الفِيل الأولِ: الذكاء الاصطناعي وتطبيقاته

بلجأ الإنسان إلى دراسة ناذج حاسوبية تحاكي قدرة العقل البشري على التفكير والتصرف كالإنسان في مواقف معينة ولو بشكل مدود عن طريق تطبيقات الذكاء الاصطناعي. وذلك لجاراة تطور العالم الرقمي والحاسوب في عصرنا الحالي والاستفادة منه وإيباد الحلول التي تناسب أعقد المشكلات.

مفهوم الذكاء الاصطناعي

شرع الخبراء في دراسة القدرات العقلية للإنسان وكيفية تفكيره وماولة محاكاتها عن طريق الحاسوب. لإنتاج بعض صفات الذكاء من قبل الآلة في ما يعرف بالذكاء الاصطناعي.

- تعريف الذكاء الاصطناعي :

الذكاء الاصطناعي علم من علوم الحاسوب يختص بتصميم وتثيل وبرجة ناذج حاسوبية في بجالات الحياة المختلفة، ، |تحاكي في عملها طريقة تفكير الإنسان وردود أفعالثه في مواقف معينة. لـلـذكاء الاحطناعي قوانين مبنية على دراسة خصائص النّكاء الإنساني وحاكاة بعض عناصره.

- المنهجحيات الأربع التي يقوم عليها موضوع الذكاء الاصطناعي :
 أ - التفكير كالإنسان.
 ب - التصرف كالإنسان.

- مِيدأ الختبار تورينغ :

يقوم هذا الاختبار بتو جيه بجموعة من الأسئلة الكتابية إلى برنامج حاسوبي عن طريق بجهوعة من
الأشخاص المكمين لمدة زمنية حددة، فإذا لم يستطع الاختبار تييز أن من يقوم بالإجابة (إنسان أم برنامجر) بنسبة • r٪ من عدد الأشخاص الذين يجرون الاختبار فإن البرنامج يكون قد بنج في الاخ الاختبار ويوصف بأنه برنامج ذكي أو أن الحاسوب حاسوب مفكر.

 كـكاوريه مدة خمس دقائق ولم يميزوا أنه برنامج بل ظنوا أنه إنسان.

- أهداف الذكاء الاصطناعي :

| - إنشاء أنظمة خبيرة تظهر تصرفاً ذكياً، قادرة على التعلم والإدارة وتقديم النصيحة لمستخدميها. r - تطبيق الذكاء الإنساني يف الآلة عن طريق إنشاء أنظمة تحاكي تفكير وتعلم وتصرف الإنسان.
 واحد في أثناء حل المسائل وهي الطريقة الأقرب الِلى طربقة تفكير الإنسان عند حل المسائل.

- لغات الذكاء الاصطناعي :

أ - لغة البرجة لسب (Lisp) ، لغة معالجة اللوائح. ب - لغة البرجة برولوغ (Prolog)، لغة البرجة بالمنطق.
تختلف برامج الذكاء الاصطناعي عن البرامج التقليدية في عدة نواح. حيث لا نستطيع أن نطلق على برنامج يقوم بكل مسألة تربيعية أنه من ضمن براء بامج الذيكاء الباء الاصطناعي ؛ لأنه يتبع خوارزمية حددة الخطوات للوصول إلى الحل. - مِيزات برامج الذكاءالاصصطناعي :

تنظيم المعرفة وترميزها وتخزينها إلى ما هو موجود يف الذاكرة، ويتطلب بناء برامج الذكاء الاصطناعي كميات هائلة من المعارف(الخبرات) الخاصة بجال معين ؤلرّبط بين المعارف المتو افرة والنتائج.
:
تتعامل برامج الذكاء الاصطناعي مع البيانات الرمزية (الأرقام والحروف والرموز)، التي تعبرعن المعلومات بدلاً من البيانات الرقمية الممثلة بالنظام الثنائي، عن طريق عمليات المقارنة المنطقية والتحليل.
: القدرة على التعلم أو تع تِ
يعني قدرة برنامج الذكاء الاصطناعي على التعلم آلياً عن طريق الحبرة المخزنة داخله : كقدرته على إيجاد نطط معين عن طريق عدد من المدخلات، تصنيف عنصر إلى فئة معينة، بعد تعرفه عدياً من من
العناصر المتشابهة.
|l اقتضت الحاجة إلى ذلك.
全 - التعامل مع البيانات غير المكتملة أو غير المؤكدة :
قدرة برامج الذكاء الاصطناعي على إعطاء حلول مقبولة حتى لو كانت المعلومات لديها غير مكتملة أو غير مؤكدة. على سبيل المثال ، قدرة برنامج تشخيص أمراض على إعطاء تشخيص لـالة مرضية طارئة من دون الحصول على نتائج التحايل الطبية كاملة.

$$
\begin{aligned}
& \text { • تطيقيات الذكاء الاصطناعي: } \\
& \text { ب - الأنظمة الخبيرة. } \\
& \text { ج - الشبكات العصبية. } \\
& \text { هـ - الأنظمة البصرية. } \\
& \text { ح - أنظمة الألعاب. } \\
& \text { ز - أنظمة تييز خط اليد. }
\end{aligned}
$$

علم الرويوت

ثانياً

- مفهوم علم الرويوت و الرويوت:

- اشتقت كلمة رويوت لنوياً من الكلمة التشيكية رويوتا (Robota) التي ظهرت لأول مرة في مسرحية للكاتب المسرحي
التشيكي (كارل تشابيك) في عام •19ヶ، وتعني (العمل الإجباري) أو (السخرة).
 التاريخ في خيال العلماء وأفلام الخيال العلمي، وقدمت الكثير من التصورات عن سيطرة الآلة و الروبوت على حياة الإنسان؛
وفتح ذلك المجال أمام العلماء والمخترعين لابتكار وتصميم الكثير من الآلات التي تنفذ أعمالاً غختلفة تتعدد مكالاتها. - علم الروبوت: العلم الذي يهتم بتصميم وبناء وبرجة الروبوتات لتتفاعل مع البيئة الميطة، وهو من أكثر تقنيات الذكاء الاصطناعي تقدماً من حيث التطبيقات التي تقدم حلولاً للمشكاتلات. - الروبوت : آلة (إلكترو- ميكانيكية) تبرمج بوساطة برامج حاسوبية خاصة للقيام بالعديد من الأعمال الخطرة والشاقة والدقيقة خاصة.

-تاريخ نشأة علم الرويوت:

- ظهرت فكرة الروبوت في العصور القدية قبل الميلاد وذلك من خلال تصميم آلات أطلق عليها (آلات ذاتية الحركة).

قام العالم المسلم بد(الجزري) أحد أعظم المهندسين والميكانيكيين
والمخترعين المسلمين وصاحب كتاب (معرفة الحيل الهندسية)، بتصميم ساعات مائية وآلات أخرى وإنتاجها مثل آلة لغسل اليدين تقدم الصابون والمناشف آلياً لمستخدمها.

تح ابتكار دمى آلية في اليابان ، قادرة على تقديم الشاي أو إطلاق
السهام أو الطلاء وتدعى (ألعاب كاراكوري).

- في القرنين الثاني عشر والثالث عشر للميلاد:

\qquad
\square
\square
- في القرن التاسع عشر :

ظهر مصطلح الذكاء الاصطناعي وصمم أول نظام خبير لـل مشكلات رياضية صعبة، كما صمم أول ذراع روبوت في الصناعة.

ظهر الجيل الجديد من الروبوتات التي تشبه في تصميمها جسم الإنسان، وأطلق عليها الإنسان الآلي استخدمت في أبحاث الفضاء |من قبل وكالة ناسـا.

-صِات آلة الرويوت و مكوناتها:

ملاحظة هامة : يظن الكثيرون أن الروبوت آلة أوتوماتيكية مصممة على هيئة جسم إنسان بيدين وقدمين وهذا مفهوم غير صحيح. إذ لا يككن أن يطلق على أي آلة يتم التحكم بها للقيام بعمل ما (رويوت).

- لكي يطلق على أي آلة مسمى (الرويوت) يمبِ أن تِّمع ثلاث صفات هي : (1) الاستشعار: يمثل المدخلات، كاستشعار الحرارة أو الضوء أو الأجسام الميطة. (Y) التخطيط والمعالجة : كأن يخطط الروبوت للتوجه إلى هدف معين، أو يغيّر اتجاه حركته، ، أو يدور بشكل معين. (ץ) الاستجابة وردة الفعل : تثثل ردة الفعل على ما ت أخذه كمدخلات.

صفات آلة الرويوت

إعداد وتنسيق : المعلم سامر جديع

- تصمم آلة الرويوت بأشكال وأحجام يختلفة حسب المهمة التي ستؤديها كنقل المتجات أو لحامها أو طلائها أو غير ذلك. - من أكثر أنواع الروبوتات استخداماً وانتشاراً في جيال الصناعة وأبسطها من ناحية التصميم دويوت بسيط علم شكل ذراعِ

- ميكونات (أحزاء) الرويوت:

المهمة(الوظيفة)

تشبه ذراع الإنسان وتحتوي على مفاصل صناعية لتسهيل حركتها عند تنفيذ الأوامر الصادرة إليها حسب الغرض المصمم الروبوت من أجله.

المكون(الجزء)

ذلك الجزء النهائي من الرويوت الذي ينغّذ المهمة التي يصدرها الروبوت.
 وقد تكون في الروبوتات الطبية أداة لحياطة الجروح.

وهو دماغ الرويوت، يستقبل البيانات من البيئة الميطة ثم يعالجها عن طريق التعليمات البركية المخزنة داخله؛ ، ويعطي الأوامر اللازمة للاستجابة لها.

وهو عضلات الحاسوب المزء المسئول عن حركة الروبوت حيث يكوّل أوامر المتحكم إلى حركة فيزيائية.

تشبه الحساسات في وظيفتها وظيفة الـؤواس الحمسة في الإنسان تماماً. تعد صلة الوصل بين الرويوت والبيئة الحيطة، حيث تكون وظيفتها جمع البيانات من الييئة الميطة ومعالجتها ليتم الاستجابة لها من قبل الروبوت بفعل معين.
مكونات (أجزاء) الرويوت

بضض المساسات ورظفية كل لمها

شكله	وظيفته	اسم الحساس
	يستشعر التماس بين الروبوت وأي جسم مادي خارجي الروبوت واليد.	$\begin{gathered} \text { حساس اللمس } \\ \text { (Touch sensor) } \end{gathered}$
	استشعار المسافة بين الروبوت والأجسام المادية ؛ عن طريق إطلاق موجات لتصطدم في الجسم وترتد عنه. ويناءً علبه يحسب المسافة ذاتياً.	حساس المسافة (Distance sensor)
	استشعار شدة الضوء المنعكس من الأجسام المختلفة والتهييز بين ألوانها.	حساس الضوء (Light sensor)
	يشبه الميكروفون، يستشعر شدة الأِّوات الميطة ؛ ويمولها إلى نبضات كهربائية ترسل إلى دماغ الروبوت.	حساس الصوت (Sound sensor)

- أصناف (أنواع) الرويوتات:
 يكن تصنيف الروبوتات حسب معيارين هما :
 (() حسب إمكانية تنقلها.

- أنواع الروبوتات حسب الاستخدام والخندمات التي تقدميا : (1) الرويوت الصناعي :
- يستخدم في الكثير من العمليات الصناعية مثل عمليات الطلاء بالبخ الحراري في المصانع ؛ لتقليل تعرض العمال لمادة الدهان التي تؤثر على صحتهم. - يستخدم في أعمال الصب وسكب المعادن ؛

حيث تتطلب هذه العمليات التعرض لدرجة حرارة عالية جداً لا يستطيع الإنسان تحملها. - يستخدم في عمليات تجميع القطع وتثيتيتها في أماكنها.
(Y) الروبوت الطبي :

- يستخدم في إجراء العمليات الجراحية المعقدة مثمل جراحة الدماغ والقا والبلب المفتوح. - أبرز استخدامات الرويوت الطبي مساعدة ذوي الاحتياجات الخاصة كذراع الروبوت التي تستطيع استشعار النضضات العصبية الصادرة عن الدماغ والاستجزابة لها.
(r) الروبوت التعليمي

صممت روبوتات لتحفيز الطلبة وجذب انتباههم إلى التعليم وبأشكال ختالفة وقد تكون على هيئة معلم.
() الروبوت في الفضاء
استخدم في المركبات الفضائية وفي دراسة سطح الميخ.
(0) الروبوت في الجال الأمني

استخدم في مكافحة الحرائق وإبطال مفعول الألنام والتنابل ونقل المواد السامة المشعة.

- تقسم الروبوتات حسب بكال حركتها وإمكانية تيو الهـا ضمن مساحة معينة إلى نوعين : (1) الرويوت الثابت :

يستطيع العمل ضمن مساحة حدودة حيث إن بعضها يتم تثبيت قاعدته على أرضية ثابتة وتقوم ذراع الروبوت بأداء المهمة المطلوبة بنقل عناصر أو حملها أو ترتيها بطريقة معينة. (Y) الرويوت الجوّال (المتنقّل):

تسمح برجته بالتحرك و والتنقل ضمن مساحات متنوعة لأداء مهامه لذا تجده يلكك جزءاً يساعده على الحركة.
(() الروبوت ذو الأرجل.
(1) الروبوت ذو العجلات.
() () الروبوت على هيئة إنسان/ الرجل الآلي.

- فوائد استخدام الرويوت في بجال الصناعة :

1
 r ع - إمكانية التعديل على البرنامج المصمم للروبوت لزيادة المرونة في التصنيع حسب المتطلبات التي تقتضيها التما العملية. 0 - يستطيع العمل تحت الضنط وفي ظروف غير ملائمة لصحة الإنسان. كأعمال الدهان ورش المواد الكيميائية ودرجات الرطوبة والحرانـرارة العاليتينين.

- عحددات استخخدام الروبوت في بجال الصناعة :
 (Y) (Y) لا يستطيع الروبوت القيام بالأعمال التي تتطلب حسًاً فنياً أو ذوقاً في التصميم أو إبداعاً.

 (0) مساحة المصانع التي ستستخدم الرويوتات يبب أن تكون كبيرة جداً ؛ لتجنب التصادمات والحوادث في أثناء حركتها
- • ظهر مفهوم النظم الخبيرة أول مرة من قبل العالم (إدوارد فيغنبوم). - أوضح أن العالم ينتقل من معالجة البيانات إلى معالجة المعرفة واستخدامها في حل المشكلات واقتراح الحلول المثلى بالاعتماد على محاكاة الشخص الخنير في حل المشكلات.

- مفهوم النظام الحبير

برنامج حاسوبي ذكي يستخدم بجموعة من قواعد المعرفة في جال معين ؛ للم المشكلات التي تختاج إلى الخبرة البشرية.
ويتميز عن البرنامج العادي بقدرته على التعلم واكتساب الخبرات الجديدة.
 النظم الخبيرة مرتبطة بمجال معين ؛ فإذا صممت للم مشّكلة معينة فلا يككن تطبيقها أو تغييرها للل مشكلة أخرى.

أمثلة عملية على أهم برامج النظم الحبيرة

-أنواع المشكلات "المسائل"التيّ تيتا إلى النظم الييرة:
(1) (1) التشخيص :تشخيص أعطال المعدات لنوع معين من الآلات، التشخيص الطبي لأمراض الإنسان. (Y) التصميم : إعطاء نصائح عند تصميم مكونات أنظمة الحاسوب والدارات الكهربائية. (Y) التخطيط: التخطيط لمسار الرحلات الجوية. () (التفسير: تفسير بيانات الصور الإشعاعية. (0) التنبؤ : التبؤ بالطقس وأسعار الأسهم.

- مكونات الأنظمة الخبيرة:

قاعدة المعرفة، ذاكرة العمل، حرك الاستدلال، واجهة المستخدم.
يتغاعل المستخدم مع النظام الخبير عن طريق طرح الاستغسارات أو الاستعلام عن موضوع ما مبجال معيرن، ويقوم النظام الخبير بالرد عن طريق إعطاء نصيحية أو الـلمل المقترح للمستخلمـ.

المكونات الرئيسة للنظم الخبيرة
(1) قاعدة المعرفة:

قاعدة بيانات تحتوي على كجموعة من الحقائق والمبادئ والخبرات بججال معرفة معين، وتستخدم من قبل الخبراء لـل المشكلات.

- الفرق بين قاعدة المعرفة وقاعدة البيانات:

قاعدةة اليسانات: تتكون من كجموعة من البيانات والمعلومات المترابطة في ما بينها. قِاعدة المُعرفة : تبنى بالاعتماد على الخبرة البشرية بالإضافة إلى المعلومات والبيانات. تتميز قاعدة المعرفة بالمرونة ؛ حيث يككن الإضافة عليها أو الحذف منها أو التعديل عليها من دون التأثير في المكونات الأخرى للنظام الخبير.

برنامج حاسوبي يقوم بالبحث في قاعدة المعرفة لـل مسألة أو مشكلة ، عن طريق آلية استنتا تحاكي آلية عمل الخنير عند الاستشارة في مسألة ما لإيماد الحل واختيار النصيحة المناسبة. (Y) ذاكرة العمل : جزء من الذاكرة خصص لتخزين المشكلة المدخلة بوساطة النظام والمطلوب إيماد حل لها. ((£) واجهة المستخدم:
وسيلة تفاعل بين المستخدم والنظام الخبير، تسمح بإدخال المشكلة والمعلومات إلى النظام وإظهار النتيجة. تُدخل المعلومات من خلال الاختيار من الخيارات المصاغة على شكل أسئلة وإجابات ؛ لتزويد النظام
بعلومات عن موقف كحدد.

يتطلب تصميم واجهة المستخدم الاهتمام باحتياجات المستخدم، مثل سهولة الاستخدام، وعدم الملل أو التعب من عملية إدخال المعلومات والإجابات.

$$
\begin{aligned}
& \text { ((() ()) (} \\
& \text { يسال النظام المُستخدم عن أعطال السيارة ويييب المستخدم عن الأسئلة ويككن ملاحظة الآتي : } \\
& \text { (1) (} 1 \text { (} 1 \text { (}
\end{aligned}
$$

واجهة المستخدم لنظام خبير تتشخيص أعطال السيارات.
بعد إجابة المستخدم عن الكثير من الأسئلة التي يطرحها النظام عن طريق الشاشات تظهر التوصيات والحلول.

شاشة الحلول المقترحة لمشكلة السيارة.

- مزايا (فوائد) النظم الحبيرة:

(() النظام الحبير غيرمعرضض للنسيان ؛ لأنه يوثّق قراراته بشكل دائم. (Y) المساعدة على تدريب المختصين ذوي الحبرة المنخفضة ؛ يعود الفضل إلى وسائل التفسير وقواعد المعرفة التي تخدم بوصفها وسائل للتعليم. (گ) توفر النظم الحبيرة مستوى عالياً من الخبرات عن طريق تجميع خبرة أكثر من شخص في نظام واحد. () (نشر الحبرة النادرة إلى أماكن بعيدة للاستفادة منها في أماكن متفرقة في العالم. (0) القدرة على العمل بعلومات غير كاملة أو مؤكدة حتى مع الإجابة (لا أعرف)يستطيع النظام الخبير إعطاء نتيجة، على الرغم من أنها قد تكون غير مؤكدة.

- يحددات النظم الحبيرة:

(() عدم قدرة النظام الحبير على الإدراك والحدس بالمقارنة مع الإنسان الحبير.
(Y) عدم قدرة النظام الحبير على التجاوب مع المواقف غير الاعتيادية أو المشكلات خارج نطاق التخصص.

لـا (Y) صعوبة جمع الحبرة والمعرفة اللازمة لبناء قاعدّة المعرفة من الخبراء.
من الجدير بالذكر، أن النظم الخبيرة لا يككن أن تحل عحل الجبيرنهائيأ على الرغم من أن التنائج التي تتوصل إليها في بعض البجلات تتطابق أو حتى تفوق النتائج التي يصل إليها الخبير؛:إلا أن هذه النظم تعمل جيداً فقط ضمن مونيا لـــدد مثل تشخيص الأعطال لنوع معين من الآلات، وكلما اتسع نطاق المجال ضعفت قدرته الاستنتاجية.

الفصصل الثناني: خوارزميات البحث في الذكاء الاصطناعي

أسهمت الحوسبة الحديثة والإنترنت في الوصول إلى كميات كبيرة من المعلومات ؛ لذا أصبحت القدرة على البحث بكفاية في هذه المعلومات متطلباً ضرورياً.

لقد صمم باستخدام الذكاء الاصطناعي عدد كبير من خوارزميات البحث لـل أصعب المشكلات في الكثير من التطبيقات. من الأمثلة على هذه التطبيقات عمليات الملاحة.

مفهوم خوارزميات البحث

- خوارزميات البحث : سلسلة من الخطوات غير المعروفة مسبقاً للعثور على الحل الذي يطابق بجموعة من المعايير من بين بجموعة من الحلول المحتملة.
- مبدأ عمل خوارزميات البحث :

يقوم على أخذ المشكلة على أنها مدخلات ثم القيام بسلسلة من العمليات والتوقف عند الوصول إلى الهدف.

مبدأ عمل خوارزميات البحث

- وُجدت خوارزميات البحث في الذكاء الاصطناعي لحل المشكلات ذات الصفات الآتية : ا - لا يوجد للحل طريقة تحليلية واضحة، أو أن الحل مستحيل بالطرائق العادية. Y Y بيتاج الحل إلى عمليات حسابية كثيرة ومتنوعة لإيجاده (مثل :الألعاب، التشفير، وغيرها).
ب - يحتاج الحل إلى حدس عالي (مثل الشطرنج).

هي الطريقة المستخدمة للتعبير عن المسالة (المشكلة) لتسهيل عملية البحث عن الحلول الممكنة من خلال خوارزميات البحث - بعض المشكلات المعقدة يصعب وصفها بهذه الطريقة. - تجد شجرة البحث حلاً محتملاُ للمشكلة عن طريق النظر في البيانات المتاحة بطريقة منظمة تعتمد على هيكلية الشجرة.

تثثل كل نقطة حالة من حالات فضاء البحث ؛ حيث أن فضاء البحث هو الحالات الممكنة جميعها لحل المشكلة. ب - جذر الشجرة: هو النقطة الموجودة أعلى الشجرة وهو الحالة الابتدائية للمشكلة ؛ أي أنها نقطة البداية في البحث. ج - الأب : هو النقطة التي تتفرع منها نقاط أخرى ، والنقاط المنفرعة تسمى الأبناء. النقطة الميتة : النقطة التي ليس لديها أبناء (تفرعات). د - النقطة الهدف/الحالة الهدف: هي الهدف المطلوب الوصول إليه أو الحالة النهائية للمشكلة. هـ - المسار : جموعة من النقاط المتتالية في شجرة البحث. - تحل المشكلة عن طريق إتباع خوارزمية البحث للوصول إلى مسار الحل من الحالة الابتدائية إلى الحالة الهدف. - يكن أن يكون هناك أكثر من مسار واحد صحيح للحل ولكن أقصر مسار سيكون هو المسار الأفضل.

- مثال, :تأمل الشكل الآتي ثم أجب عن الأسئلة التي تليه: علماً بأن هذا الشكل جزء من شجرة بحث للعبة (X O) بين لاعبين ويقوم اللاعبان بالتناوب ؛ حيث الاليث يقوم اللاعب الأول (الحاسوب) بوضع الحرف (X) واللاعب الثاني (المستخدم) بوضع الحرف (X) (O).

(S,D,C,H,E,F,G,K,M,R,N,B,Q,W)
ب - كم عدد حالات فضاء البحث؟أذكرها؟ H-R-W

عدد النقاط الميتة هو 7.
د - ما عدد النقاط الميتة؟
الحالة الهدف هي الحالة التي تثثل الفوز باللعبة.
النقاط (N,W) تثثل حالة فوز الحاسوب. هـ - ما الحالة الهدف في هذه الشجرة؟ النقاط (E,G) تثثل حالة فوز المستخدم.

- يوجد الكثير من آليات وطرائق البحث في الذكاء الاصطناعي، وتختلف خوارزميات البحث حسب الترتيب الذي تختار فيه النقاط في شجرة البحث في أثناء البحث عن الحالة الهدف. - من أنواع خوارزميات البحث:
 1 - تأخذ المسار أقصى اليسار في شجرة البحث وتفحصه بالاتجاه إلى الأمام حتى تصل إلى نقطة ميتة. r ويختبر ذلك المسار حتى نهايته. r - تكرر العملية للوصول إلى النقطة الهدف. (Y) خوارزمية البحث في العرض أولاً (البحث الأفقيى).

تقوم بفحص النقاط جميعها في مستوى واحد للبحث عن الحل قبل الاستمرار إلى النقاط بالمستويات التالية.
(
تعمل على حساب معامل حدسي (بُعد النقطة الحالية عن النقطة الهدف) وعليه تقرر المسار الأفضل.

- هذه الحوارزميات لا تـتلك أي معلومات مسبقة عن المسألة التي ستّوم بكلها، وتستخدم إستراتيجية ثابتة للبحث، بيا تفحص كل حالات الفضاء الواحدة تلو الأخرى لمعرفة إذا كانت مطابقة للهدف المطلوب أم غير مطابقة. - الشيء الوحيد الذي يكن لهذه الخوارزميات القيام به، هو التميز بين حالة غير الهدف من حالة الهدف.

- همالر : قارن بين خوارزمية البحث بالعمق أولأ وخوارزمية البحث بالعرض أولاً.

- مثالم : تأمل الشكل الآتي ثم أجب عن الأسئلة التي تليه:

جد سار البحث عن المالة اليدف باستخخلام خواريزمية اليحث في العمق أولاَّ؟ علمأ بأن (E) هي المالة الهدف.

R-A-C-D-B-E

- مثالم : تأمل الشكل الآتي ثم أجب عن الأسئلة التي تليه، علماً بأن النطة (K) هي الحالة الهدف.

ما مسار البحث عن الحالة اليدف باستخدام خوارزمية البحث في العمق أولاً ؛ مل هو المسار الأفضل للحل؟
S-A-C-E-F-G-H-J-K

ليس هو المسار الأنضل لأن المسار (S-F-G-J-K) هو المسار الأنضل لأنه الأقصر.

- مثال؛ : تأمل الشكل الآتي ثم أجب عن الأسئلة التي تليه؟ | O | O | \times |
| :--- | :--- | :--- |
| O | \times | |
| | \times | |

O	O	\times
O	\times	\times
	\times	

	\mathbf{B}	
O	O	\times
O	\times	
\times	\times	

$$
\begin{array}{l|l|l|l}
\\
\hline \mathrm{O} & \mathrm{O} & \times \\
\hline \mathrm{O} & \times & \times \\
\hline \mathrm{O} & \times & & \mathrm{O} \\
\hline \mathrm{O} & \mathrm{O} & \times \\
\hline & & \times & \mathrm{O} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{c|c|c}
& w \\
0 & O & \times \\
\hline \mathrm{O} & \times & \mathrm{O} \\
\hline \times & \times & \times
\end{array}
\end{aligned}
$$

جد مسار البحث عن الحالة الهدف باستخدام خوارزمية البحث في العمق أولاً ؛ علماً بأن الهدف فوز اللاعب X.
S-A-M-E-R

- مل يوجد مسار آخر للحل؟ ما هو؟ ومل يككن الوصول إليها باستخدام خوارزمية البحث في العمق أولاً. يوجد مساران آخران للحل، هما:
(1) $\mathrm{S}-\mathrm{B}$
(2) $\mathrm{S}-\mathrm{N}-\mathrm{H}-\mathrm{K}-\mathrm{W}$ لا يككن الوصول إليها باستخدام خوارزمية البحث في العمق أولاً.
- سؤال هام : تأمل الشكل الآتي ثم أجب عن الأسئلة التي تليه، علماً بأن الحالة الهدف هي النقطة (G).

|أ. ما مسار البحث عن الحالة الهدف باستخدام خوارزمية البحث في العمق أولاً؟

ب. هل يوجد مسار آخر للحل؟ ما هو؟ وهل يكن الوصول إليها باستخدام خوارزمية البحث في العمق أولاً.

VA إِحابات الفصل الأول - الذكاء الاصطناعي صفحتي

الإجابة

علم من علوم الحاسوب يختص بتصميم وتثيليل ويربة ناذئج حاسوبية في بجالات الحياة المختلفة تحاكي في عملها طريقة تفكير الإنسان وردود أفعاله في مواقف معينة.

ب - النظم الخبيرة:
برامج حاسوبية ذكية تستخدم بجموعة من قواعد المعرفة في جال معين لحل المشكلات التي تختاج إلى
الخبرة البشرية بطيقة مشابهة مع الطريقة التي يتبعها الخبير البشري ويتميز النظام الخبير عن البرنامج
العادي بقدرته على التعلم واكتساب الخبرات الجديدة.

ج - علم الروبوت : العلم الذي يهتم بتصميم وبناء وبرجة الروبوتات للنفاعل مع البيئة الميطة وهو أكثر تقنيات الذكاء الاصطناعي تقدماً من حيث التطبيقات التي تُقدَّم فيها حلولاً للمشاكل.

(Y) التفكير منطقياً.	(1) التفكير كالإنسانٌ
(\%)) التفكير (Y) الغطيراً.	(r) التصرف كالإنسان.

- تحديد نوع الحساس المناسب حسب الوظيفة التي يؤديها :

وظيفته	اسم الحساس
استشعار المسافة بين الروبوت والأجسام المادية.	حساس المسافة
استشعار التماس بين الروبوت وأي جسم مادي خارجي كالما لإلمدار.	حساس اللمس
استشعار الضوء المنعكس من الأجسام المختلفة والتهييز بين ألوانها.	حساس الضوء
استشعار شدة الأصوات الحيطة وتحيلها إلى نبضات كهربائية.	حساس الصوت

- مبدأ اختبار تورينغ : يقوم هذا الاختبار بتوجيه جمهوعة من الأسئلة الكتابية إلى برنامج حاسوبي عن طريق بجموعة من الأشخاص المكمين لمدة زمنية حكددة، فإذا لم يستطع الاختبار تيميز الانيز أن من يقوم
 نجح في الاختبار ويوصف بأنه برنامج ذكي أو أن الحاسوب حاسوب مفكر.
| • بجالات استخدام الرويوت :
- يستخدم في الكثير من العمليات الصناعية مثل عمليات الطلاء بالبخ الحراري في المصانع ؛ لتقليل تعرض العمال لمادة الدهان التي تؤثر على صحتهم. - يستخدم في أعمال الصب وسكب المعادن ؛ حيث تتطلب هذه العمليات التعرض لدرجة حراد المارة عالية جداً لا يستطيع الإنسان تحملها. - يستخدم في عمليات تجميع القطع وتثيتيتها في أماكنها. (ب) التعليم:
صممت روبوتات لتحفيز الطلبة وجذب انتباههم إلى التعليم وبأشكال ختالفة وقد تكون على هيئة معلم.

- أنواع المشكلات التي تحتاج إلى النظم الخبيرة: (Y) التصميم.	7
- الفرق بين قاعدة البيانات وقاعدة المعرفة : قاعدة البيانات: تتكون من كجموعة من البيانات والمعلومات المترابطة في ما بينها. قِاعدة المُوفةِ : تبنى بالاعتماد علئل الخبرة البشرية بالإضافة إلى المعلومات والبيانات. وتتميز قاعدة المعرفة بالمرونة ؛ حيث يككن الإضافةّ عليها أو الحذف منها أو التعديل عليها من دون التأثير في المكونات الأخرى للنظام الخبير.	v

(أ) قاعدة المعرفة. (ب) حرك الاستدلال. (ج) ذاكرة العمل. (د) واجهة المستخدم.

إِحابات أسئلة الفصل الثاني - خوارزميات البحث صفعحة 19

 الإجابة- وضح المقصود بكل ما يأتي :

أ - خوارزمية البحث : سلسة من الخطوات غير المعروفة مسبقاً للعثور على الحل من بين جمهوعة من الملول الحتملة لإيماد الحل الذي يطابق كجموعة من المعايير. ب - الحالة الابتدائية :النتطة الموجودة في أعلى شجرة البحث وتسمى جذر الشجرة. ج - المسار : بجموعة من النقاط المتتالية في شجرة البحث.

- أي من العبارات الآتية صحيحة وأيها خاطئة :

أ - تعد خوارزميات البحث من طرق حل المشكلات في الذكاء الاصطناعي (صحيحة). ب - تستخدم خوارزمية البحث بالعمق أولاً معلومات مسبقة عن المشكلة المطلوب حلها في عمليات البحث. (خاطئة).

ج - النقطة الميتة هي النقطة الهدف. (خاطئة) د - الحالة الابتدائية تثثل جذر الشجرة. (صحيحة)

- تأمل الشكل الآتي(شجرة البحث) ثم أجب عن الأسئلة التي تليه، علمأ بأن النقطة (K) الحالة الهدف:

إِحابات أسيئلة الوحلة الثالثة صفحة 91

- لا يككن أن تحل النظم الخبيرة مكان الإنسان الخبير نهائياً.

الآلات، وكلما اتسع نطاق الجمال ضعفت قدرتها الاستنتاجية. - استخدام خوارزمية البحث في العمق أولاً لا يعطي دائمأ الحل الأقصر للحل. لأن هذه الخوارزمية تأخذ المسار أقصى اليسار في شجرة البحث وفحصه بالا بالجاه للأمام حتى يصل إلى الى
 فحصه، ويختبر ذلك المسار حتى نهايته، ، ثم يتم تكرار العملية حتى إيماد النقطة الهدف.

وبالتالي ليس بالضرورة أن يكون هو المسار الأقصر.

- تأمل الشكل الآتي(شجرة البحث) ثم أجب عن الأسئلة التي تليه، علماً بأن الهدف هو فوز اللاعب X.

$$
\begin{array}{l|l|l|l|l}
& & & & \text { L } \\
\text { D } & & \\
x & 0 & x \\
\hline x & 0 & 0 & 0 & x \\
\hline 0 & x & x & 0 & 0 \\
\hline x & x & 0
\end{array}
$$

M

$$
\mathrm{N}
$$

$$
\begin{array}{l|l|l}
x & 0 & x \\
\hline 0 & 0 & 0 \\
\hline x & x & x
\end{array}
$$

$$
\begin{array}{c|c|c}
x & 0 & x \\
\hline x & 0 & 0 \\
\hline 0 & x & x
\end{array}
$$

A,B,E,F,C,G,H,I,J,K,D,L,M,N	أ - عدد حالات فضاء البحث مع ذكرها : (£ إلالة)
A	ب - جذر الشجرة هو :
D, L, M, H, J, N	ج
A-B-C-D-G-L	د - مسار البحث باستخدام خوارزمية البحث في العمق أولاً:

