## امتحـــان شهادة الدراسة الثانويةالعامة لعام ٥١٠٢/الدورة الشتوية

مدة الامتحان:

المبحث: الرياضيات / المستوى الثالث

اليوم والتاريخ: / / ٢٠١٥

الفرع: العلمى والإدارة المعلوماتية (المسار الثاني)

ملحوظة: لا تحاول حل هذا الامتحان الا بعد در استك للمادة بشكل دقيق .

ملحوظة: لا تنسى تطلع على الامتحان المقترح الشامل وعلى نفس الموقع

ملحوظة: لا تنسى الوقت عند الاجابة.

( كم من الوقَّت سيتغرق معك الامتحان ، علماً بان امتحان الوزارة اقصر من هذا الامتحان ) مُلحوظة: اجب عن الأسئلة الآتية جميعها وعددها (٦)، علما بان عدد الصفحات (٤) ٠

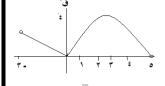
۲ . نها ق(س)= ٤ ......

٣. قيم س التي تجعل ق (س) غير متصل هي .....

٤. للاقتران نقاط حرجة عندما س تساوي هي . .....

٦ . الفترات التي يكون الاقتران ق (س) فيها متزايد .......

٧. للاقتران قبم عظمى مطلقة هى......٧


$$(1 - 1)$$
ق  $(1 - 2 + 2)$  ق را  $(1 - 2 + 2)$  ق را

 $\pi$ ) إذا كان ق $\pi$   $\pi$  وكان لمنحنى ق $\pi$  وكان لمنحنى ق $\pi$  عند س $\pi$  نقطة حرجة فان قيمة أ

4) الرسم التالي يمثل المشتقة الاولى للاقتران المعرف على الفترة [٣، ٥] اجب عما يلي ١ . النقاط التي يكون عندها نقطة حرجة هي .....

٢ . اوجد للاقتران القيم اقصوى ان وجدت وبين نوعها.....

٣ . فترات التزايد والتناقص ان وجدت .....



ه) اذا کان 
$$= (m^{2} - (m^{2} - 1) - 1) - 1 = m$$
  $= (m^{2} - 1) - 1 = m$   $= (m^{2} - 1) - 1 = m$   $= (m^{2} - 1) = m$ 

اوجد قيم ج ألتى تجعل الاقتران ق متصل عندما س = ٣

للاستفسار ت (۲۲۲۶ ۲۸۸۲۰) ثانوية اربد

$$Y = (w) = \frac{1}{1}$$
 اذا کانت نها ق (w) =  $\frac{1}{1}$  ، نها هـ (w) =  $-1$  اذا کانت نها ق (w) =  $-1$  افر س  $-1$  افر س

$$(w+\pi)$$
 اذا کانت نہا ق $(w+\pi)$  = نہا ق $(w+\pi)$  ) اذا کانت نہا ق $(w+\pi)$  فما قیمة م

١)اوجد

$$\frac{1 - 1 + \omega + \gamma + \omega \wedge + \omega}{1}$$

$$\omega \rightarrow \omega$$

$$\omega \rightarrow \omega$$

، س > ۰

، س = ، متصل على مجاله ، فما قيمة أ ، ب

، س < ٠

للاستفسار ت (۱۷۲۶، ۷۸۸۲) ثانویة اربد

$$(w) = \begin{cases} (w) = 1 \\ (w) = 1 \end{cases}$$

$$|\dot{c}| \text{ (w)} = \begin{cases} (w) = 1 \\ (w) = 1 \end{cases}$$

$$|\dot{c}| \text{ (w)} = \begin{cases} (w) = 1 \\ (w) = 1 \end{cases}$$

$$|\dot{c}| \text{ (w)} = 1$$

اوج د قيمة أ ، ب التي تجعل الاقتران قابل للاشتقاق عند س = ١

٢ ) باستخدام تعريف المشتقة اوجد هـَ( ٤ ) لاحدى الاقترانات التالية هـ (س ) = س م

$$(m)^{-1} = (m)^{-1} + (m)^{-1} = (m)^{-1} + (m)^{-1} = (m)^{-1}$$
 اذا کان ق $(m)^{-1} = (m)^{-1} =$ 

د ص د ص 
$$\pi$$
 کان س  $\pi$  جا ۲ن ، ص  $\pi$  جتا ۲ ن ، اوجد مان  $\pi$  عندمان  $\pi$  کان س  $\pi$  عندمان  $\pi$ 

$$^{7}$$
 ص  $^{7}$  اذا کان س + ص = س ص اثبت ان ص  $^{2}$  =  $^{2}$  س

$$( V )$$
 اذا كان ق $( w ) = 1$  فما قيمة الثابت أ  $( w ) = 2$  فما قيمة الثابت أ  $( w ) = 1$  فما قيمة الثابت أ  $( w ) = 1$ 

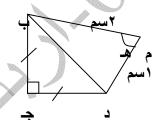
للاستفسار ت (۲۲۲۶ ۲۸۸۲۰) ثانوية اربد

## الســـوال الرابع (١٩ علامة):

- - ب) اذا كان المستقيم ٤ س ٢ ص + ٥ = ، يمس منحنى ق عند النقطة ( $^{"}$  ، ٢) وكان المستقيم  $^{"}$  و $^{"}$   $^{"}$  عمودياً على المماس لمنحنى ل عند النقطة ( $^{"}$   $^{"}$   $^{"}$

## الســـوال الخامس (١٤ علامة):

أ) جد نقط القيم القصوى و نوعها للاقتران 
$$> 0$$
 ،  $> 0$  ،  $> 0$  ق ( س ) =  $> 0$  ،  $> 0$  .  $> 0$  ق  $> 0$  .  $> 0$  .  $> 0$ 


١. فترات التزايد والتناقص للاقتران ق

٢. القيم القصوى المحلية والمطلقة منها

ج) اذا كان ق(س) = أ  $m^7$  + p  $m^7$  + p m + 1 اوجد قيم أ ، p اذا علمت ن للاقتران قيمة عظمى عندما p = 1 وقيمة حرجة عندما p = p

## الســـوال السادس (١٤ علامة):

أ)بدأت النقطتان ب ، جـ الحركة معاً من نقطة الاصل أ بحيث تتحرك النقطة ب على محور السينات الموجب بسرعة ٤ وحدات / ث وتتحرك النقطة جـ في الربع الاول وعلى منحنى الاقتران ق (س) = س بحيث يبقى دائما طول أ جـ يساوى ب جـ جد معدل التغير في مساحة المثلث أ ب جـ بعد ٢ ث من بدء الحركة .



ب) يمثل الشكل المجاور شكل رباعي م ب جد الذي فيه الضلع م ب ثابت وطوله ٢ سم وفيه م د ثابت طوله ١ سم الا ان وضعه متحول ، يمكنه ان يدور في مستوى الشكل حول القطعه م ، ويصنع مع الضلع الثابت م ب زاوية قدرها ه . اما الزاوية د ج ب فهي قائمة ،

والضلعان جد ، جب بمتساويان دائماً ، جد قيمة ها التي تجعل مساحة الشكل الرباعي عندها اكبر ما يمكن .

ج )يبيع مصنع للألعاب س من القطع من إنتاجه أسبوعيا بسعر القطعة الواحدة ( ٢٠٠ – ٢٠٠ س ) فلساً إذا كانت كلفة إنتاج س من القطع هي ( ٥٠ س + ٢٠٠٠) فلساً ما عدد القطع التي يجب أن ينتجها المصنع ليحقق أعظم ربح.

للاستفسار ت (۱۷۲۶، ۰۷۸۸۲) ثانویة اربد

```
الإجابة النموذجية لامتحـــان شهادة الدراسة الثانويةالعامة لعام ١٠١٥/الدورة الشتوية
             مدة الامتحان:
                                                    المبحث: الرياضيات / المستوى الثالث
                                      الفرع: العلمي والإدارة المعلوماتية (المسار الثاني)
اليوم والتاريخ: / / ٢٠١٥
ملحوظة: اجب عن الأسئلة الآتية جميعها وعددها (٦)، علما بان عدد الصفحات (٤) ٠
                                                  ـؤال الأول: (١٨ علامة)
                                                                      ١. هي {٢ ، ٤ }
                                                               ۲ . آهي ۲ }
۳ . هي ۳ }
                                                            ٤. س = {٤، ٣، ٢، ٢)
                                                            ه . هي (٣)ق (٣))
                                                           ($ , $ ] , [7 , 1] . 7
                                                               ٧. هي (٢) ق (٢))
                                                                            ٢) الحل:
                           0/\xi_{-} = 0/\xi + 0/\lambda_{-}
                                                 = -۲/٥ قَ ( ١ ) + ١/٥ قَ ( ١ )
                                                                            ٣) الحل:
                                                                  قُ(س) = ٠
                                                                 أ جتاس + ١ | = ٠
                                                              \Psi/\pi=س
                                                  Y = 1 + (Y/Y) ا Y = 1 + (Y/Y)
                                                                                4) الحل
                                                               ١ .س = {٥، ، ، ٣-}
                                ۲ . (۳- ، ق(۳-))صغری مطلقة، (٥ ، ق(٥))عظمی مطلقة،
                                                                ۳ .متزاید [ - ۳ ، ۵ ]
                                                ه) <u>الحل</u>: بما ان ق(س) متصل عند س = ٣
                                                            اذن نها ق(س) = ق ( ٣ )
                                                     س'_ (۳_۲ج) س_۲ج
                                                              س _ ٣
                                                     ( س- ۳)( س+ ۲ جـ )
                                                              W \longrightarrow W \longrightarrow W
                                                        نها (س + ۲ جـ)
                                              \Upsilon + \Upsilon = 1 ومنها \Upsilon = 3
                           للاستفسار ت (۱۷۲٤ ۲۸۸۲۰)
                                   ثانوية اربد
```

٧) الحل:

نفرض ان ص = س - ۲  
عندما س 
$$\rightarrow$$
 م - ۱ فان ص  $\rightarrow$  م- ۳  
و نفرض ان ص = س + ۳  
عندما س  $\rightarrow$  ٤  
نهـاق(ص)= نهـاق(ص

$$\begin{array}{ccc}
\vdots & & & \\
\vdots & & & \\
\vdots & & & \\
\bullet & &$$

## الســـوال الثاني: (١٨ علامة)

#### ١) الحل:

$$\frac{1 - 1 + \omega}{(\xi + \omega)\omega} + \frac{\omega}{(\xi + \omega)\omega$$

## ب) الحل:

للاستفسار ت (۲۲۲۶ ۷۸۸۲۶) ثانویة اربد محدة ممتادمة کل ما ۵۵ حدد تاریمه

$$\frac{(\Upsilon + \Upsilon + \omega)(\Upsilon - \Upsilon + \omega)}{(\pi \Upsilon)}$$
 جا $(\pi \Upsilon)$  جا $(\pi \Upsilon)$  جتا $(\pi \varpi)$  جا $(\pi \Upsilon)$  جا $(\pi \varpi)$  جا $(\pi \varpi)$  جا $(\pi \varpi)$  جا $(\pi \varpi)$  جا $(\pi \varpi)$ 

الحل:

$$(\frac{(1+\omega)+(0+\omega^{4})}{(\omega^{2}+\omega^{4})}) = \frac{(1+\omega)+(0+\omega^{4})}{(\omega+1)(1+\omega)} = \frac{(1+\omega)+(0+\omega^{4})}{(1+\omega)+(1+\omega)}$$

$$(\frac{1+\omega^{*}}{(0+\omega^{*})(1+\omega)}) = \frac{1}{(V-\omega^{*})(V+\omega)} + \frac{1}{(V-\omega)(V+\omega)} + \frac{1}{(V-\omega$$

د)الحل:

$$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{$$

ه) الحل:

$$\frac{|\underline{\omega}|}{|\underline{\omega}|} : \frac{|\underline{\omega}|}{|\underline{\omega}|} = \frac{|\underline$$

للاستفسار ت (۱۷۲٤ ۲۸۸۲۰) ثانوية اربد

( ٤

الحل:

الاقتران النسبي متصل دائماً على ح الا عند اصفار المقام اذن اذا كان المقام لا يحلل اذن لا يوجد له اصفار مقام والاقتران التربيعي لا يحلل في حال المميز حصفر

(°

الحل:

$$\tilde{b}(w) = i + a - i = 0 (w)$$
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 
 $\tilde{b}(w) = i + a - i = 0$ 

$$\tilde{\mathfrak{g}}(\cdot) = \mathfrak{i}_{+} \longrightarrow \tilde{\mathfrak{g}}(\cdot) = \tilde{\mathfrak{g$$

۱) <u>الحل</u> :

بما ان الاقتران قابل للاشتقاق عند س = ۱ اذن ق ( س ) متصل عند س = ۱ اذن ق ( س ) متصل عند س = ۱ اذن نها ق (س ) اذن نها -1 س -1 س -1 س -1 نها -1 س -1 ب س

 $7-\hat{l}$  ب =  $\hat{l}$  + ب +  $\hat{r}$ ومنها 7 أ + 7 ب = -7کذلك

قُو (۱) = قُ (۱)

للاستفسار ت (۲۲۲۶ ۲۸۸۲۰) ثانویة اربد محدة ممتاده فی کلیما هم حدد تاریخه

للاستفسار ت (٤٧٧٤ ، ٧٨٨٢) ثانوية اربد

$$\frac{cw}{cw} = \frac{1}{cw} + \frac{1}{cw$$

للاستفسار ت (١٧٢٤ ٢٨٨٧٠) ثانوية اربد

٧ ) الحل:

$$(oldsymbol{\delta} \cdot oldsymbol{\delta} - oldsymbol{\delta} \cdot oldsymbol{\delta} - oldsymbol{\delta} \cdot oldsymbol{\delta} = oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} = oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} = oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} \cdot oldsymbol{\delta} = oldsymbol{\delta} \cdot oldsymbol{\delta} = oldsymbol{\delta} \cdot oldsymbol$$

## الســــوال الرابع (١٩ علامة):

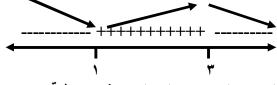
أ ) الحل :

$$\mathbf{Y} = \mathbf{Y} \mid \mathbf{X} \cdot \mathbf{Y} = \mathbf{Y}$$
 ومنها  $\mathbf{y} = \mathbf{Y}$ 

$$\ddot{\upsilon}(\dot{\upsilon}) = \ddot{3}(\dot{\upsilon}) = 7$$
 أ =  $\Lambda$  ومنها  $\frac{\dot{l} = 3}{\dot{\upsilon}}$  ف  $\dot{\upsilon}(\dot{\upsilon}) = 3$   $\dot{\upsilon}$   $\dot{\upsilon}$   $\dot{\tau}$   $\dot{\tau}$ 

للاستفسار ت (۱۷۲۶ ، ۷۸۸۲ ) ثانویة اربد

۱۲


#### ب) الحل:

$$(\bar{\mathbf{b}} \times \mathbf{b}) (\mathbf{T}) = \bar{\mathbf{b}} (\mathbf{T}) \times \bar{\mathbf{b}} (\mathbf{T}) \times \bar{\mathbf{b}} (\mathbf{T})$$
 $(\bar{\mathbf{b}} \times \mathbf{b}) (\mathbf{T}) = \mathbf{T}$ 
 $(\bar{\mathbf{b}} \times \mathbf{b}) (\bar{\mathbf{b}} \times \mathbf{b}) = \mathbf{T}$ 
 $(\bar{\mathbf{b}} \times \mathbf{b}) = \mathbf{T}$ 
 $(\bar{\mathbf{b}} \times \mathbf{b}) = \bar{\mathbf{b}} \times \mathbf{b}$ 
 $(\bar{\mathbf{b}} \times \mathbf{b}) = \bar{\mathbf{b}} \times$ 

## $(\ddot{b} \times \dot{b}) (\ddot{\tau}) = \ddot{b} (\ddot{\tau}) \times \dot{b} (\ddot{\tau}) + \dot{b} (\ddot{\tau}) \times \ddot{b} (\ddot{\tau})$ $(\ddot{b} \times \dot{b}) (\ddot{\tau}) = (7) \times (7) + (-1) \times (7) = 2$

# الســـوال الخامس (١٤ علامة):

### أ) الحل:



#### ب) الحل:

$$\vec{b}(m) = 7m' - m'' = 0$$
 ومنها  $m'(7-m) = 0$  ومنها  $\vec{b}(m) = 0$ 

۲. ق(- ۱) = - 
$$^{2}$$
 ومنها (- ۱، - $^{2}$ ) صغری مطلقة ق( ۳) =  $^{2}$  ومنها ( ۳،  $^{2}$  ) عظمی محلیة مطلقة

للاستفسىار ت (٤ ٢٧٢ ؛ ٧٨٨ ٢ .) ثانوية اربد

لمزيد من الاسئلة المقترحة على كل وحدة ومتابعة كل ما هو جديد تابعونا على صفحتي وعلى نفس الموقع الاستاذ ناصر الذينات

۱۳

۱۸ أ - ۱۸ ومنها أ = ۱ و بالتعويض في (۱) تكون ب = = = 1

# الســـوال السادس (١٤ علامة):

۱٤