 1 Hz.

COMMENT The discrete series and the amplitude spectrum are easily reproduced by using the
Matlab program file called FunSpect, the LabView program Waveform-Generation, or spreadsheet
software. The Fourier analysis capability of this software can also be used on an existing data set,
such as with the Matlab program file called DataSpect.

The following discussion of Fourier analysis using a spreadsheet program makes specific
references to procedures and commands from Microsoft™ Excel;6 similar functions are available in
other engineering analysis software. When a spreadsheet is used as shown, the N=8 data point
sequence {y(rd¢)} is created as in column 3. Under Data/Data Analysis, select Fourier Analysis. At
the prompt, define the N cells containing {y(r8¢)} and define the cell destination (column 4). The
analysis executes the DFT of Equation 2.38 by using the FFT algorithm, and it returns N complex
numbers, the Fourier coefficients Y(f) of Equation 2.32. The analysis returns the two-sided
transform. However, a finite data set is one-sided, so we are interested in only the first N/2 Fourier
coefficients of column 4 (the second N/2 coefficients just mirror the first N/2). To find the coefficient
magnitude as given in Equation 2.33, compute or use the function IMABS (= \/A? + B?) on each of
the first N/2 coefficients, and then scale each coefficient magnitude by dividing by N/2 (for r =0,

S Microsoft™ and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.
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divide by N). The N/2 scaled coefficients (column 5) now represent the discrete amplitudes
corresponding to N/2 discrete frequencies (column 6) extending from f=0 to (N/2 — 1)/N&¢t Hz,
with each frequency separated by 1/Ndt.

Column

1 2 3 4 5 6
r t(s) y(rdt) Y(/)=A - Bi c f(Hz)
0 0 0 0 0 0
1 0.125 7.07 —40i 10 1
2 0.25 10 0 0 2
3 0.375 7.07 0 0 3
4 0.5 0 0

5 0.625 -7.07 0

6 0.75 —10 0

7 0.875 -7.07 40i

These same operations in Matlab are as follows:

t=1/8:1/8: 1 defines time from 0.125 s to 1 s in increments of 0.125 s
y = 10x*sin(2xpix?) creates the discrete time series with N =8

ycoef = fft(y) performs the Fourier analysis; returns N coefficients

¢ =coef/4 divides by N/2 to scale and determine the magnitudes

When signal frequency content is not known prior to conversion to a discrete signal, it is necessary to
experiment with the parameters of frequency resolution, N and &z, to obtain an unambiguous
representation of the signal. Techniques for this are explored in Chapter 7.

Analysis of Signals in Frequency Space

Fourier analysis is a tool for extracting details about the frequencies that are present in a
signal. Frequency analysis is routinely used in vibration analysis and isolation, determining
the condition of bearings, and a wide variety of acoustic applications. An example from
acoustics follows.

Example 2.8

Examine the frequency spectra of representative brass and woodwind instruments to illustrate why
the characteristic sound of these instruments is so easily distinguished.

KNOWN Figures 2.20 and 2.21 provide a representative frequency spectrum for a clarinet, a
woodwind instrument having a reed, and brass instruments.
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Figure 2.20 Frequency spectrum for a clarinet playing the note one whole tone below middle C.
(Adapted from Campbell, D.M., Nonlinear Dynamics of Musical Reed and Brass Wind Instruments,
Contemporary Physics, 40(6) November 1999, pages 415-431.)

DISCUSSION Figure 2.20 displays the frequency spectrum for a clarinet playing a B-flat. The
base tone, f, is at 231 Hz, with the harmonics having frequencies of 3f,, 5f,, etc. Contrast this with
the frequency spectrum, shown in Figure 2.21, of the first few seconds of Aaron Copland’s *““Fanfare
for the Common Man,” which is played by an ensemble of brass instruments, like French horns, and
has a fundamental frequency of approximately 700 Hz. This spectrum contains harmonics that are

2f0’ 3f01 4f07 etC.
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COMMENT Fourier analysis and the examination of a signal’s frequency content have myriads
of applications. In this example, we demonstrated through frequency analysis a clear reason why
clarinets and trumpets sound quite different. The presence of only odd harmonics, or both even and
odd harmonics, is a very recognizable difference, easily perceived by the human ear.

2.6 SUMMARY

This chapter has provided a fundamental basis for the description of signals. The capabilities of a
measurement system can be properly specified when the nature of the input signal is known. The
descriptions of general classes of input signals will be seen in Chapter 3 to allow universal
descriptions of measurement system dynamic behavior.

Any signal can be represented by a static magnitude and a series of varying frequencies and
amplitudes. As such, measurement system selection and design must consider the frequency content
of the input signals the system is intended to measure. Fourier analysis was introduced to allow a
precise definition of the frequencies and the phase relationships among various frequency compo-
nents within a particular signal. In Chapter 7, it will be shown as a tool for the accurate interpretation
of discrete signals.

Signal characteristics form an important basis for the selection of measurement systems and the
interpretation of measurement system output. In Chapter 3 these ideas are combined with the
concept of a generalized set of measurement system behaviors. The combination of generalized
measurement system behavior and generalized descriptions of input waveforms provides for an
understanding of a wide range of instruments and measurement systems.
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NOMENCLATURE

f  frequency, in Hz (") N total number of discrete data points; integer
k  spring constant (mt ?) T period (7)

m  mass (m) U unit step function

t time (¢) Y  Fourier transform of y

y  dependent variable o angle (rad)

vy discrete data points B angle (rad)

A amplitude 8f frequency resolution (")

B amplitude ot sample time increment ()

C amplitude ¢ phase angle (rad)

F  force (mlt™?) o circular frequency in rad/s ()

PROBLEMS

2.1

2.2
2.3

24

2.5

Define the term “‘signal’ as it relates to measurement systems. Provide two examples of static and
dynamic input signals to particular measurement systems.

List the important characteristics of input and output signals and define each.
Determine the average and rms values for the function

y(t) = 25 + 10 sin 6t

over the time periods (a) 0to 0.1, (b) 0.4t00.5 s, (c) Oto 1/3 s, and (d) 0 to 20 s. Comment on the nature
and meaning of the results in terms of analysis of dynamic signals.

The following values are obtained by sampling two time-varying signals once every 0.4 s:

! y1(®) y2(2) t y1(?) y2()

0 0 0

04 11.76 15.29 24 —11.76 —15.29
0.8 19.02 24.73 2.8 —-19.02 —24.73
12 19.02 24.73 3.2 —19.02 —24.73
1.6 11.76 15.29 3.6 —11.76 —15.29
2.0 0 0 4.0 0 0

Determine the mean and the rms values for this discrete data. Discuss the significance of the rms
value in distinguishing these signals.

A moving average is an averaging technique that can be applied to an analog, discrete time, or digital
signal. A moving average is based on the concept of windowing, as illustrated in Figure 2.22. That
portion of the signal that lies inside the window is averaged and the average values plotted as a
function of time as the window moves across the signal. A 10-point moving average of the signal in
Figure 2.22 is plotted in Figure 2.23.

a. Discuss the effects of employing a moving average on the signal depicted in Figure 2.22.

b. Develop a computer-based algorithm for computing a moving average, and determine the effect of

the width of the averaging window on the signal described by

y(t) = sin 5t + cos 11¢
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Figure 2.22 Moving average and windowing.

This signal should be represented as a discrete time signal by computing the value of the function at
equally spaced time intervals. An appropriate time interval for this signal would be 0.05 s. Examine
the signal with averaging windows of 4 and 30 points.

2.6 The data file in the companion software noisy.txt provides discrete time-varying signal that contains
random noise. Apply a 2-, 3-, and 4-point moving average (see Problem 2.5) to these data, and plot
the results. How does the moving average affect the noise in the data? Why?

2.7 Determine the value of the spring constant that would result in a spring-mass system that would

execute one complete cycle of oscillation every 2.7 s, for a mass of 0.5 kg. What natural frequency
does this system exhibit in radians/second?

14

Figure 2.23 Effect of moving average on signal illustrated in Figure 2.22.
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2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

A spring with k& = 5000 N/cm supports a mass of 1 kg. Determine the natural frequency of this system
in radians/second and hertz.

For the following sine and cosine functions determine the period, the frequency in hertz, and the
circular frequency in radians/second. (Note: 7 represents time in seconds).

a. sin 10m#/5

b. 8 cos 8¢

c. sin Snmt forn=1 to oo

Express the following function in terms of (a) a cosine term only and (b) a sine term only:
y(¢) = 5sin 4t 4 3 cos 4¢

Express the function

y(¢) = 4 sin 2wt + 15 cos 27wt

in terms of (a) a cosine term only and (b) a sine term only.
Express the Fourier series given by

i il sinn t+4Tmcosn t
—_— m —_— m
— 6 6

using only cosine terms.
The nth partial sum of a Fourier series is defined as

Ag+Ajcoswit+ By sinwif+ -+ A, coswy? + B, sin w,#

For the third partial sum of the Fourier series given by
* 3n S5n
y(t) = > =—sinnt + —-cos nt
n=1 2 3
a. What is the fundamental frequency and the associated period?
b. Express this partial sum as cosine terms only.
For the Fourier series given by

X\ 2mn  nw 120nm . nw
() =4+ ~ _—cos—t+——sin—-+
; 10 %% 30 g

where 7 is time in seconds:

a. What is the fundamental frequency in hertz and radians/second?

b. What is the period T associated with the fundamental frequency?

c. Express this Fourier series as an infinite series containing sine terms only.

Find the Fourier series of the function shown in Figure 2.24, assuming the function has a period of
2. Plot an accurate graph of the first three partial sums of the resulting Fourier series.

y(t)

|
INIER =
MJE]

¢
1 Figure 2.24 Function to be expanded in a Fourier series in
Problem 2.15.




2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23
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Figure 2.25 Sketch for Problem 2.16.

Determine the Fourier series for the function

yt)=tfor—5<tr<5

by expanding the function as an odd periodic function with a period of 10 units, as shown in
Figure 2.25. Plot the first, second, and third partial sums of this Fourier series.
a. Show that y(¢) = *(—m < t < m), y(t + 2m) = y(¢) has the Fourier series

2

(1) T 4 t 1 2t + : 3t—+
= - — COS7 ——cCOS —COS —
Y 3 4 9

b. By setting ¢ = in this series, show that a series approximation for , first discovered by Euler,
results as

i1_++1+1+ P
Zap? 47916 "6

Determine the Fourier series that represents the function y(#) where

y(t)=tfor0< <1

and

y(t)=2—tfor0O<t<1
Clearly explain your choice for extending the function to make it periodic.
Classify the following signals as static or dynamic, and identify any that may be classified as periodic:
a. sin 107 V
b. 542 cos 2t m
c. 5ts
d2V

A particle executes linear harmonic motion around the point x =0. At time zero the particle is at
the point x =0 and has a velocity of 5 cm/s. The frequency of the motion is 1 Hz. Determine: (a)
the period, (b) the amplitude of the motion, (c) the displacement as a function of time, and (d) the
maximum speed.

Define the following characteristics of signals: (a) frequency content, (b) amplitude, (c) magnitude,
and (d) period.

Construct an amplitude spectrum plot for the Fourier series in Problem 2.16 for y(f) = ¢. Discuss the
significance of this spectrum for measurement or interpretation of this signal. Hint: The plot can be
done by inspection or by using software such as DataSpect.

Construct an amplitude spectrum plot for the Fourier series in Problem 2.17 for y(7) = 2. Discuss the
significance of this spectrum for selecting a measurement system. Hint: The plot can be done by
inspection or by using software such as DataSpect or WaveformGeneration.vi.
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2.24

2.25

2.26

2.27

2.28

2.29

2.30

Sketch representative waveforms of the following signals, and represent them as mathematical
functions (if possible):

. The output signal from the thermostat on a refrigerator.

. The electrical signal to a spark plug in a car engine.

. The input to a cruise control from an automobile.

. A pure musical tone (e.g., 440 Hz is the note A).

. The note produced by a guitar string.

-0 2 6 T oW

. AM and rMm radio signals.
Represent the function

e(t) = 5sin31.4¢ + 2 sin 44t

as a discrete set of N =128 numbers separated by a time increment of (1/N). Use an appropriate
algorithm to construct an amplitude spectrum from this data set. (Hint: A spreadsheet program or the
program file DataSpect will handle this task.)

Repeat Problem 2.25 using a data set of 256 numbers at 8¢ = (1/N) and 8¢ = (1/2N) seconds. Compare
and discuss the results.

A particular strain sensor is mounted to an aircraft wing that is subjected to periodic wind gusts. The
strain measurement system indicates a periodic strain that ranges from 3250 x 10~ in./in. to
4150 x 107° in./in. at a frequency of 1 Hz. Determine:

a. The average value of this signal.

b. The amplitude and the frequency of this output signal when expressed as a simple periodic
function.

c. A one-term Fourier series that represents this signal.
d. Construct an amplitude spectrum plot for the output signal.

For a dynamic calibration involving a force measurement system, a known force is applied to a
sensor. The force varies between 100 and 170 N at a frequency of 10 rad/s. State the average (static)
value of the input signal, its amplitude, and its frequency. Assuming that the signal may be
represented by a simple periodic waveform, express the signal as a one-term Fourier series and create
an amplitude spectrum from an equivalent discrete time series.

A displacement sensor is placed on a dynamic calibration rig known as a shaker. This device

produces a known periodic displacement that serves as the input to the sensor. If the known
displacement is set to vary between 2 and 5 mm at a frequency of 100 Hz, express the input signal as a
one-term Fourier series. Plot the signal in the time domain, and construct an amplitude spectrum plot.

Consider the upward flow of water and air in a tube having a circular cross section, as shown in Figure
2.26. If the water and air flow rates are within a certain range, there are slugs of liquid and large gas
bubbles flowing upward together. This type of flow is called “‘slug flow.” The data file gas_
liquid_data.txt with the companion software contains measurements of pressure made at the wall of
a tube in which air and water were flowing. The data were acquired at a sample frequency of 300 Hz.
The average flow velocity of the air and water is 1 m/s.

a. Construct an amplitude spectrum from the data, and determine the dominant frequency.

b. Using the frequency information from part a, determine the length L shown in the drawing in
Figure 2.26. Assume that the dominant frequency is associated with the passage of the bubbles
and slugs across the pressure sensor.
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Figure 2.26 Upward gas-liquid flow: slug flow regime.

The file sunspot.txt contains data from monthly observations of sunspot activity from January 1746
to September 2005. The numbers are a relative measure of sunspot activity.

a. Using the companion software program Dataspect, plot the data and create an amplitude spectrum.
b. From the spectrum, identify any cycles present in the sunspot activity and determine the period(s).

c. The Dalton minimum describes a period of low sunspot activity lasting from about 1790 to 1830;
this is apparent in your plot of the data. The Dalton minimum occurred near the end of the Little
Ice Age and coincided with a period of lower-than-average global temperatures. Research the
‘“year without a summer” and its relationship to the Dalton minimum.

Classify the following signals as completely as possible:
a. Clock face having hands.
b. Morse code.
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Figure 2.27 Spectrum for Problem 2.33.

¢. Musical score, as input to a musician.
d. Flashing neon sign.

e. Telephone conversation.

f. Fax transmission.

Describe the signal defined by the amplitude spectrum and its phase shift of Figure 2.27 in terms of its
Fourier series. What is the frequency resolution of these plots? What was the sample time increment used?

For the even-functioned triangle wave signal defined by
y(t)=@C/Tt+C —-T/2<t<0
y(t) = (-4C/T)t+C 0<t<T/2
where C is an amplitude and T is the period:

a. Show that this signal can be represented by the Fourier series

4C(1 — cosm'r) 2wt
Z c0s —

b. Expand the first three nonzero terms of the series. Identify the terms containing the fundamental
frequency and its harmonics.

¢. Plot each of the first three terms on a separate graph. Then plot the sum of the three. For this, set
C=1 Vand T=1 s. Note: The program FourCoef or Waveform Generation is useful in this
problem.

d. Sketch the amplitude spectrum for the first three terms of this series, first separately for each term
and then combined.

Figure 2.15 illustrates how the inclusion of higher frequency terms in a Fourier series refine the

accuracy of the series representation of the original function. However, measured signals often

display an amplitude spectrum for which amplitudes decrease with frequency. Using Figure 2.15 as a

resource, discuss the effect of high-frequency, low-amplitude noise on a measured signal. What

signal characteristics would be unaffected? Consider both periodic and random noise.

The program Sound.vi samples the ambient room sounds using your laptop computer microphone

and sound board and returns the amplitude spectrum of the sounds. Experiment with different sounds

(e.g., tapping, whistling, talking, humming) and describe your findings in a brief report.



Chapter 3

Measurement System Behavior

3.1 INTRODUCTION

This chapter introduces the concept of simulating measurement system behavior through mathe-
matical modeling. From such a modeling study, the important aspects of measurement system
response that are pertinent to system design and specification can be obtained. Each measurement
system responds differently to different types of input signals and to the dynamic content within
these signals. So a particular system may not be suitable for measuring certain signals or at least
portions of some signals. Yet a measurement system always provides information regardless of how
well (or poorly!) this reflects the actual input signal being measured. To explore this concept, this
chapter discusses system response to certain types of input signals.

Throughout this chapter, we use the term ‘“‘measurement system’ in a generic sense. It refers
either to the response of the measurement system as a whole or to the response of any component or
instrument that makes up that system. Either is important, and both are interpreted in similar ways.
Each individual stage of the measurement system has its own response to a given input. The overall
system response is affected by the response of each stage of the complete system.

Upon completion of this chapter, the reader will be able to

e relate generalized measurement system models to dynamic response,

¢ describe and analyze models of zero-, first-, and second-order measurement systems and
predict their general behavior,

e calculate static sensitivity, magnitude ratio, and phase shift for a range of systems and input
waveforms,

« state the importance of phase linearity in reducing signal distortion,
« analyze the response of a measurement system to a complex input waveform, and

¢ determine the response of coupled measurement systems.

3.2 GENERAL MODEL FOR A MEASUREMENT SYSTEM

As pointed out in Chapter 2, all input and output signals can be broadly classified as being static,
dynamic, or some combination of the two. For a static signal, only the signal magnitude is needed to
reconstruct the input signal based on the indicated output signal. Consider measuring the length of a
board using a ruler. Once the ruler is positioned, the indication (output) of the magnitude of length is
immediately displayed because the board length (input) does not change over the time required to

79



80 Chapter3 Measurement System Behavior

make the measurement. Thus, the board length represents a static input signal that is interpreted
through the static magnitude output indicated by the ruler. But consider measuring the vibration of a
motor. Vibration signals vary in amplitude and time, and thus are a dynamic input signal to the
measuring instrument. But the ruler is not very useful in determining this dynamic information, so
we need an instrument that can follow the input time signal faithfully.

Dynamic Measurements

For dynamic signals, signal amplitude, frequency, and general waveform information is needed to
reconstruct the input signal. Because dynamic signals vary with time, the measurement system must
be able to respond fast enough to keep up with the input signal. Further, we need to understand how
the input signal is applied to the sensor because that plays a role in system response. Consider the
time response of a common bulb thermometer for measuring body temperature. The thermometer,
initially at approximately room temperature, is placed under the tongue. But even after several
seconds, the thermometer does not indicate the expected value of body temperature and its display
continually changes. What has happened? Surely your body temperature is not changing. If you
were to use the magnitude of the output signal after only several seconds, you would come to a false
conclusion about your health! Experience shows that within a few minutes, the correct body
temperature will be indicated; so we wait. Experience also tells us that if we need accurate
information faster, we would need a different type of temperature sensor. In this example, body
temperature itself is constant (static) during the measurement, but the input signal to the
thermometer is suddenly changed from room temperature to body temperature, that is, mathemati-
cally, a step change. This is a dynamic event as the thermometer (the measurement system) sees it!
The thermometer must gain energy from its new environment to reach thermal equilibrium, and this
takes a finite amount of time. The ability of any measurement system to follow dynamic signals is a
characteristic of the design of the measuring system components.

Now consider the task of assessing the ride quality of an automobile suspension system. A
simplified view for one wheel of this system is shown in Figure 3.1. As a tire moves along the road,
the road surface provides the time-dependent input signal, F(¢), to the suspension at the tire contact

Automobile
|~ structure
Mass y(t)
Mass T y(t)
A Output signal
. L Tire
| Velocity
—~— Tire
TF(t)
Input signal
Forward profile Side profile

Figure 3.1 Lumped parameter model of an automobile suspension showing input and output signals.
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¥(0)

Initial conditions

Input signal Output signal . .
—>pu z Mez;:tr:rr:em e Figure 3.2 Measurement system operation on

F(t) operation ¥(@) an input signal, F(¢), provides the output
signal, y(?).

point. The motion sensed by the passengers, y(¢), is a basis for the ride quality and can be described
by a waveform that depends on the input from the road and the behavior of the suspension. An
engineer must anticipate the form of the input signals so as to design the suspension to attain a
desirable output signal.

Measurement systems play a key role in documenting ride quality. But just as the road and car
interact to provide ride quality, the input signal and the measurement system interact in creating the
output signal. In many situations, the goal of the measurement is to deduce the input signal based on
the output signal. Either way, we see that it is important to understand how a measurement system
responds to different forms of input signals.

The general behavior of measurement systems for a few common inputs defines, for the most part, the
input—output signal relationships necessary to correctly interpret measured signals. We will show that only
a few measurement system characteristics (specifications) are needed to predict the system response.

With the previous discussion in mind, consider that the primary task of a measurement system is
to sense an input signal and to translate that information into a readily understandable and
quantifiable output form. We can reason that a measurement system performs some mathematical
operation on a sensed input. In fact, a general measurement system can be represented by a
differential equation that describes the operation that a measurement system performs on the input
signal. This concept is illustrated in Figure 3.2. For an input signal, F(7), the system performs some
operation that yields the output signal, y(¢). Then we must use y(¢) to infer F(¢). Therefore, at least a
qualitative understanding of the operation that the measurement system performs is imperative to
correctly interpret the input signal. We will propose a general mathematical model for a measure-
ment system. Then, by representing a typical input signal as some function that acts as an input to the
model, we can study just how the measurement system would behave by solving the model equation.
In essence, we perform the analytical equivalent of a system calibration. This information can then
be used to determine those input signals for which a particular measurement system is best suited.

Measurement System Model

In this section, we apply lumped parameter modeling to measurement systems. In lumped parameter
modeling, the spatially distributed physical attributes of a system are modeled as discrete elements.
The automotive suspension model discussed earlier is a lumped parameter model. As a simpler
example, the mass, stiffness, and damping of a coil spring are properties spatially distributed along
its length, but these can be replaced by the discrete elements of a mass, spring, and damper. An
advantage is that the governing equations of the models reduce from partial to ordinary differential
equations.

Consider the following general model of a measurement system, which consists of an nth-order
linear ordinary differential equation in terms of a general output signal, represented by variable y(?),
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and subject to a general input signal, represented by the forcing function, F(¢):

dny dnfly dy
an%+an—1W+---+ala+aoy:F(1) (3.1)
where
dmx dmflx dx
F(t) :bmW‘i’bm—1W+"'+b1a+box m S n
The coefficients ag, a;, as, . . . ,a,and by, by, . . . , b, represent physical system parameters whose

properties and values depend on the measurement system itself. Real measurement systems can be
modeled this way by considering their governing system equations. These equations are generated
by application of pertinent fundamental physical laws of nature to the measurement system. Our
discussion is limited to measurement system concepts, but a general treatment of systems can be
found in text books dedicated to that topic (1-3).

Example 3.1

As an illustration, consider the seismic accelerometer depicted in Figure 3.3a. Various configura-
tions of this instrument are used in seismic and vibration engineering to determine the motion of
large bodies to which the accelerometer is attached. Basically, as the small accelerometer mass
reacts to motion, it places the piezoelectric crystal into compression or tension, causing a surface
charge to develop on the crystal. The charge is proportional to the motion. As the large body moves,
the mass of the accelerometer will move with an inertial response. The stiffness of the spring, £,
provides a restoring force to move the accelerometer mass back to equilibrium while internal
frictional damping, ¢, opposes any displacement away from equilibrium. A model of this

+ Output signal

Piezoelectric (voltage)

crystal

% Large body g

(a) Piezoelectric accelerometer attached to large body

l M;Lss m yf
|

Spring J_ Damper T T
1 k |T, A wurage ky-2) o)

(b) Representation using mass, (c) Free-body diagram
spring, and damper

Figure 3.3 Lumped parameter model of accelerometer (Ex. 3.1).
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measurement device in terms of ideal lumped elements of stiffness, mass, and damping is given in
Figure 3.3b and the corresponding free-body diagram in Figure 3.3c. Let y denote the position of the
small mass within the accelerometer and x denote the displacement of the body. Solving Newton’s
second law for the free body yields the second-order linear, ordinary differential equation

d*y  dy dx

e L ky = =

M T Ca T

Since the displacement y is the pertinent output from the accelerometer due to displacement x, the
equation has been written such that all output terms, that is, all the y terms, are on the left side. All
other terms are to be considered as input signals and are placed on the right side. Comparing this to
the general form for a second-order equation (7 =2; m = 1) from Equation 3.1,

+ kx

d*y dy dx

2

a-—=+a;—+ agy = by — + bpx

ap TG Ay =0g

we can see that a, =m, a; = by = ¢, ay= by = k, and that the forces developed due to the velocity and
displacement of the body become the inputs to the accelerometer. If we could anticipate the waveform of

x, for example, x(7) = X, sin w?, we could solve for y(#), which gives the measurement system response.

Fortunately, many measurement systems can be modeled by zero-, first-, or second-order linear,
ordinary differential equations. More complex systems can usually be simplified to these lower
orders. Our intention here is to attempt to understand how systems behave and how such response is
closely related to the design features of a measurement system,; it is not to simulate the exact system
behavior. The exact input—output relationship is found from calibration. But modeling guides us in
choosing specific instruments and measuring methods by predicting system response to signals, and
in determining the type, range, and specifics of calibration. Next, we examine several special cases
of Equation 3.1 that model the most important concepts of measurement system behavior.

3.3 SPECIAL CASES OF THE GENERAL SYSTEM MODEL
Zero-Order Systems

The simplest model of a measurement systems and one used with static signals is the zero-order
system model. This is represented by the zero-order differential equation:

agy = F(1)
Dividing through by aq gives
(1) = KF(1) (3:2)

where K = 1/ay. K is called the static sensitivity or steady gain of the system. This system property was
introduced in Chapter 1 as the relation between the change in output associated with a change in static
input. In a zero-order model, the system output is considered to respond to the input signal instantaneously.
If an input signal of magnitude F(f) = A were applied, the instrument would indicate KA, as modeled by
Equation 3.2. The scale of the measuring device would be calibrated to indicate A directly.

For real systems, the zero-order system concept is used to model the non—time-dependent
measurement system response to static inputs. In fact, the zero-order concept appropriately models
any system during a static calibration. When dynamic input signals are involved, a zero-order model
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is valid only at static equilibrium. This is because most real measurement systems possess inertial or
storage capabilities that require higher-order differential equations to correctly model their time-
dependent behavior to dynamic input signals.

Determination of K

The static sensitivity is found from the static calibration of the measurement system. It is the slope of
the calibration curve, K = dy/dx.

Example 3.2

A pencil-type pressure gauge commonly used to measure tire pressure can be modeled at static
equilibrium by considering the force balance on the gauge sensor, a piston that slides up and down a
cylinder. An exploded view of an actual gauge is shown in Figure 3.4c. In Figure 3.4a, we model the
piston motion' as being restrained by an internal spring of stiffness, k, so that at static equilibrium
the absolute pressure force, F, bearing on the piston equals the force exerted on the piston by the
spring, F;, plus the atmospheric pressure force, F,y,. In this manner, the transduction of pressure into
mechanical displacement occurs. Considering the piston free-body at static equilibrium in
Figure 3.4b, the static force balance, 2F = 0, gives

ky:F—Fatm

where y is measured relative to some static reference position marked as zero on the output display.
Pressure is simply the force acting inward over the piston surface area, A. Dividing through by area

Display scale Fs
Piston of F
area A L L L L atm

+y

Spring

(b) Free-body diagram

Sliding piston ‘ F A REERNVNER &

Intake valve ’ Il de wwuuuu

(¢) Photograph of the components
(a) Pencil-style pressure gauge within a pencil-type pressure gauge

Figure 3.4 Lumped parameter model of pressure gauge (Ex. 3.2).

'In a common gauge there may or may not be the mechanical spring shown.
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provides the zero-order response equation between output displacement and input pressure
and gives

y = (A/K)(P = Pam)

The term (p — p,,,) represents the pressure relative to atmospheric pressure. It is the pressure
indicated by this gauge. Direct comparison with Equation 3.2 shows that the input pressure
magnitude equates to the piston displacement through the static sensitivity, K= A/k. Drawing
from the concept of Figure 3.2, the system operates on pressure so as to bring about the relative
displacement of the piston, the magnitude of which is used to indicate the pressure. The equivalent of
spring stiffness and piston area affect the magnitude of this displacement—factors considered in its
design. The exact static input—output relationship is found through calibration of the gauge. Because
elements such as piston inertia and frictional dissipation were not considered, this model would not be
appropriate for studying the dynamic response of the gauge.

First-Order Systems

Measurement systems that contain storage elements do not respond instantaneously to changes in
input. The bulb thermometer discussed in Section 3.2 is a good example. The bulb exchanges energy
with its environment until the two are at the same temperature, storing energy during the exchange.
The temperature of the bulb sensor changes with time until this equilibrium is reached, which
accounts physically for its lag in response. The rate at which temperature changes with time can be
modeled with a first-order derivative and the thermometer behavior modeled as a first-order
equation. In general, systems with a storage or dissipative capability but negligible inertial forces
may be modeled using a first-order differential equation of the form

ary + agy = F(1) (3.3)
with y = dy/dt. Dividing through by aq gives
Ty +y=KF(?) (3.4)

where T = a;/ag. The parameter 7 is called the time constant of the system. Regardless of the
physical dimensions of ay and a,, their ratio will always have the dimensions of time. The time
constant provides a measure of the speed of system response, and as such is an important
specification in measuring dynamic input signals. To explore this concept more fully, consider
the response of the general first-order system to the following two forms of an input signal: the step
function and the simple periodic function.

Step Function Input

The step function, AU(?), is defined as
AU(t)=0 <0~
AU(t)=A t>0"

where A is the amplitude of the step function and U(¢) is defined as the unit step function as depicted
in Figure 3.5. Physically, this function describes a sudden change in the input signal from a constant
value of one magnitude to a constant value of some other magnitude, such as a sudden change in
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2_

1©

Time, ¢ Figure 3.5 The unit step function, U(?).

loading, displacement, or any physical variable. When we apply a step function input to a
measurement system, we obtain information about how quickly a system will respond to a change
in input signal. To illustrate this, let us apply a step function as an input to the general first-order
system. Setting F(#) =AU(¢) in Equation 3.4 gives

9 +y = KAU(t) = KF(1)

with an arbitrary initial condition denoted by, y(0) =y,. Solving for ¢ > 0" yields

H = KA+ (yg—KA)e " 3.5
W) = KA+ (v —KA) (3.5)
Time response Steady response Transient response

The solution of the differential equation, y(¢), is the time response (or simply the response) of the
system. Equation 3.5 describes the behavior of the system to a step change in input. This means that
¥(?) is in fact the output indicated by the display stage of the system. It should represent the time
variation of the output display of the measurement system if an actual step change were applied to
the system. We have simply used mathematics to simulate this response.

Equation 3.5 consists of two parts. The first term is known as the steady response because, as
t — oo, the response of y(#) approaches this steady value. The steady response is that portion of the
output signal that remains after the transient response has decayed to zero. The second term on
the right side of Equation 3.5 is known as the transient response of y(f) because, as t — oo, the
magnitude of this term eventually reduces to zero.

For illustrative purposes, let yo < A so that the time response becomes as shown in Figure 3.6.
Over time, the indicated output value rises from its initial value, at the instant the change in input is
applied, to an eventual constant value, y,, = KA, at steady response. As an example, compare this
general time response to the recognized behavior of the bulb thermometer when measuring body
temperature as discussed earlier. We see a qualitative similarity. In fact, in using a bulb thermometer
to measure body temperature, this is a real step function input to the thermometer, itself a first-order
measuring system.

Suppose we rewrite the response Equation 3.5 in the form

(1) = yy(@f)__—yym = (3.6)

The term I'(¢) is called the error fraction of the output signal. Equation 3.6 is plotted in Figure 3.7,
where the time axis is nondimensionalized by the time constant. We see that the error fraction
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decreases from a value of 1 and approaches a value of 0 with increasing 7/7. At the instant just after
the step change in input is introduced, I' = 1.0, so that the indicated output from the measurement
system is 100% in error. This implies that the system has responded 0% to the input change, that is, it
has not changed. From Figure 3.7, it is apparent that as time moves forward the system does respond,
and with decreasing error in its indicated value. Let the percent response of the system to a step
change be given as (1 — I') x 100. Then by ¢ = T, where I' = 0.368, the system will have responded
to 63.2% of the step change. Further, when ¢ = 2.37 the system will have responded (I" = 0.10) to
90% of the step change; by ¢ = 57, we find the response to be 99.3%. Values for the percent response
and the corresponding error as functions of /7 are summarized in Table 3.1. The time required for
a system to respond to a value that is 90% of the step input, y., — ¥y, is important and is called the
rise time of the system.

Based on this behavior, we can see that the time constant is in fact a measure of how quickly a
first-order measurement system will respond to a change in input value. A smaller time constant
indicates a shorter time between the instant that an input is applied and when the system reaches an
essentially steady output. We define the time constant as the time required for a first-order system to
achieve 63.2% of the step change magnitude, y,, — y,. The time constant is a system property.

Determination of v From the development above, the time constant can be experimentally
determined by recording the system’s response to a step function input of a known magnitude.
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Table 3.1 First-Order System Response and Error Fraction

tit % Response r % Error
0 0.0 1.0 100.0
1 63.2 0.368 36.8
2 86.5 0.135 13.5
2.3 90.0 0.100 10.0
3 95.0 0.050 5.0
5 99.3 0.007 0.7
00 100.0 0.0 0.0

In practice, it is best to record that response from ¢ =0 until steady response is achieved. The data
can then be plotted as error fraction versus time on a semilog plot, such as in Figure 3.8. This type of
plot is equivalent to the transformation

InI"=231logl’ = —(1/7)¢ (3.7)

which is of the linear form, Y=mX + B (where Y = InI', m = —(1/7), X = ¢, and B = 0 here). A
linear curve fit through the data will provide a good estimate of the slope, m, of the resulting plot.
From Equation 3.7, we see that m = —1/1, which yields the estimate for T.

This method offers advantages over attempting to compute 7 directly from the time required
to achieve 63.2% of the step-change magnitude. First, real systems will deviate somewhat from
perfect first-order behavior. On a semilog plot (Figure 3.8), such deviations are readily apparent
as clear trends away from a straight line. Modest deviations do not pose a problem. But strong
deviations indicate that the system is not behaving as expected, thus requiring a closer
examination of the system operation, the step function experiment, or the assumed form of
the system model. Second, acquiring data during the step function experiment is prone to some
random error in each data point. The use of a data curve fit to determine T utilizes all of the data
over time so as to minimize the influence of an error in any one data point. Third, the method
eliminates the need to determine the I' = 1.0 and 0.368 points, which are difficult to establish in
practice and so are prone to a systematic error.

1.000

0.368

o
—_
o
o

Error fraction, T’

0.010

S

0.001 5 5 3 7 5 Figure 3.8 The error fraction plotted on

¢/ semilog coordinates.
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Example 3.3

Suppose a bulb thermometer originally indicating 20°C is suddenly exposed to a fluid temperature
of 37°C. Develop a model that simulates the thermometer output response.

KNOWN T(0) = 20°C
T, =37°C
F(t) = [T — T(0)]U(2)

ASSUMPTIONS To keep things simple, assume the following: no installation effects (neglect
conduction and radiation effects); sensor mass is mass of liquid in bulb only; uniform temperature
within bulb (lumped mass); and thermometer scale is calibrated to indicate temperature

FIND  T()

SOLUTION Consider the energy balance developed in Figure 3.9. According to the first law of
thermodynamics, the rate at which energy is exchanged between the sensor and its environment
through convection, 0, must be balanced by the storage of energy within the thermometer, dE/dt.
This conservation of energy is written as

dE .
il

Energy storage in the bulb is manifested by a change in bulb temperature so that for a constant mass
bulb, dE(1)/dt=mc,dI(t)/dt. Energy exchange by convection between the bulb at 7() and an
environment at T, has the form Q = hA,AT. The first law can be written as

dr(s)
mey— = = hA[T o — T(1)]

This equation can be written in the form

mcvd%’) + hA[T(t) — T(0)] = hAF(t) = hA,[T — T(0)]U(1)

with initial condition 7(0) and

Control volume

Bulb sensor

Figure 3.9 Lumped parameter model of thermometer and its
energy balance (Ex. 3.3).
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where
m = mass of liquid within thermometer
¢, = specific heat of liquid within thermometer
h = convection heat transfer coefficient between bulb and environment
A, = thermometer surface area

The term hA; controls the rate at which energy can be transferred between a fluid and a body; it is
analogous to electrical conductance. By comparison with Equation 3.3, ag=/hA,, a; =mc,, and
bo=hA,. Rewriting for # > 0" and simplifying yields

mc, dT(t)

A, di +T(t) =Ty

From Equation 3.4, this implies that the time constant and static sensitivity are

mcy hA,
T A, I,

Direct comparison with Equation 3.5 yields this thermometer response:

T(t) = Too + [T(0) — To]e /"
=37 — 1777 [°C]

COMMENT Two interactive examples of the thermometer problem (from Exs 3.3-3.5) are
available. In the program FirstOrd, the user can choose input functions and study the system
response. In the LabView program Temperature_response, the user can apply interactively a step
change in temperature and study the first-order system response of a thermal sensor.

Clearly the time constant, T, of the thermometer can be reduced by decreasing its mass-to-arearatio
orby increasing /i (forexample, increasing the fluid velocity around the sensor). Without modeling, such
information could be ascertained only by trial and error, a time-consuming and costly method with no
assurance of success. Also, it is significant that we found that the response of the temperature
measurement system in this case depends on the environmental conditions of the measurement that
control /1, because the magnitude of / affects the magnitude of 7. If /1 is not controlled during response
tests (i.e., if it is an extraneous variable), ambiguous results are possible. For example, the curve of
Figure 3.8 will become nonlinear, or replications will not yield the same values for 7.

Review of this example should make it apparent that the results of a well-executed step
calibration may not be indicative of an instrument’s performance during a measurement if the
measurement conditions differ from those existing during the step calibration.

Example 3.4

For the thermometer in Example 3.3 subjected to a step change in input, calculate the 90% rise time
in terms of /7.

KNOWN Same as Example 3.3
ASSUMPTIONS Same as Example 3.3

FIND 90% response time in terms of ¢/1
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SOLUTION The percent response of the system is given by (1 —I') x 100 with the error
fraction, I', defined by Equation 3.6. From Equation 3.5, we note that at # =7, the thermometer will
indicate 7(¢) = 30.75°C, which represents only 63.2% of the step change from 20° to 37°C. The 90%
rise time represents the time required for I' to drop to a value of 0.10. Then

[=010=¢""
or t/T=2.3.

COMMENT In general, a time equivalent to 2.3 is required to achieve 90% of the applied step
input for a first-order system.

Example 3.5

A particular thermometer is subjected to a step change, such as in Example 3.3, in an experimental
exercise to determine its time constant. The temperature data are recorded with time and presented
in Figure 3.10. Determine the time constant for this thermometer. In the experiment, the heat transfer
coefficient, £, is estimated to be 6 W/m?2-C from engineering handbook correlations.

KNOWN Data of Figure 3.10

h=6W/m*-C
ASSUMPTIONS First-order behavior using the model of Example 3.3, constant properties
FIND T

SOLUTION According to Equation 3.7, the time constant should be the negative reciprocal of
the slope of a line drawn through the data of Figure 3.10. Aside from the first few data points, the
data appear to follow a linear trend, indicating a nearly first-order behavior and validating our model
assumption. The data is fit to the first-order equation®

2.31log " = (—0.194)¢ + 0.00064

2.00

1.00

I' =-0.194¢ + 0.00064

©
—
S)

Error fraction, T’

| | |
001, 5 10 15 20 Figure 3.10 Temperature—time history

Time, ¢ (s) of Example 3.5.

2 The least-squares approach to curve fitting is discussed in detail in Chapter 4.
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With m = —0.194 = —1/7, the time constant is calculated as T = 5.15 seconds.

COMMENT If the experimental data were to deviate significantly from first-order behavior,
this would be a clue that either our assumptions do not fit the real-problem physics or that the test
conduct has control or execution problems.

Simple Periodic Function Input

Periodic signals are commonly encountered in engineering processes. Examples include vibrating
structures, vehicle suspension dynamics, biological circulations, and reciprocating pump flows.
When periodic inputs are applied to a first-order system, the input signal frequency has an important
influence on measuring system time response and affects the output signal. This behavior can be
studied effectively by applying a simple periodic waveform to the system. Consider the first-order
measuring system to which an input of the form of a simple periodic function, F(f) =A sin wt, is
applied for £ > 0%:

™y +y = KA sin ot

with initial conditions y(0) = yo. Note that w in [rad/s] = 27f with fin [Hz]. The general solution to
this differential equation yields the measurement system output signal, that is, the time response to
the applied input, y(?):
y(1) = Ce™!/™ + Lsin(mt — tan"'w1) (3.8)
1+ (mT)2
where the value for C depends on the initial conditions.

So what has happened? The output signal, y(¢), of Equation 3.8 consists of a transient and a
steady response. The first term on the right side is the transient response. As ¢ increases, this term
decays to zero and no longer influences the output signal. Transient response is important only
during the initial period following the application of the new input. We already have information
about the system transient response from the step function study, so we focus our attention on the
second term, the steady response. This term persists for as long as the periodic input is maintained.
From Equation 3.8, we see that the frequency of the steady response term remains the same as the
input signal frequency, but note that the amplitude of the steady response depends on the value of the
applied frequency, w. Also, the phase angle of the periodic function has changed.

Equation 3.8 can be rewritten in a general form:

y(t) = Ce™'/" + B(w)sin[wt + P]
by KA
1+ (0r)? (39)

®(0w) = —tan"!(wT)
where B(w) represents the amplitude of the steady response and the angle ®(w) represents the phase
shift. A relative illustration between the input signal and the system output response is given in

Figure 3.11 for an arbitrary frequency and system time constant. From Equation 3.9, both B and ¢ are
frequency dependent. Hence, the exact form of the output response depends on the value of the frequency
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Signal

Figure 3.11 Relationship

between a sinusoidal input and
output: amplitude, frequency,
and time delay.

of the input signal. The steady response of any system to which a periodic input of frequency, w, is
applied is known as the frequency response of the system. The frequency affects the magnitude of
amplitude B and also can bring about a time delay. This time delay, 8, is seen in the phase shift, (), of
the steady response. For a phase shift given in radians, the time delay in units of time is

that is, we can write

sin(w? 4 ®) = sin [m (r + %)} = sinf(z+ B;)]

The value for 3, will be negative, indicating that the time shift is a delay between the output and input
signals. Since Equation 3.9 applies to all first-order measuring systems, the magnitude and phase shift
by which the output signal differs from the input signal are predictable.

We define a magnitude ratio, M (), as the ratio of the output signal amplitude to the input signal
amplitude, M(w)=B/KA. For a first-order system subjected to a simple periodic input, the
magnitude ratio is

Me)y=2 -1 (3.10)
1+ (o1)*

The magnitude ratio for a first-order system is plotted in Figure 3.12, and the corresponding phase
shift is plotted in Figure 3.13. The effects of both system time constant and input signal frequency on
frequency response are apparent in both figures. This behavior can be interpreted in the following
manner. For those values of w? for which the system responds with values of M(w) near unity, the
measurement system transfers all or nearly all of the input signal amplitude to the output and with
very little time delay; that is, B will be nearly equal to KA in magnitude and ®(w) will be near zero
degrees. At large values of wT the measurement system filters out any frequency information of the
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input signal by responding with very small amplitudes, which is seen by the small M(w), and by
large time delays, as evidenced by increasingly nonzero 3.

Any combination of w and 7 produces the same results. If we wanted to measure signals with
high-frequency content, then we would need a system having a small 7. On the other hand, systems
of large T may be adequate to measure signals of low-frequency content. Often the trade-offs
compete available technology against cost.

The dynamic error, 8(w), of a system is defined as 8(w) = M(w) — 1. It is a measure of the
inability of a system to adequately reconstruct the amplitude of the input signal for a particular input
frequency. We normally want measurement systems to have a magnitude ratio at or near unity over
the anticipated frequency band of the input signal to minimize 8(w). Perfect reproduction of the
input signal is not possible, so some dynamic error is inevitable. We need some way to state this.
For a first-order system, we define a frequency bandwidth as the frequency band over which
M(w) > 0.707; in terms of the decibel (plotted in Figure 3.12) defined as

dB = 20log M(w) (3.11)

this is the band of frequencies within which M(w) remains above —3 dB.
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The functions M(w) and ®(w) represent the frequency response of the measurement system to
periodic inputs. These equations and universal curves provide guidance in selecting measurement
systems and system components.

Determination of Frequency Response The frequency response of a measurement system is
found by a dynamic calibration. In this case, the calibration would entail applying a simple periodic
waveform of known amplitude and frequency to the system sensor stage and measuring the
corresponding output stage amplitude and phase shift. In practice, developing a method to produce a
periodic input signal in the form of a physical variable may demand considerable ingenuity and
effort. Hence, in many situations an engineer elects to rely on modeling to infer system frequency
response behavior. We can predict the dynamic behavior if the time constant and static sensitivity of
the system and the range of input frequencies are all known.

Example 3.6

A temperature sensor is to be selected to measure temperature within a reaction vessel. It is suspected
that the temperature will behave as a simple periodic waveform with a frequency somewhere between
1 and 5 Hz. Sensors of several sizes are available, each with a known time constant. Based on time
constant, select a suitable sensor, assuming that a dynamic error of +2% is acceptable.

KNOWN 1<f<5Hz
[3(w)] < 0.02

ASSUMPTIONS First-order system
F(t) = Asin ot

FIND Time constant, T

SOLUTION With |3(w)| < 0.02, we would set the magnitude ratio between 0.98 < M < 1.02.
From Figure 3.12, we see that first-order systems never exceed M = 1. So the constraint becomes
0.98 < M < 1. Then,

1
098 < M(w) =—==<1
1+ (01)°

From Figure 3.12, this constraint is maintained over the range 0 < w7t < 0.2. We can also see in this
figure that for a system of fixed time constant, the smallest value of M(w) will occur at the largest
frequency. So with = 2wf = 2m(5)rad/s and solving for M(w)=0.98 yields, T < 6.4 ms. Accord-
ingly, a sensor having a time constant of 6.4 ms or less will work.

Second-Order Systems

Systems possessing inertia contain a second-derivative term in their model equation (e.g.,
see Ex. 3.1). A system modeled by a second-order differential equation is called a second-order
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system. Examples of second-order instruments include accelerometers and pressure transducers
(including microphones and loudspeakers).

In general, a second-order measurement system subjected to an arbitrary input, F(¢), can be
described by an equation of the form

@y + a1y + agy = F(t) (3.12)

where ay, a;, and a, are physical parameters used to describe the system andy = dzy/ dr*. This
equation can be rewritten as

1 2
4+ 2y y=KF(t 3.13
w%y+wny+y (1) (3.13)

where

la
W, = = — natural frequency of the system
a

(= e damping ratio of the system

2./00&2

Consider the homogeneous solution to Equation 3.13. Its form depends on the roots of the
characteristic equation of Equation 3.13:

1 2
—2>\2+—C>\+1:0
w

" (O

This quadratic equation has two roots,

N2 = —Lw, o,/ —1

Depending on the value for { three forms of homogeneous solution are possible:

0 < < 1 (underdamped system solution)

yu(t) = Ce™*'sin <wn\/1 — P+ ®> (3.14a)

{=1 (critically damped system solution)
yu(t) = CreM' + Cyte™! (3.14b)
{ > 1 (overdamped system solution)

yi(t) = Cr1eM' + Cre™ (3.14c)

The homogeneous solution determines the transient response of a system. The damping ratio, ¢,
is a measure of system damping, a property of a system that enables it to dissipate energy internally.
For systems with 0 < { < 1, the transient response will be oscillatory, whereas for { > 1, the
transient response will not oscillate. The critically damped solution, { = 1, denotes the demarcation
between oscillatory and nonoscillatory behavior in the transient response.
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Step Function Input

Again, the step function input is applied to determine the general behavior and speed at which the
system will respond to a change in input. The response of a second-order measurement system to a
step function input is found from the solution of Equation 3.13, with F(¢) =AU(?), to be

y(t) = KA — KAe %! L/IC_CZsin(wnm/l - cz) + cos (wnm/l - cz)] 0<{<1 (3.15a)

y(1) = KA — KA(1 + o,t)e” " {=1 (3.15b)

C+VE -1 (Ve T)out n (V-1 (Ve

y(t) = KA — KA
20/ -1 VGRS

] {>1 (3.15)

where we set the initial conditions, y(0) =y(0) =0 for convenience.

Equations 3.15a—c are plotted in Figure 3.14 for several values of {. The interesting feature is
the transient response. For under-damped systems, the transient response is oscillatory about the
steady value and occurs with a period

21 1
T, =""—=__ 3.16
T wd fa (3.16)
wg = w,\/1 = (3.17)

where w, is called the ringing frequency. In instruments, this oscillatory behavior is called
“ringing.” The ringing phenomenon and the associated ringing frequency are properties of the
measurement system and are independent of the input signal. It is the free oscillation frequency of a
system displaced from its equilibrium.

The duration of the transient response is controlled by the {w, term. In fact, its influence is
similar to that of a time constant in a first-order system, such that we could define a second-order
time constant as T = 1/{w,. The system settles to KA more quickly when it is designed with a larger

=0
0.25
0.50
s
‘©
c
20 KA L ———— S A e
w
5
=%
=
o
1.0
2.0
3(0) | | | |
2 4 6 8 10
w,t

Figure 3.14 Second-order system time response to a step function input.
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{wy, (i.e., smaller 7). Nevertheless, for all systems with { > 0, the response eventually indicates the
steady value of y,, = KA ast — oo.

Recall that the rise time is defined as the time required to achieve a value within 90% of the step
input. For a second-order system, the rise time is the time required to first achieve 90% of (KA — yy).
Rise time is reduced by decreasing the damping ratio, as seen in Figure 3.14. However, the severe
ringing associated with very lightly damped systems can delay the time to achieve a steady value
compared to systems of higher damping. This is demonstrated by comparing the response at { =
0.25 with the response at { =1 in Figure 3.14. With this in mind, the time required for a
measurement system’s oscillations to settle to within +10% of the steady value, KA, is defined
as its settling time. The settling time is an approximate measure of the time to achieve a steady
response. A damping ratio of about 0.7 appears to offer a good compromise between ringing and
settling time. If an error fraction (I") of a few percent is acceptable, then a system with { = 0.7 will
settle to steady response in about one-half the time of a system having { = 1. For this reason, most
measurement systems intended to measure sudden changes in input signal are typically designed
such that parameters ay, a;, and a, provide a damping ratio of between 0.6 and 0.8.

Determination of Ringing Frequency and Rise and Settling Times The experimental determina-
tion of the ringing frequency associated with under-damped systems is performed by applying a step
input to the second-order measurement system and recording the response with time. This type of
calibration also yields information concerning the time to steady response of the system, which includes
rise and settling times. Example 3.8 describes such a test. Typically, measurement systems suitable for
dynamic signal measurements have specifications that include 90% rise time and settling time. Adjust
Second Order Parameters.vi explores system values and response.

Determination of Natural Frequency and Damping Ratio From the under-damped system
response to a step function test, values for the damping ratio and natural frequency can be extracted.
From Figure 3.14, we see that with ringing the amplitude decays logarithmically with time towards a
steady-state value. Let y,,, represent the peak amplitude occurring with each cycle. Then for the first
two successive peak amplitudes, let y; = (Vmax); — Yoo @304 Y5 = (¥max )2 — Yoo The damping ratio is
found from

1

\/ 1+ (21T/ln(yl /yz))2

From the calculation to find the ringing frequency using Equation 3.16, the natural frequency is found
using Equation 3.17. Alternately, we could perform the step function test with y(0) = KA andy,, = 0
and still use the same approach.

(= (3.18)

Example 3.7

Determine the physical parameters that affect the natural frequency and damping ratio of the
accelerometer of Example 3.1.

KNOWN  Accelerometer shown in Figure 3.3
ASSUMPTIONS Second-order system as modeled in Example 3.1

FIND ,, {
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Figure 3.15 Pressure transducer time response to a step input for Example 3.8.

SOLUTION A comparison between the governing equation for the accelerometer in Example
3.1 and Equation 3.13 gives

k c
w,; = — =

m 2Vkm

Accordingly, the physical parameters of mass, spring stiffness, and frictional damping control the
natural frequency and damping ratio of this measurement system.

Example 3.8

The curve shown in Figure 3.15 is the recorded voltage output signal of a diaphragm pressure
transducer subjected to a step change in input. From a static calibration, the pressure—voltage
relationship was found to be linear over the range 1 atmosphere (atm) to 4 atm with a static
sensitivity of 1 V/atm. For the step test, the initial pressure was atmospheric pressure, p,, and the
final pressure was 2p,. Estimate the rise time, the settling time, and the ringing frequency of this
measurement system.

KNOWN p(0) = 1atm
Do = 2atm
K =1V/atm
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ASSUMPTIONS Second-order system behavior
FIND Rise and settling times; w,

SOLUTION The ringing behavior of the system noted on the trace supports the assumption that
the transducer can be described as having a second-order behavior. From the given information,

E(0) =Kp(0)=1V

E. =Kp,=2V
so that the step change observed on the trace should appear as a magnitude of 1 V. The 90% rise time
occurs when the output first achieves a value of 1.9 V. The 90% settling time will occurs when the
output settles between 1.9 < E(#) < 2.1 V. From Figure 3.15, the rise occurs in about 4 ms and the

settling time is about 9 ms. The period of the ringing behavior, T, is judged to be about 13 ms for an
wg ~ 485 rad/s.

Simple Periodic Function Input

The response of a second-order system to a simple periodic function input of the form F(¢) =
A sin wt is given by

KAsin[wt + ®(w)]

{[1- o] +tofon?)

with frequency-dependent phase shift
2 )
w@:mml_—ﬁﬂ27 (3.20)
1 — (0/w,)

The exact form for yj, is found from Equations 3.14a—c and depends on the value of . The steady
response, the second term on the right side, has the general form

Sty (1) = (1 = 00) = Blw)sinfor + B(w)] (3.21)

y(t) =y, + (3.19)

with amplitude B(w). Comparing Equations 3.19 and 3.21 shows that the amplitude of the steady
response of a second-order system subjected to a sinusoidal input is also dependent on w. So the
amplitude of the output signal is frequency dependent. In general, we can define the magnitude ratio,
M(w), for a second-order system as

Mw) =B _ ! (3.22)

{[1- o] + oot}

The magnitude ratio-frequency dependence for a second-order system is plotted in Figure 3.16 for
several values of damping ratio. A corresponding plot of the phase-shift dependency on input
frequency and damping ratio is shown in Figure 3.17. For an ideal measurement system, M(w)
would equal unity and ®(w) would equal zero for all values of measured frequency. Instead, M(w)
approaches zero and ®(w) approaches —m as w/w, becomes large. Keep in mind that w,, is a property
of the measurement system, while w is a property of the input signal.
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Figure 3.16 Second-order system frequency response: magnitude ratio.

System Characteristics

Several tendencies are apparent in Figures 3.16 and 3.17. For a system of zero damping, { =0, M(w)
will approach infinity and ®(w) jumps to —m in the vicinity of w=w,. This behavior is
characteristic of system resonance. Real systems possess some amount of damping, which modifies
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Figure 3.17 Second-order system frequency response: phase shift.
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the abruptness and magnitude of resonance, but under-damped systems may still achieve resonance.
This region on Figures 3.16 and 3.17 is called the resonance band of the system, referring to the
range of frequencies over which the system is in resonance. Resonance in under-damped systems
occurs at the resonance frequency,

g = 0,/ 1 =20 (3.23)

The resonance frequency is a property of the measurement system. Resonance is excited by
a periodic input signal frequency. The resonance frequency differs from the ringing frequency of
free oscillation. Resonance behavior results in values of M(w) > 1 and considerable phase shift.
For most applications, operating at frequencies within the resonance band is undesirable,
confusing, and could even be damaging to some delicate sensors. Resonance behavior is
very nonlinear and results in distortion of the signal. On the other hand, systems having { >
0.707 do not resonate.

At small values of w/w,, M(w) remains near unity and ®(w) near zero. This means that
information concerning the input signal of frequency w will be passed through to the output signal
with little alteration in the amplitude or phase shift. This region on the frequency response curves is
called the transmission band. The actual extent of the frequency range for near unity gain depends
on the system damping ratio. The transmission band of a system is either specified by its frequency
bandwidth, typically defined for a second-order system as —3 dB < M(w) < 3 dB, or otherwise
specified explicitly. You need to operate within the transmission band of a measurement system to
measure correctly the dynamic content of the input signal.

At large values of w/w,, M(w) approaches zero. In this region, the measurement system
attenuates the amplitude information in the input signal. A large phase shift occurs. This region is
known as the filter band, typically defined as the frequency range over which M(w) < —3 dB. Most
readers are familiar with the use of a filter to remove undesirable features from a desirable product.
When you operate a measurement system within its filter band, the amplitudes of the portion of
dynamic signal corresponding to those frequencies within the filter band will be reduced or
eliminated completely. So you need to match carefully the measurement system characteristics with
the signal being measured.

Example 3.9

Determine the frequency response of a pressure transducer that has a damping ratio of 0.5 and a
ringing frequency (found by a step test) of 1200 Hz.

kNowN (=05

wg = 27(1200 Hz) = 7540 rad/s
ASSUMPTIONS Second-order system behaviour
FIND M(w) and ®(w)

SOLUTION The frequency response of a measurement system is determined by M(w) and

®(w) as defined in Equations 3.20 and 3.22. Since vy = w,+/1 — {*, the natural frequency of the
pressure transducer is found to be w,, = 8706 rad/s. The frequency response at selected frequencies is
computed from Equations 3.20 and 3.22:
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o (rad/s) M(w) D(w) [°]
500 1.00 -33
2,600 1.04 —18.2
3,500 1.07 —25.6
6,155 1.15 —54.7
7,540 1.11 —73.9
8,706 1.00 -90.0
50,000 0.05 —170.2

COMMENT The resonance behavior in the transducer response peaks at wp=6155 rad/s.
As arule, resonance effects can be minimized by operating at input frequencies of less than ~30%
of the system’s natural frequency. The response of second-order systems can be studied in more
detail using the companion software. Try the Matlab program SecondOrd and LabView program
Second_order.

Example 3.10

An accelerometer is to be selected to measure a time-dependent motion. In particular, input signal
frequencies below 100 Hz are of prime interest. Select a set of acceptable parameter specifications
for the instrument assuming a dynamic error of +5%.

KNOWN f < 100Hz (i.e., o < 628 rad/s)

ASSUMPTIONS Second-order system
Dynamic error of +£5% acceptable

FIND Select w,, and (

SOLUTION To meet a +5% dynamic error constraint, we want 0.95 < M(w) < 1.05 over the
frequency range 0 < w < 628 rad/s. This solution is open ended in that a number of instruments with
different w,, will do the task. So as one solution, let us set { = 0.7 and then solve for the required w,,
using Equation 3.22:

1
0.95 < M(w) = <105

{ (1= (o] + [2cm/wn12}1/2 :

With w = 628 rad/s, these equations give w,, > 1047 rad/s. We could plot Equation 3.22 with { = 0.7,
as shown in Figure 3.18. In Figure 3.18, we find that 0.95 < M(w) < 1.05 over the frequency range 0
< w/w, < 0.6. Again, this makes w,, > 1047 rad/s acceptable. So as one solution, an instrument
having { =0.7 and w,, > 1047 rad/s meets the problem constraints.
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Figure 3.18 Magnitude ratio for second-order system with { = 0.7 for Example 3.10.

3.4 TRANSFER FUNCTIONS

Consider the schematic representation in Figure 3.19. The measurement system operates on the
input signal, F(#), by some function, G(s), so as to indicate the output signal, y(#). This operation can
be explored by taking the Laplace transform of both sides of Equation 3.4, which describes the
general first-order measurement system. One obtains

Y(s) = —— KF(s) + 20

where yo=y(0). This can be rewritten as

Y(s) = G(s)KF(s) + G(s)Q(s) (3.24)
where G(s) is the transfer function of the first-order system given by
1
G(s) = 3.25
(5) 75+ 1 ( )

and Q(s) is the system initial state function. Because it includes KF(s), the first term on the right side
of Equation 3.24 contains the information that describes the steady response of the measurement

¥(0), ...

|

F(@t) y(t) . . .
———1 KG(s) p——s Figure 3.19 Operation of the transfer function. Compare with

Figure 3.2.
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Imaginary

IMIG(iw)] — M(w)

P(w)

RelG(iw)] Real  Figure 3.20 Complex plane approach to describing
frequency response.

system to the input signal. The second term describes its transient response. Included in both terms,
the transfer function G(s) plays a role in the complete time response of the measurement system. As
indicated in Figure 3.19, the transfer function defines the mathematical operation that the
measurement system performs on the input signal F(7) to yield the time response (output signal)
of the system. As a review, Appendix C provides common Laplace transforms with their application
to the solution of ordinary differential equations.

The system frequency response, which has been shown to be given by M(w) and ®(w), can be
found by finding the value of G(s) at s =iw. This yields the complex number

G(s = iw) = G(iw) M(w)e'®) (3.26)

:'riu)—|—1:

where G(iw) is a vector on the real-imaginary plane having a magnitude, M(w), and inclined at an
angle, ®(w), relative to the real axis as indicated in Figure 3.20. For the first-order system, the
magnitude of G(iw) is simply that given by M(w) from Equation 3.10 and the phase shift angle by
®(w) from Equation 3.9.

For a second-order or higher system, the approach is the same. The governing equation for a
second-order system is defined by Equation 3.13, with initial conditions y(0) =y, and y(0) = y,.
The Laplace transform yields

1 Y0 + Yo
Y(s) = KF(s) + 3.27
() (1/w2)s? + (20/wn)s + 1 () (1/02)s? + (20/wy)s + 1 (3:27)
which can again be represented by
Y(s) = G(s)KF(s) + G(s)Q(s) (3.28)
By inspection, the transfer function is given by
1
G(s) = 3.29
O = a)e T @+ 1 (329
Solving for G(s) at s =iw, we obtain for a second-order system
1 :
G(s = iw) = M(0)e'®) (3.30)

(iw)* /02 + 2o /o, + 1 -

which gives exactly the same magnitude ratio and phase shift relations as given by Equations 3.20
and 3.22.



106 Chapter3 Measurement System Behavior

3.5 PHASE LINEARITY

‘We can see from Figures 3.16 and 3.17 that systems having a damping ratio near 0.7 possess the broadest
frequency range over which M(w) will remain at or near unity and that over this same frequency range the
phase shift essentially varies in a linear manner with frequency. Although it is not possible to design a
measurement system without accepting some amount of phase shift, it is desirable to design a system such
that the phase shift varies linearly with frequency. This is because a nonlinear phase shift is accompanied by
a significant distortion in the waveform of the output signal. Disfortion refers to a notable change in the
shape of the waveform from the original, as opposed to simply an amplitude alteration or relative phase
shift. To minimize distortion, many measurement systems are designed with 0.6 < { < 0.8.

Signal distortion can be illustrated by considering a particular complex waveform represented
by a general function, u(?):

u(t) = Zsinnwt: sin wf 4 sin 2wt + - - - (3.31)
n=1
Suppose during a measurement a phase shift of this signal were to occur such that the phase shift
remained linearly proportional to the frequency; that is, the measured signal, v(¢), could be
represented by

v(t) = sin(wt — @) + sin(wt — 2P) + - - (3.32)
Or, by setting
0 = (0r — D) (3.33)
we write
v(r) = sin 6 + sin26 + - - (3.34)

We see that v(#) in Equation 3.22 is equivalent to the original signal, u(¢). If the phase shift were not
linearly related to the frequency, this would not be so. This is demonstrated in Example 3.11.

Example 3.11

Consider the effect of the variations in phase shift with frequency on a measured signal by
examination of the signal defined by the function

u(t) = sint + sin 5¢
Suppose this signal is measured in such a way that a phase shift that is linearly proportional to the
frequency occurs in the form
v(t) = sin(¢ — 0.35) + sin[57 — 5(0.35)]

Both u(#) and v(¢) are plotted in Figure 3.21. We can see that the two waveforms are identical except
that v(¢) lags u(f) by some time increment.

Now suppose this signal is measured in such a way that the relation between phase shift and
frequency was nonlinear, such as in the signal output form

w(t) = sin(z — 0.35) + sin(5¢ — 5)
The w(¢) signal is also plotted in Figure 3.21. It behaves differently from u(?), and this difference is

the signal distortion. In comparison of u(¢), v(¢), and w(z), it is apparent that distortion is caused by a
nonlinear relation between phase shift and frequency.
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Figure 3.21 Waveforms for Example 3.11.

3.6 MULTIPLE-FUNCTION INPUTS

So far we have discussed measurement system response to a signal containing only a single frequency.
What about measurement system response to multiple input frequencies? Or to an input that consists of
both a static and a dynamic part, such as a periodic strain signal from an oscillating beam? When using
models that are linear, such as ordinary differential equations subjected to inputs that are linear in terms
of the dependent variable, the principle of superposition of linear systems applies in the solution of
these equations. The principle of superposition states that a linear combination of input signals applied
to a linear measurement system produces an output signal that is simply the linear addition of the
separate output signals that would result if each input term had been applied separately. Because the
form of the transient response is not affected by the input function, we can focus on the steady
response. In general, we can write that if the forcing function of a form
o0
F(t) =Ag+ Y Agsinwyt (3.35)
k=1
is applied to a system, then the combined steady response will have the form

Vaeuty (1) = KAg + 3 Blog)sinfoy + B(wy)] (3.36)
k=1

where B(wy) = KA;M(wg). The development of the superposition principle can be found in basic
texts on dynamic systems (4).
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Example 3.12

Predict the steady output signal from a second-order instrument having K = 1 unit/unit, { =2, and
w, = 628 rad/s, which is used to measure the input signal

F(t) =5+ 10sin 25¢ + 20 sin 4007

KNOWN Second-order system
K =1 unit/unit; {=2.0; w, =628 rad/s
F(t)=5+4 10 sin 2574 20 sin 400¢

ASSUMPTIONS Linear system (superposition holds)
FIND y(f)

SOLUTION Since F(f) has a form consisting of a linear addition of multiple input functions,
the steady response signal will have the form of Equation 3.33 of ygcaqy(#) = KF(?) or

y(t) = 5K + 10KM (25 rad/s)sin[25¢ + ®(25 rad/s)] + 20KM (400 rad/s)sin[400z + ® (400 rad/s)]
Using Equations 3.20 and 3.22, or, alternatively, using Figures 3.16 and 3.17, with w,, =628 rad/s
and {=2.0, we calculate

M(25rad/s) =099 ®(25rad/s) = —9.1°
M(400rad/s) = 0.39 ®(400rad/s) = —77°

So that the steady output signal will have the form
y(#) =5+49.9sin(25¢ — 9.1°) + 7.8 sin(400z — 77°)

The output signal is plotted against the input signal in Figure 3.22. The amplitude spectra for both
the input signal and the output signal are shown in Figure 3.23. Spectra can also be generated by
using the accompanying software programs FunSpect and DataSpect.

40
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Figure 3.23 Amplitude spectrum of Example 3.12.

COMMENT The magnitude of average value and amplitude of the 25 rad/s component of the
input signal are passed along to the output signal without much loss. However, the amplitude of the
400-rad/s component is severely reduced (down 61%). This is a filtering effect due to the
measurement system frequency response.

3.7 COUPLED SYSTEMS

As instruments in each stage of a measurement system are connected (transducer, signal conditioner,
output device, etc.), the output from one stage becomes the input to the next stage to which it is
connected, and so forth. The overall measurement system will have a coupled output response to the
original input signal that is a combination of each individual response to the input. However, the
system concepts of zero-, first-, and second-order systems studied previously can still be used for a
case-by-case study of the coupled measurement system.

This concept is easily illustrated by considering a first-order sensor that may be connected to a
second-order output device (for example, a temperature sensor—transducer connected to a recorder).
Suppose the input to the sensor is a simple periodic waveform, F(#) =A sin wt. The transducer
responds with an output signal of the form of Equation 3.8:

KZA

y,(t) = Ce /™ + sin(w? + D))

1+ (1)’ (3.37)

b, = —tanlor

where the subscript 7 refers to the transducer. However, the transducer output signal now becomes
the input signal, F»() =y,, to the second-order recorder device. The output from the second-order
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device, y(f), will be a second-order response appropriate for input F(?),

K[KSASin[(DZ + CD[ + q)S]

[1 + (urr)z] 1/2{ [1 — (oo/oon)z}2 + [2€w/wn]2}
2{w/w,
1 — (/o)

where subscript s refers to the chart recorder and y,(¢) is the transient response. The output signal
displayed on the recorder, y(?), is the measurement system response to the original input signal to
the transducer, F;(#) =A sin wt. The steady amplitude of the recorder output signal is the product
of the static sensitivities and magnitude ratios of the first- and second-order systems. The phase shift
is the sum of the phase shifts of the two systems.

Based on the concept behind Equation 3.38 we can make a general observation. Consider the
schematic representation in Figure 3.24, which depicts a measurement system consisting of H
interconnected devices, j=1, 2, ..., H, each device described by a linear system model. The
overall transfer function of the combined system, G(s), is the product of the transfer functions of
each of the individual devices, G(s), such that

KG(S) = K1G1 (S)Ksz (S) . KHGH(S> (339)

yi(t) = yu(t) + 12

(3.38)

b, = —tan™!

At s =iw, Equation 3.37 becomes
KG(io) = (K1K; ... Kg) X [M1(0)M3(0) ... My(o)]e1P @) FP2(0) -+ Pu(w)] (3.40)

According to Equation 3.40, given an input signal to device 1, the system steady output signal at
device H will be described by the system frequency response G(iw) = M(w)e'®®), with an overall
system static sensitivity described by

K=K K;...Ky (3.41)
¥1(0), ... ¥,(0), ... ¥;0), ... yg(0), ...
F(t) l y1(2) l ¥o(t) l y1(2) l y(t)
— K,G4(s) K,Gy(s) K;G;(s) KyGyls)

(a) H-coupled transfer functions

y(0), ...
F(@) y(t)
—_— KG(s) = K,G(s) K,Gy(s) ... KyGyls) e

(b) Equivalent system transfer function

Figure 3.24 Coupled systems: describing the system transfer function.
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The overall system magnitude ratio is the product
M(w) =M (0)M3(w) ... My (w) (3.42)
and the overall system phase shift is the sum
D(0) = P (0) + P2(w) + - + Py(w) (3.43)

This holds true provided that significant loading effects do not exist, a situation discussed in
Chapter 6.

3.8 SUMMARY

Just how a measurement system responds to a time-dependent input signal depends on the prope