

Engineering Mechanics (ME 215). Exam I: Sunday November 10, 2013

Name:

JUST ID#:

Teacher: [[w] iline .)

1. If Force F is to have a component along the u axis of $F_u = 9 \, kN$, determine the magnitude of its component F_{ν} along the ν axis.

A)4.39 kN

B)5.12 kN C)6.59 kN

D)5.86 kN

2. If the resultant force acting on the bracket is to be 800 Ndirected along the positive x-axis, determine the direction of the force θ .

A)19.5°

B)31.8°

C)39.5°

D)26.4°

3. Find the magnitude of the projected component of the force F=500 N along the pipe OA.

B)427 N C)305 N D)244 N

4. The force F acts on the bracket as shown. If the magnitude of the x and z components of F are $F_x = 400 N$ and $F_z = 500$ N, respectively, and $\beta = 60^{\circ}$ find the coordinate direction angle γ .

A) 61.3°

B) 47.4°

C) 39.2°

D) 43.9°

5. The members of a truss are connected to gusset plate. If the forces are concurrent at point

O. The magnitudes of F and T for equilibrium are: Given: F1= 8 kN,

$$F2=10.2 \text{ kN}, \Theta 1=45^{\circ}, \Theta=30^{\circ}$$

B)
$$F=7.5 \text{ kN}$$
 and $T=5.0 \text{ kN}$

D)
$$F=10.2 \text{ kN}$$
 and $T=8.0 \text{ kN}$

B)W=102 N and
$$\theta = 78.69$$
 degree

C)W=153 N and
$$\theta = 78.69$$
 degree

D) W=102 N and
$$\theta = 75$$
 degree

7. For the fig shown, given:

$$a = 0.6 \text{ m},$$

$$b = 1.2 \text{ m},$$

c = 0.8 m

$$d = 0.9 \text{ m}$$

$$e = 0.4 \,\mathrm{m}$$
,

$$f = 0.6 \text{ m}$$

The tension in cables AD required to hold the crate of weight W=60 N in equilibrium are:

$$A)T_{AD} = 108.84 \text{ N}$$

$$B)T_{AD} = 87.91 \text{ N}$$

$$C)T_{AD} = 47.44 \text{ N}$$

$$D)T_{AD} = 190 N$$

8. Determine the moment of the force F = 7.3 kN about point O.

- A)4.6 kN.m
- B)7.7 kN.m
- C)11.2 kN.m
- D)5.4 kN.m

9. Determine the magnitude of the moment of the force

 $F={300i -120j+100k}N$ about the x axis.

- A) 50 N.m B)20 N.m
- C)16 N.m <u>D)</u>-16N.m

10. Determine the required magnitude of force **F** if the resultant couple moment on the frame is 200 N.m. clockwise and **P** = 1630 N.

- A) 2466 N B)2213: N
- C) 1862 N
- D) 3324 N

- 11. If $F_1 = 50$ N and $F_2 = 60$ N the magnitudes of the equivalent resultant force and couple moment acting at O are:
- A) |Mo|=245 N.m, |FR|=190N
- B) |Mo|=226 N.m, |FR|= 190 N
- <u>C)</u> |Mo|=200 N.m , |FR|=190N
- D) |Mo|=226 N.m , |FR|=290N

12. F_1 =4 kN and F_2 =2.5 kN,if the resultant force of the three parallel force system acting on the plate is -8.5j kN then the x,z location of the resultant force in meters is :

- A) x=1, z=1.40 C)x=1.03,z=1.44
- B)x=0.95 z=1.41
- D) x=0 z=0

JUST ID#:

Teacher: - Gibas.

Q	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	DV	C	B	Q	C	D	B	C	0	D	C	C
	C	0	C	B	C	C	B	C	cl	A	C	(