الوحدةالثانية

2018

التأكسد والاختزال

المنهاح الجديد

W. W. W.

إيادالسميرات

· **V**9**V**• **T**AAV•

المسؤال:

حدّد الذرة التي تأكسدت والتي اختزلت في التفاعلات الآتية:

*عددالتأكسد

السالبة) التي تحملها الذرة عند

ارتباطها بغيرها من الذرات في

المركبات المختلفة .

$$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2$$

$$Ni + 2H^+ \longrightarrow Ni^{2+} + H_2$$

$$Cr + Sn^{2+} \longrightarrow Cr^{3+} + Sn$$

$$CuO + H_2 \longrightarrow Cu + H_2O$$

$$2Zn +O_2 \longrightarrow 2ZnO$$

التأكسك : هو عملية فقد الإلكترونات (نقصان الشحنة)

$$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$$

عدد التأكسد هو الشحنة الفعلية (الموجبة أو

الاختزال: هو عملية كسب الإلكترونات (زيادة الشحنة)

$$2Cl^{-}(aq) + 2e^{-} \longrightarrow Cl_{2}(g)$$

أنامثال 🕜:

حدد أي الذرات (أو الأيونات) تأكسدت وأيها اختزلت .

$$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$$

الحل:

فقدت الكترونات (تأكسد) فقدت الكترونات (تأكسد)
$$2Mg(s) + Q_2(g) \longrightarrow 2MgO(s)$$
 كسب الكترونات (اختزال)

أ مثال (١٠)

حدد أي الذرات (أو الأيونات) تأكسدت وأيها اختزلت .

$$Cu + Ag^+ \longrightarrow Cu^{2+} + Ag$$
 $: الحل الحل$

√ تأكسد ⇔ Cu

 $Ag \Leftrightarrow اختزال \checkmark$

قواعد لحساب عدد التأكسد:

عدد التأكسد لإي عنصر حر = صفر .

 $\ldots P_4$ ، $Cl_{2(g)}$ ، $Cu_{(s)}$ ، $K_{(s)}$: أمثلة

جميع أعداد التأكسد لها = صفر.

😙 عدد تأكسد الأيون البسيط = الشحنة الظاهرة

علىه.

أمثلة:

1+ = عدد التأكسد = + 1 K^{+}

 Υ + = عدد التأكسد \hookrightarrow Mg^{2+}

-Br¹ عدد التأكسد = -۱

الوحدة الثانية (التأكسد والإختزال) / اياد السميرات (٧٩٧٠٣٨٨٧٠)

- (٣) تذكر هذه النقاط:
- ${
 m Li}$,) عدد تأكسد عناصر المجموعة الأولى (

Na , K) في جميع مركباتما = (+ ۱)

1+= Kمثل : $\underline{KClO_4}$ ع.ت لــ $\underline{KClO_4}$

۱+ = Na ع.ت <u>Na</u>OH

<u>Li</u>AlH₄ → ع.ت لــــ Li

Ba, Ca) عدد تأكسد عناصر المجموعة الثانية (

Mg (, Mg) في جميع مركباتها = (۲+) مثل : <u>Ca</u>O → ع.ت لــــ ۲+ = Ca

7+ = Mgع.ت لـ $MgSO_4$

= عدد 1 عدد 1 عدد الهيدروجين في معظم مركباته = (+1) .

 \dots ، H_2O_2 ، KOH ، HNO_3 مثل

> Na<u>H</u> : مثل NaB<u>H</u>4 LiAlH4

عدد تأكسد الأكسجين في معظم مركباته =
 (-۲)

 H_2SO_4 ، MgO ، KOH ، HNO_3 : مثل : عدا

- مركبات فوق الأكاسيد ، يكون عدد $\ddot{}$ $\ddot{}$

(1-) = O ع.ت $H_2\underline{O}_2$: مثل (1-) = O ع.ت $Na_2\underline{O}_2$

- مركبات الفلور يكون عدد تأكسد

الأكسجين موجباً $OF_2:$ مثل $OF_2:$ مثل

 $(1+) = O_2$ ع.ت لـ O_2F_2

(I , Br, Cl, F) عدد تأكسد الهالوجينات (I , Br, Cl, F) في المركبات الثنائية (المكونة من عنصرين فقط) = (١-)

أما المركبات التي تحتوي الأكسجين تكون (موجبة) مثال : HCl = Cl مثال : HCl ملاحظة : الفلور في كل مركباته (-1)

﴿ يكون مجموع أعداد التأكسد للذرات في المركب المتعادل = صفر ، أما في الأيون عديد الذرات فيكون مجموع أعداد التأكسد للذرات المكونه له = الشحنة الظاهرة علية مقداراً وإشارة .

أ مثال 🕦 :

 H_2SO_4 احسب عدد تأكسد الكبريت في

﴿ الحل : بما أن مجموع أعداد التأكسد للذرات في المركب المتعادل = صفر ، إذن :

 $= (H \times 3. - (S \times 3. + ($

 $\bullet = (1+)\times Y + \omega + (Y-)\times \xi =$

·· س= +٦ (عدد تأكسد الكبريت = +٦)

أ مثال 🕜 :

 $\operatorname{CrO_4}^{2^-}$ احسب عدد تأكسد الكروم في

الحل :

Y-=(Cr ع.ت $\times Y)+(O$ ع.ت $\times X$

 $Y-=\omega+(Y-)\times \xi=$

۲- = س+ ۸-

٠٠ س = + ٢

عدد تأكسد الكروم = +٦

احسب عدد تأكسد الكلور في HClO₄

الحل :

٧+

الوحدة الثانية (التأكسد والإختزال)/اياد السميرات (٥٧٩٧٠٣٨٨٧٠)

★ مفهوم التأكسد والاختزال بالاعتماد على عدد التأكسد بالاعتماد بالاعت

التأكسك : هو زيادة في عدد التأكسد

الاختزال : هو نقصان في عدد التأكسد

: 🕥 مثال 🗀

حدد الذرات التي تأكسدت والتي اختزلت في المعادلة الآتية

$$MnO_2 + HCI \longrightarrow MnCI_2 + CI_2 + H_2O$$
: (4)

. .

عند حساب أعداد التأكسد للذرات :

نقصان في عدد التأكسد (اختزال)

$$t+ T- 1+ 1- T+ 1- T+ T+ MnO_2 + HCI \longrightarrow MnCl₂ + Cl₂ + H₂O

(یادة فی عدد التأکسد (تأکسد)$$

نلاحظ : نقصان في عدد تأكسد Mn من (+٤) الى (+٢) اختزال

زيادة في عدد تأكسد Cl من (− 1) الى صفر [```] مثال **۩** :

حدد الذرات التي تأكسدت والتي اختزلت في المعادلة الآتية

$$2AI(s) + Fe_2O_3(s) \longrightarrow AI_2O_3(s) + Fe(s)$$

نقصان في عدد التأكسد (اختزال)

المركبات	في	الكربون	تأكسد	عدد	احسب	:	سؤال	Ť
								الآتية

.. • CO₂ (1

..... Li₄C (Y

..... 4 C₂H₄ (*

..... HCHO (\$

سؤال : احسب عدد تأكسد الفسفور في المركبات

د *پی*ا.

 H_3AsO_4

 P_2O_5 (*

..... PF₃ (

أُ سؤال : احسب عدد تأكسد الذرات التي تحتها خط في ما يلى :

 $\underline{\text{Mn}}O_4 \quad ()$

 VO_3 (Y

..... <u>Cl</u>O₂ (**£**

 $\underline{S}_2O_3^{2-}$ (c

..... <u>N</u>H₄ (

سؤال : احسب عدد تأكسد الكروم في المركبات الآتية

...... d CrCl₃ (**Y**

..... d CrCl₂ (**

 $\frac{1}{100} \frac{1}{100}$ المواد التالية يكون عدد تأكسد النتروجين المواد $(NH_4C1 \cdot NO_3 \cdot N_2H_4 \cdot NO_2)$ هو الأعلى : $(NH_4C1 \cdot NO_3 \cdot N_2H_4 \cdot NO_2)$

الجواب :

سؤال : أيّ المواد التالية يكون عدد تأكسد الأكسجين OH^- ، OF_2 ، OF_2 ، OF_2 ، OF_2 ، OF_2) : (1+)

الجواب :ا

نقصان في عدد تأكسد Fe من (+٣) الى (٠) ... اختزال زيادة في عدد تأكسد Al من (•) الى (٣+) ... تأكسد

تدریبات ک

حدد اللذرات التي تأكسدت والذرات التي اختُزلت في المعادلات الآتية بالاعتماد على التغير في عدد التأكسد:

$$Fe_{2}O_{3}(s) + 3C(s) \longrightarrow 2Fe(s) + 3CO(g)$$
......

$$C_2H_4(g) + MnO_4$$
 \longrightarrow $C_2H_6O_2(aq) + MnO_2(s)$

$$MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$$

......

$$Zn + NO_3^- \longrightarrow Zn(OH)_4^{2+} + NH_3$$

$$H_2CO + Cu^{2+} \longrightarrow HCO_2^- + Cu_2O$$

$$H_2CO + Cu^{2+} \longrightarrow HCO_2 + Cu_2O$$
.....

$$Cr_2O_7^{2-} + C_2H_6O \longrightarrow Cr^{3+} + CO_2$$
.....:

$$2OH^{-} + Br_{2} \longrightarrow BrO^{-} + Br^{-} + H_{2}O$$

$$\vdots$$

$$H_{2}OH^{-} + Br_{2} + H_{2}O$$

$$\vdots$$

$$As_2O_3 + NO_3^- \longrightarrow H_3AsO_4 + NO$$
.....

العوامل المؤكسدة والعوامل المختزلة

العامل المؤكسد: هي المادة التي التي تُعتزل (تكسب الإلكترونات) ... كانت سبباً في أكسدة مادة أخرى .

العامل المختزل: هي المادة التي التي تتأكسد (تفقد الإلكترونات) ... كانت سبباً في اختزال مادة أخرى .

شا مثال (

حدد العامل المؤكسد والعامل المختزل في :

$$Cu(s) + 2 Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2Ag(s)$$
 (زیادة فی عدد التأکسد (تأکسد (تأکسد (تأکسد

$$Cu(s) + 2 Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2Ag(s)$$

$$(aq) + 2Ag(s)$$

$$(aq) + 2Ag(s)$$

$$(aq) + 2Ag(s)$$

 $Cu: Ag^+: Ag^+$ العامل المؤكسد

أنقاط هامة جداً!!!!

- (١) يتم تحديد العوامل المؤكسدة والعوامل المختزلة من طرف المتفاعلات ..
- على الرغم أن التأكسد أو الإختزال يحدث لذرة واحدة فقط في المركب أو الأيون . إلا انه يفضل كتابة المركب أو الأيون كاملاً كعامل مؤكسد أو عامل مختزل

توضيح :

دد العامل المؤكسد والعامل المختزل في التفاعل الأتي : $MnO_2 + HCl \longrightarrow MnCl_2 + Cl_2 + H_2O$

: الحل

عند حساب أعداد التأكسد للذرات:

 MnO_2 حدث له اختزال \longrightarrow العامل المؤكسد Mn HCl حدث له تأكسد \longrightarrow العامل المختزل Cl

" نقاط هامة جداً!!!!

تفاعلات ، وسلوك العامل المختزل في تفاعلات أخرى

وضيح:

حدد سلوك غاز الهيدروجين كعامل مؤكسد او كعامل مختزل في التفاعلات التالية ؟

$$H_{2}(g) + CI_{2}(g) \longrightarrow 2HCI$$
 (*

$$H_{2}(g) +2Na(s) \longrightarrow 2NaH$$
 (Y

﴿ الحل :

- في التفاعل (١) → عامل مختزل
- في التفاعل (٢) → عامل مؤكسد

 N_2 سؤال : في أيّ التفاعلين الآتتين يكون سلوك N_2 عامل مؤكسد وفي أيهما يكون سلوكه كعامل مختزل :

$$N_2 + O_2 \longrightarrow 2NO_2$$
 (1)

$$N_2 + 3H_2 \longrightarrow 2NH_3$$
 (Y

أنقاط هامة جداً!!!!

﴿ تَسَلَّكُ بَعْضَ الْمُوادُ فِي ظُرُوفُ مَعَيْنَةً عَامَلاً مُؤْكَسِداً وَعَامِلُ مُخْتَزَالُ ذَاتِي) وعامل مختزلاً في التفاعل نفسه (تأكسد واختزال ذاتي)

توضيح :

حدد العامل المؤكسد والمختزل في التفاعل الآتي :

$$Cl_2(g) + 2OH^-(aq) \longrightarrow Cl^-(aq) + ClO^-(aq) + H_2O(l)$$
 : الحل :

$$Cl_{2}(g) + 2OH^{-}(aq) \longrightarrow Cl^{-}(aq) + ClO^{-}(aq) + H_{2}O(l)$$

(معفر \rightarrow ۱+) ناکسد (عنفر \rightarrow ۱+)

نلاحظ: ان الكلور يتأكسد إلى أيون -ClO ، إذ يزداد عدد تأكسده من صفر الى (+١) ، وفي الوقت نفسه يُختزل إلى

ايون ${
m Cl}^-$ ، إذ ينقص عدد تأكسده من صفر إلى (${
m -1}$

 Cl_2 = العامل المؤكسد العامل المختزل العامل المؤكسد

. **(1)** مثال (1) :

بيّن أن فوق أكسيد الهيدروجين يتأكسد ويُتختزل ذاتياً عند تفككه وفق المعادلة الآتية:

$$2H_2O_2(I) \longrightarrow 2H_2O(I) + O_2(g)$$
 ($1- \rightarrow 1- 1$) الحل $2H_2O_2(I) \longrightarrow 2H_2O(I) + O_2(g)$ ($1- \rightarrow 1$) ناکسد (صفر $1- \rightarrow 1$) ناکسد (صفر $1- \rightarrow 1$

نلاحظ أن الأكسجين يتأكسد إلى غاز O_2 ، إذ يزداد عدد تأكسده من (-1) إلى صفر . وفي الوقت نفسه يختزل إلى جزئ H_2O إذ ينقص عدد تأكسده من (-1) إلى (-7)

$$H_2O_2$$
 = العامل المؤكسد العامل المختزل العامل المؤكسد العامل المؤكسد

5	تدريبات	X

تدریبات
Λ.
🕦 حدد العامل المؤكسد والعامل المختزل في كل مما يأتي :
$MnO_4^- + ClO_3^- \longrightarrow Mn^{2+} + ClO_4^-$
الجواب :
$\operatorname{CrO}_{4}^{2-} + \operatorname{Fe}^{2+} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{Fe}^{3+}$
العامل المؤكسد :
العامل المختزل :
$\operatorname{Cr}_{2}\operatorname{O}_{3} + \operatorname{NO}_{3}^{-} \longrightarrow \operatorname{CrO}_{4}^{2-} + \operatorname{NO}_{2}^{-}$
العامل المؤكسد :
العامل المختزل :
$Zn + NO_3^- \longrightarrow Zn(OH)_4^{2+} + NH_3$
العامل المؤكسد :
العامل المختزل :
$H_2CO + Cu^{2+} \longrightarrow HCO_2^- + Cu_2O$
العامل المؤكسد :
العامل المختزل :
$\operatorname{Cr_2O_7}^{2-} + \operatorname{C_2H_6O} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{CO_2}$
العامل المؤكسد :
العامل المختزل :
$2OH^{-} + Br_{2} \longrightarrow BrO^{-} + Br^{-} + H_{2}O$
العامل المؤكسد :
العامل المختزل :
$BrO_3^- + HNO_2 \longrightarrow BrO^- + NO_3^-$
العامل المؤكسد :
العامل المختزل :
$3BrO^{-} \longrightarrow 2Br^{-} + BrO_{3}^{-}$
العامل المؤكسد : العامل المؤكسد :
العامل المختزل :

موازنة معادلات التأكسد والاختزال بطريقة نصف التفاعل (أيون – إلكترون)

الخطوات

- التفاعل : نصف المعادلة إلى نصفي التفاعل : نصف
 - تفاعل تأكسد ونصف تفاعل إختزال .
 - موازنة كل نصف لوحده ، كالآتي :
 - موازنة الذرات .
- ب موازنة الشحنات (إضافة الكترونات إلى الطرف الأعلى شحنة)
 - 🎔 مساواة الإلكترونات في نصفى التفاعل .
- ﴿ جَمع نصفي التفاعل والحصول على المعادلة الكلية .

مثال توضيح!!

وازن المعادلة الآتية بطريقة نصف التفاعل (أيون- إلكترون)

$$Zn(s) + Ag^{\dagger}(aq) \longrightarrow Zn^{2\dagger}(aq) + Ag(s)$$

: $Ag(s)$

● تقسيم المعادلة الى نصفي التفاعل / التأكسد والاختزال:

$$Zn \longrightarrow Zn^{2+}$$
 تأكسد $Ag^+ \longrightarrow Ag$

• موازنة كل نصف لوحده :

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$

$$Ag^+ + e^- \longrightarrow Ag$$

● مساواة الإلكترونات في نصفي التفاعل :

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$

$$[Ag^{+} + e^{-} \longrightarrow Ag] \times 2$$

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$

و بجمع نصفي التفاعل يتم الحصول على المعادلة الكلية : $Zn \longrightarrow Zn^{2^+} + 2e^-$

$$2 \text{ Ag}^{+} + 2 \text{e}^{-} \longrightarrow 2 \text{Ag}$$

$$Zn(s) +2Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) +2Ag(s)$$

موازنة معادلات التأكسد والاختزال

المعادلة الموزونة : هي المعادلة التي

تحقق قانويي :

- قانون حفظ المادة : تساوي أعداد الذرات و أنواعها في طرفي المعادلة الكيميائية .
- قانون حفظ الشحنة : تساوي المجموع الجبري للشحنات في طرفي المعادلة الكيميائية .

طرق موازنة المعادلات:

(١) طريقة المحاولة والخطأ.

وازن المعادلة الآتية بطريقة المحاولة والخطأ

$$KClO_3 \longrightarrow KCl + O_2$$

الحل :

$$2\text{KCIO}_3 \longrightarrow 2\text{KCI} + 3\text{O}_2$$

ملاحظة : هذه الطريقة مذكورة بالكتاب ، لا يأتي عليها أسئلة ضمن إمتحان الوزارة

أ مثال 🕜 :

وازن المعادلة الآتية بطريقة المحاولة والخطأ ، ثم تحقق من قانوني حفظ المادة والششحنة في طرفي المعادلة .

$$Al + Cl_2 \longrightarrow AlCl_3$$

الحل :

.....

.....

موازنة معادلات التأكسد والاختزال في الوسط الحمضي

الخطوات

- خطوة (اقسم المعادلة إلى نصفين / تأكسد واختزال
 - خطوة 🕈 وازن كل نصف كألآتي بالترتيب :
- وازن ذرات العناصر ما عدا الأكسجين و الهيدروجين .
- H_2O وازن ذرات الأكسجين : بإضافة جزئ Θ لكل ذرة أكسجين ناقصة الى الطرف الذي يعاني نقصاً في ذرات الأكسجين
- وازن ذرات الهيدروجين الناقصة في أحد طرفي المعادلة بإضافة العدد المطلوب من أيونات الهيدروجين (H^+)
- (ح) وازن الشحنة الكهربائية : بإضافة عدد من الإلكترونات إلى الطرف الأعلى شحنة
- خطوة (٣) اجعل عدد الإلكترونات في طرفي نصف التفاعل متساوياً
- خطوة على المعادلة النهائية المورونة ، مع مراعاة حذف الإلكترونات والأنواع المشتركة (إن وجدت)

_____ مثال **()** :

وازن معادلة التفاعل الآتي بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط حمضى:

 $\operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}}(aq) + \operatorname{Fe}^{2^{+}}(aq) \longrightarrow \operatorname{Cr}^{3^{+}}(aq) + \operatorname{Fe}^{3^{+}}(aq)$ $\vdots \qquad \qquad \vdots \qquad \qquad \vdots$

خطوة (۱) : كتابة نصفي التفاعل $\operatorname{Cr_2O_7^{2-}} \longrightarrow \operatorname{Cr}^{3+}$ اختزال $\operatorname{Fe}^{2+} \longrightarrow \operatorname{Fe}^{3+}$ تأكسد

خطوة (٢) موازنة كل نصف لوحده

لموازنة تفاعل الاختزال ، بالترتيب الآتي :

المعادلة السابقة موزونة لأنما تحقق قانون حفظ المادة ، فعدد ذرات كل من الخارصين والفضة متماثل في طرفيها ، وتحقق قانون حفظ الشحنة ، المجموع الجبري للشحنات الكهربائية في كل طرف = + ٢

: **(** مثال مثال

وازن معادلة التفاعل الآتية:

$$Cr^{2+} \longrightarrow Cr^{3+}$$
 تأكسد

$$(Cr^{2+} \longrightarrow Cr^{3+} + e^{-}) \times 2$$

$$I_{2} + 2e^{-} \longrightarrow 2I^{-}$$

$$2 \operatorname{Cr}^{2+} \longrightarrow 2 \operatorname{Cr}^{3+} + 2 e^{-}$$

$$l_{2} + 2e^{-} \longrightarrow 2l^{-}$$

$$2 \operatorname{Cr}^{2+}(aq) + I_{2}(aq) \longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 2I^{-}(aq)$$

····] مثال **①** :

وازن معادلة التفاعل الآتية:

$$Al(s) + Pb^{2+}(aq) \longrightarrow Al^{3+}(aq) + Pb(s)$$

: $1 \Leftrightarrow 1$

$$AI \longrightarrow AI^{3+}$$

$$Pb^{2+} \longrightarrow Pb$$

(Al
$$\longrightarrow$$
 Al³⁺ + 3e⁻)x 2

$$(Pb^{2+} + 2e^{-} \longrightarrow Pb)x 3$$

$$2 \text{ Al} \longrightarrow 2 \text{Al}^{3+} + 6 \text{e}^{-\frac{1}{2}}$$

$$2 \text{ Al(s)} + 3 \text{Pb}^{2+}(aq) \longrightarrow 2 \text{Al}^{3+}(aq) + 3 \text{Pb(s)}$$

موازنة ذرات الأكسجين .

إضافة (٧) جزيئات ماء الطرف الأيمن نظراً لأن الطرف الأيسر يحتوي على (٧) ذرات أكسجين :

$$Cr_2O_7^{2-} \longrightarrow 2 Cr^{3+} + 7 H_2O$$

موازنة ذرات الهيدروجين :

إضافة (1٤) أيون هيدروجين إلى الطرف الأيسر لكي تتوازن ذرات الهيدروجين .

$$14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2 Cr^{3+} + 7 H_{2}O$$

موازنة الشحنة الكربائية :

حيث أن المجموع الجبري للشحنات في الطرف الأيسر = +١٢ ، بينما المجموع الجبري للشحنات في الطرف الأيمن = +٦

نه لا بد من إضافة (٦) إلكترونات الى الطرف الأيسر لموازنة هذه المعادلة $14H^+ + Cr_2O_7^{2-} + 6e^- \longrightarrow 2 Cr^{3+} + 7 H_2O$

نكرر هذه الخطوات مع نصف التفاعل / التأكسد
$$-$$
 Fe²⁺ \longrightarrow Fe³⁺ + e⁻

خطوة (٣) نجعل عدد الإلكترونات في طرفي نصفي التفاعل متساوياً:

$$6Fe^{2+} \longrightarrow 6Fe^{3+} + 6e^{-}$$

$$14 H^{+} + Cr_{2}O_{7}^{2-} + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_{2}O$$

$$6Fe^{2+} + 14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$

للتحقق من صحة الموازنة : تأكد من موازنة الذرات والشحنات .

وازن معادلة التفاعل الآتي بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط حمضى:

$$\operatorname{CrO}_{2}^{-}(aq) + \operatorname{ClO}^{-}(aq) \xrightarrow{\operatorname{H}^{+}} \operatorname{CrO}_{4}^{2-}(aq) + \operatorname{Cl}^{-}(aq)$$

$$\vdots \qquad \qquad \vdots$$

$$CrO_2^- \longrightarrow CrO_4^{2-}$$
 $ClO^- \longrightarrow Cl^-$

$$2x [2H_2^{O} + CrO_2^{-} \longrightarrow CrO_4^{2-} + 4H^{+} + 3e^{-}]$$

$$\frac{3x \left[2e^{-} + 2H^{+} + CIO^{-} \longrightarrow CI^{-} + H_{2}O \right]}{4H_{2}O + 2CrO_{2}^{-} \longrightarrow 2CrO_{4}^{2-} + 8H^{+} + 8e^{-}}$$

$$6e^{-} + 6H^{\dagger} + 3CIO^{-} \longrightarrow 3CI^{-} + 3H_{2}O$$

$$H_2O + 2CrO_2^- + 3ClO^- \longrightarrow 2CrO_4^{-2} + 3Cl^- + 2H^+$$

مثال 🕜 :

وازن معادلة التفاعل الآتي بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط حمضى:

$$MnO_4^- \longrightarrow Mn^{2+}$$
 : نصف التفاعل/ الاختزال

$$MnO_4^- \longrightarrow Mn^{2+} + 4H_2O$$
 : H_2O

$$8H^{+} + MnO_{4}^{-} \longrightarrow Mn^{2+} + 4H_{2}O$$
 : H^{+}

$$5e^{-} + 8H^{+} + MnO_{4}^{-} \longrightarrow Mn^{2+} + 4H_{2}O$$
 : e^{-}

$$SO_2 \longrightarrow SO_4^{2-}$$
 : نصف التفاعل / التأكسد

$$2H_2O + SO_2 \longrightarrow SO_4^{2-}$$
 : H_2O

$$2H_2O + SO_2 \longrightarrow SO_4^- + 4H+$$
 :H⁺

$$2H_2O + SO_2 \longrightarrow SO_4^- + 4H^+ + 2e^-$$
 :e⁻

ولمساواة عدد الألكترونات في نصفي التفاعل تُضرب معادلة نصف الاختزال في (٢) ومعادلة نصف تفاعل التأكسد في (٥) لينتج (١٠) إلكترونات في كل منها :

$$10e^{-} + 16H^{+} + 2MnO_{4}^{-} \longrightarrow 2Mn^{2+} + 8H_{2}O$$

$$10H_{2}O + 5SO_{2} \longrightarrow 5SO_{4}^{2-} + 20H^{+} + 10e^{-}$$

بالجمع وحذف الأنواع المشتركة نحصل على المعادلة النهائية الموزونة :

$$2H_{2}O + 5SO_{2} + 2MnO_{4}^{-} \longrightarrow 2Mn^{2+} + 5SO_{4}^{-2-} + 4H^{+}$$

: **(3)** مثال

وازن معادلة التفاعل الاتي بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط حمضي:

$$ICI_{(aq)} \xrightarrow{H^+} IO_3^-(aq) + I_2(aq) + CI^-(aq)$$

: الحل

$$|C| \longrightarrow |C| + |C|$$
 implies the interval $|C| \longrightarrow |C|$ implies the impliest $|C| \longrightarrow |C|$ implies the impliest $|C| \longrightarrow |C|$ implies the impliest $|C| \longrightarrow |C|$ impli

$$2e^{-} + 2|C| \longrightarrow |_{2} + 2C|^{-}$$
 : e^{-} نصف التفاعل / التأكسد : $|C| \longrightarrow |O_{3}^{-} + C|^{-}$: e^{-}

$$3H_2O + ICI \longrightarrow IO_3^-CI^-$$
 : H_2O

$$3H_2O + ICI \longrightarrow IO_3^-CI^- + 6H+$$
 : H^+

$$3H_{2}O + ICI \longrightarrow IO_{3}^{-}CI^{-} + 6H^{+} + 4e^{-}$$
 : e^{-}

ولمساوة عدد الألكترونات في نصفى التفاعل تُضرب معادلة نصف الاختزال في (٢) ومعادلة نصف تفاعل التأكسد في (١) لينتج (٤) إلكترونات في كل

$$4e^{-} + 4ICI \longrightarrow 2I_2 + 4CI^{-}$$

$$3H_2O + ICI \longrightarrow IO_3^- + CI^- + 6H^+ + \cancel{4}e^-$$

بالجمع وحذف الأنواع المشتركة نحصل على المعادلة النهائية الموزونة :

$$3H_2O + 5ICI \longrightarrow ICI^- + 2I_2^- + 5CI^- + 6H^+$$

(وزارة ۱۸ ۰ ۲*۸ش)* (الله مثال 📵 (الهزارة ۱۸ ۱۸ ۲۰۸)

وازن المعادلة الآتية بطريقة نصف التفاعل في وسط حمضي ، وما العامل المؤكسد في التفاعل .

$$Zn + NO_3^- \longrightarrow Zn(OH)_4^{2-} + NH_3$$

: الحا**ن**

$$4[4H_{2}O + Zn \longrightarrow Zn(OH)_{4}^{2-} + 4H^{+} + 2e^{-}]$$

$$8e^{-} + 9H^{+} + NO_{3}^{-} \longrightarrow NH_{3} + 3H_{2}O$$

$$13H_{2}O \longrightarrow 4Zn(OH)_{4}^{2-} + 16H^{+} + 8e^{-}$$

$$8e^{-} + 9H^{+} + NO_{3}^{-} \longrightarrow NH_{3} + 3H_{2}O$$

$$13H_2O + 4Zn + NO_3^- \longrightarrow 4Zn(OH)_4^{2-} + NH_3 + 7H^+$$

العامل المؤكسد: "NO3

تدريبات.... م

وازن معادلات التفاعل الآتية بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط حمضي :

$$MnO_2 + Ti \longrightarrow Mn^{2+} + TiO_2^{2+}$$

$$BrO_3^- + H_2O_2 \longrightarrow Br_2 + O_2$$

$$ClO^- \longrightarrow ClO_3^- + Cl^-$$

$$NO_2^- + Al \longrightarrow NH_3^- + AlO_2^-$$

$$PbS + H_2O_2 \longrightarrow PbSO_4 + H_2O$$

$$\operatorname{Cr_2O_3} + \operatorname{ClO^-} \longrightarrow \operatorname{CrO_4^{2-}} + \operatorname{Cl^-}$$

$$\operatorname{Cr_2O_7}^{2-} + \operatorname{CH_3OH} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{CH_2O}$$

$$H_2C_2O_4 + MnO_4 \longrightarrow CO_2 + Mn^{2+}$$

$$H_2C_2O_4 + MnO_4^- \longrightarrow CO_2 + Mn^{2+}$$

$$CrO_4^{2-} + S^{2-} \longrightarrow Cr^{3+} + SO_4^{2-}$$

$$As_2O_3 + NO_3^- \longrightarrow H_3AsO_4 + N_2O_3$$

$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + \operatorname{Sn}^{2+} + \operatorname{Cl}^{-} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{SnCl}_{4}$$

$$Al + SO_4^{2-} \longrightarrow Al_2(SO_4)_3 + SO_7$$

$$AI + SO_4 \longrightarrow AI_2(SO_4)_3 + SO_2$$

$$As_2S_3 + NO_3^- \longrightarrow AsO_4^{3-} + SO_4^{2-} + NO$$

$$\operatorname{Cr_2O_7^{2-}} + \operatorname{C_2H_6O} \longrightarrow \operatorname{Cr^{3+}} + \operatorname{CO_2}$$

$$ClO_3^- + N_2H_4 \longrightarrow Cl^- + NO$$

$$H_2S + NO_3^- \longrightarrow NO_2 + S_8$$

$$HSO_3^- + IO_3^- \longrightarrow SO_4^{2-} + I_2$$

$$CH_3OH + SO_4^{2-} \longrightarrow S_2O_3^{2-} + HCOOH$$

$$\operatorname{Cr}_2\operatorname{O}_3 + \operatorname{BrO}_4^- \longrightarrow \operatorname{CrO}_4^{2-} + \operatorname{BrO}_2^-$$

$$As_4O_6 + Cl_2 \longrightarrow H_3AsO_4 + HCl$$

موازنة معادلات التأكسد والاختزال في الوسط القاعدي

الخطوات المسلم

- خطوة (وازن المعادلة بافتراض أن الوسط حمضي . وباتباع الخطوات نفسها المستخدمة لموازنة معادلات التأكسد والاختزال التي تتم في وسط حمضي
- خطوة (٢) لتحويل المعادلة السابقة الى معادلة تمثل التفاعل الذي يتم في وسط قاعدي : اتبع ما يأتي :
- وا أضف عدداً من أيونات OH^- يساوي عدد H^+ ألى كل من طرفي المعادلة .
- ض أجمع أيوني OH و H على شكل جزيئات
 ماء :
- ج احذف جزيئات الماء الزائدة من أحد طرفي
 المعادلة

وازن معادلة التفاعل الآتي بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط قاعدي :

$$MnO_4^- + 3F_2^{2+} \xrightarrow{OH^-} MnO_2 + Fe^{3+}$$
 $: نال الحال :$

خطوة (1) : موازنة المعادلة كما في الوسط الحمضي :

$$MnO_4^- + 3F_2^{2+} + 4H^+ \longrightarrow MnO_2 + 3Fe^{3+} + 2H_2O$$

: نتبع ما يلي : نتبع ما يلي : خطوة (٢) : للموازنة في الوسط القاعدي : نتبع ما يلي

 H^+ إضافة أيونات OH^- إلى طرفي المعادلة بعدد أيونات OH^- نضيف (٤) أيونات OH^- :

$$MnO_{_{4}}^{^{-}} + 3F_{_{2}}^{^{2+}} + 4H^{^{+}} + 4OH^{^{-}} \longrightarrow MnO_{_{2}} + 3Fe^{3+} + 2H_{_{2}}O + 4OH^{^{-}}$$

$$-$$
 جمع أيوني $^{ ext{-}}\mathrm{OH}^{ ext{-}}$ على شكل جزيئات ماء .

$$MnO_4^- + 3Fe^{2+} + 4M_2^-O \longrightarrow MnO_2 + 3Fe^{3+} + 2M_2^-O + 4OH^-$$
: حذف جزيئات الماء الزائدة

•

 $MnO_4^- + 3Fe^{2+} + 2H_2O \longrightarrow MnO_2 + 3Fe^{3+} + 4OH^-$

: **(1)** مثال

وازن معادلة التفاعل الآتي ، علما بأن التفاعل يتم في وسط قاعدى :

$$ClO^- + CrO_2^- \longrightarrow Cl^- + CrO_4^{2-}$$

موازنة التفاعل كما في الوسط الحمضي:

$$3[2e^{-}+2H^{+}+ClO^{-} \longrightarrow Cl^{-}+H_{2}O]$$

 $2[2H_{2}O+CrO_{2}^{-} \longrightarrow CrO_{4}^{2-}+4H^{+}+3e^{-}]$

$$66^{+}641^{+} + 3C10^{-}$$
 → $3C1^{-} + 344_{2}O$
 $444_{2}O + 2CrO_{2}^{-}$ → $2CrO_{4}^{2-} + 841^{+} + 66^{-}$

$$3CIO^{-} + 2CrO_{_{2}}^{-} + H_{_{2}}O \longrightarrow 3CI^{-} + 2CrO_{_{4}}^{-2-} + 2H^{+}$$
 الى طرفي المعادلة بعدد أيونات OH^{-} اليونات OH^{-} نضيف (۲) أيونات OH^{-} المعادلة بعدد

$$20H^- + 3CIO^- + 2CrO_2^- + H_2O \longrightarrow 3CI^- + 2CrO_4^{2^-} + 2H^+ + 2OH^-$$
 . جمع أيوني OH^- على شكل جزيئات ماء .

$$20H^{-} + 3CI0^{-} + 2CrO_{2}^{-} + 11_{2}^{-}O \longrightarrow 3CI^{-} + 2CrO_{4}^{-2-} + 211_{2}^{-}O$$
 $=$ حذف جزيئات الماء الزائدة :

$$2OH^{-} + 3CIO^{-} + 2CrO_{2}^{-} \longrightarrow 3CI^{-} + 2CrO_{4}^{2-} + H_{2}O$$

تدریبات.... م

وازن معادلات التفاعل الآتية بطريقة نصف التفاعل علماً بأن التفاعل يتم في وسط قاعدي :

$$MnO_4^- + NO_2 \longrightarrow MnO_2 + NO_3^-$$

$$Pb(OH)_3 + ClO^- \longrightarrow PbO_2 + Cl^-$$

$$HCHO + Cu^{2+} \longrightarrow HCOO^{-} + Cu_{2}O$$

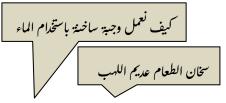
$$C_2H_4O + Ag^+ \longrightarrow C_2H_3O_2^- + Ag$$

$$Cr_2O_3 + NO_3^- \longrightarrow CrO_4^{2-} + NO_2^-$$

$$S^{2^{-}} + I_{2} \longrightarrow SO_{4}^{2^{-}} + I^{-}$$

$$Zn + HgO \longrightarrow ZnO_{2}^{2-} + Hg$$


$$Br_2 \longrightarrow Br^- + BrO_3^-$$



ً سؤال : (وزارة ۲۰۱۸/ش)

يُستخدم سخّان الطعام عديم اللهب في تسخين الوجبات الجاهزة لرواد الفضاء ، اكتب المعادلة التي توضح مبدأ عمله الحل:

$$Mg + H_2O \longrightarrow Mg(OH)_2 + H_2 + عرارة +$$

✓ يعتمد مبدأ السخان عديم اللهب على تفاعلات التأكسد والاختزال ، عن طريق توليد حرارة بأكسدة المغنيسيوم عن طريق تفاعله مع الماء .

٠٠ معادلة التفاعل:

$$Mg + H_2O \longrightarrow Mg(OH)_2 + H_2 + حرارة + كان التفاعل بطئ جداً$$

يتم تسريع التفاعل بإضافة الحديد وملح الطعام ، وتنطلق من التفاعل حرارة تقدر ٥٥٣ كيلو جول

- يتكون السخان عديم اللهب من كيس شبه منفذ
 موجود فيه خليط من المغنيسيوم والحديد والملح ،
 وهو موضوع في كيس بلاستيكي مقام للحرارة .
 - طريقة الاستخدام:
- يوضع الكيس شبه المنفذ والوجبة المراد تسخينها في الكيس البلاستيكي ثم تضاف إليهما كمية من الماء ويتركان مدة ١٠ دقائق كافية لتسخين الوجبة .

الفصل الأول/التأكسد والاختزال

يتكون هذا السؤال من عدد من الفقرات ، لكل فقرة أربع بدائل ، واحدة منها صحيحة ، انقل الى دفتر اجابتك رقم الفقرة الصحيحة و رمز الإجابة الصحيحة :

يكون عدد تأكسد الكروم (Cr) في الصيغة الكيميائية :

: يساوي : Cr₂O₇

(**1** +) (? (**Y** -) (**f**

د) (+ V) ب) (+۲)

 ${
m S_2O_3}^{2-}$ عدد تأكسد الكبريت ${
m (S)}$ في الأيون

(**£** +) (* (**Y** +) (**f** ب) (+ ۳) د) (ځ ځ)

عدد تأكسد اليود في الأيون ${
m H_3IO_6}^{2 extstyle 2 extstyle 2$

(↑ +) (>

(Y +) (P ب) (- V) د) (- I)

عدد تأكسد (As) في الأيون $\operatorname{AsO_4}^{3-}$ هو :

(o -) (\(\tau \) (f)

د) (+ ه) ب) (۳ –)

عدد تأكسد الكبريت (S) يساوي (+ ٢) في :

 HS^{-} (* HSO_3^{-} (*)

د) HSO₄ $S_2O_3^{2^-}$ (ب

 MnO_2 اليرمنغنات (MnO_4) إلى فإن التغير في عدد تأكسد (Mn) يساوي

> (**£**) (* (1) (1

د) (ه) ب) (۳)

إحدى التفاعلات النصف خلوية الآتية ، يحتاج إلى عامل مؤكسد وهو:

 $O_2 \longrightarrow H_2O$ (P

 $Hg^{2+} \longrightarrow Hg$ (ب

 $Ti^{3+} \longrightarrow Ti^{2+}$ (*

 $Br^{-} \longrightarrow BrO^{-}$ (2)

العامل المختزل في التفاعل الآتي هو :

 $Cr_2O_3 + 2Al \longrightarrow 2Cr + Al_2O_3$

Al $(\Rightarrow Al_2O_3 \quad (\end{cases}$

 Cr_2O_3 (2) ب) Cr

9 عدد مولات الإلكترونات المكتسبة من تحول BrO₃ إلى -Br يساوى :

> ج) (۲) (1) (P

> ب) (٤) د) (ه)

🕩 عدد الإلكترونات المكتسبة في التفاعل :

 $N_2 \longrightarrow NH_A^+$

(Y) (P (A) (>

ب) (٦) د) (۳)

ن مقدار التغير في عدد تأكسد N في التفاعل :

 $NO_{2}^{-} \longrightarrow NH_{4}^{+}$

(a) (z (y) (b)

د) (۸) ب) (٤)

الصيغة الكيميائية التي يكون للنيتروجين (N) فيها أقل (v)

عدد تأكسد هي :

 N_2O (f N_2H_4 (*

 NO_3^{1-} (2) NH_4^{1+} (2)

 IO_3^- إلى I_2 إلى عدد مولات الإلكترونات المفقودة من تحول I_2

في تفاعل كيميائي يساوي :

۹) ۲

د) ۲۱ ب) ۱۰

😉 أحد المعادلات الآتية لا يمثل تفاعل تأكسد واختزال :

 $Ni + 2HC1 \longrightarrow NiCl_2 + H_2$

 $2KClO_2 \longrightarrow KNO_2 + 3O_2$

 $KOH + HNO_3 \longrightarrow KNO_3 + H_2O$ (*

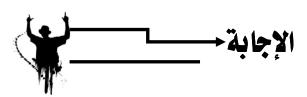
 $2Al + 3CuSO_4 \longrightarrow Al_2(SO_4)_2 + 3Cu$

ه عدد تأكسد الكربون في الصيغة الكيميائية الآتية

، NaHCO يساوي :

 $(\Upsilon-)$ (\succcurlyeq $(\Upsilon+)$ (Υ

ب) (الح) (خ) د) د)


- 🐨 عدد مولات الإلكترونات المفقودة لدى تحوّل مول من $\mathrm{PO_4}^{3-}$ الفسفور $\mathrm{P_4}$ إلى فوسفات
 - ٥ (١
 - ب) ٧
- 🕏 عدد تأكسد الكربون في الصيغة الكيميائية الآتية : يساوي $Mg(HCO_3)_2$
 - **(Y-)** (> (۲+) (۲
 - (٤-) (٤ (٤+) (ب
 - [™] عدد تأكسد الأكسجين يساوي (-1) في :
 - BaO₂ (∻ HO_2^- ($^{\circ}$
 - Li_2O_2 (2 ب) OH-
- معادلة التفاعل التي تعبر عن مبدأ عمل سخان الطعام عديم ${}^{(7)}$ اللهب هي :

$$Ca + H_2O \longrightarrow Ca(OH)_2 + H_2 + عرارة + (۱$$

$$Zn + H_2O \longrightarrow Zn(OH)_2 + H_2 + عرارة + (ب$$

$$Mg + H_2O \longrightarrow Mg(OH)_2 + H_2 +$$
حرارة

Fe + H₂O
$$\longrightarrow$$
 Fe(OH)₃ + H₂ + \Rightarrow (2)

P	- ٣	P	- Y	*	-1
ب	-٦	ب	-0	د	- £
?	-9	*	-^	د	-٧
ب	-17	د	-11	7	-1.
ب	-10	7	-1 £	ب	-14
ب	-11	د	-14	ب	-17
ب	- 7 1	د	- ۲ •	ب	-19
ب	- 7 £	P	-77	ب	- ۲ ۲
		~	- ۲٦	3	-40

- عدد أيونات H^+ اللازم إضافتها عند موازنة نصف التفاعل $^{rac{\mathfrak{I}}{2}}$ $HNO_2 \longrightarrow NO_3$ H_{+} 2 H^+ (\approx 4 H⁺ (د ب) 3 H⁺
 - أحد التحولات التالية يحتاج إلى عامل مؤكسد :
- $ClO_3 \longrightarrow Cl^-$
- $\begin{array}{ccc} Br_{2} & \longrightarrow 2Br^{\bar{}} \\ Fe^{3+} & \longrightarrow Fe^{2+} \end{array}$ ب)
- $Al \longrightarrow Al_2O_2$
- معادلة نصف التفاعل الموزونة التي تُمثل تحول $\mathrm{MnO_4}^-$ في الوسط القاعدي إلى MnO₂ هي :

$$MnO_4^- \longrightarrow MnO_2^- + O_2^- + e^-$$
 (f

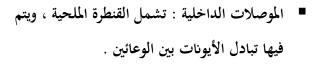
$$MnO_4^- + 2H_2O + 3e^- \longrightarrow MnO_2 + 4OH^-$$
 (\hookrightarrow

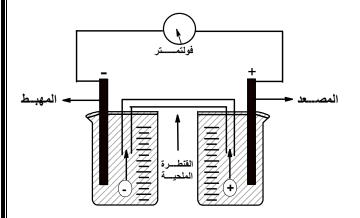
$$MnO_4^- + 4H^+ + 3e^- \longrightarrow MnO_2 + H_2O$$
 (**

$$MnO_4^- + e^- \longrightarrow MnO_2^- + 2OH^-$$

أي العبارات التالية صحيحة فيما يتعلق بالتفاعل:

$$Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$$


- ٢) يتم التفاعل في وسط قاعدي .
- $Cr_2O_7^{2-}$ ب العامل المؤكسد هو
- H^+ اختزال أيونات الهيدروجين ا
 - Fe^{2+} د) اختزال أيونات
- عدد الإلكترونات المفقودة أو المكتسبة في التفاعل:


العامل المختزل في التفاعل الآتي هو :

$$PbS + H_2O_2 \longrightarrow PbSO_4 + H_2O$$

$$H_2O_2$$
 (* H_2O (*

عدد مولات الإلكترونات المفقودة من تحول Cl- إلى ني تفاعل كيميائي يساوي : $\mathrm{ClO_3}^{-1}$

اهمية القنطرة الملحية:

- تعمل على أغلاق الدارة الكهربائية .
- منع التماس المباشر بين الأقطاب .
- حفظ التوازن الكهربائي : فهي مستودع للأيونات الموجبة والسالبة .

. NaNO₃ أو KCl

- ◄◄ ملاحظات على الخلايا الغلفانية

- المصعد: القطب السالب ، يحدث له تأكسد.
- 🗘 المهبط : القطب الموجب ، يحدث عليه إختزال .
- حركة الإلكترونات عبر الدارة الخارجية (الأسلاك) ، تكون من قطب المصعد بإتجاه قطب المهبط ؟
- حركة الأيونات الموجبة : تكون من وعاء التأكسد بإتجاه وعاء الإختزال ، عبر القنطرة الملحية .
- وعاء الأيونات السالبة : تكون من وعاء الأختزال بإتجاه وعاء التأكسد ، عبر القنطرة الملحية .
- في وعاء التأكسد: يزداد تركيز الأيونات الموجبة ، ويقل تركيز الأيونات السالبة .
- ♥ في وعاء الإختزال: يزداد تركيز الأيونات السالبة، ويقل
 تركيز الأيونات الموجبة.
 - دائماً: تقل كتلة المصعد، وتزداد كتلة المهبط.

الفصل الثاني

الخلايا الكهروكيميائية

الخلية الكهروكيميائية: جهاز يتم فيه تفاعل تأكسد واختزال ،يصاحبه انطلاق الطاقة الكهربائية أو امتصاصها .

△ تقسم الخلايا الكهروكيميائية إلى:

- الخلايا الغلفانية: هي الخلايا التي تتم فيها تفاعلات التأكسد والاختزال
 - بصورة تلقائية .
- خلايا التحليل الكهربائي: هي الخلايا التي تتم فيها
 تفاعلات التأكسد والاختزال
 بصورة غير تلقائية .

الخلايا الغلفانية

- تحولات الطاقة : من كيميائية (تفاعلات التأكسد و الاختزال) إلى طاقة كهربائية .
- تحدث تحولات الطاقة بصورة تلقائية (بدون وجود بطارية)

▶ تركيب الخلية الغلفانية:

- وعائين منفصلين ، يحتوى كل منها على محلول بتركيز (١ مول /لتر) ، يغمس في كل وعاء قطب وهما
 - القطب السالب: المصعد 🕁 يحدث له تأكسد
 - القطب الموجب: المهبط 🕁 يحدث عليه اختزال
 - الموصلات الخارجية : الدارة الخارجية) وتضم
 أسلاك التوصيل وجهاز الغلفانوميتر .

يتم فيها نقل الإلكترونات من المصعد باتجاه المهبط.

: **()** مثال () :

تمثل المعادلة الآتية التفاعل الذي يحدث في إحدى الخلايا

$$Cu + Ag^+ \longrightarrow Cu^{2+} + Ag$$
 : الغلفانية : الغلفانية : الأسئلة الآتية :

.

شامثال (١)

١ – حدد المصعد ، وبيّن إشارته .

٢ – حدد المهبط ، وبيّن إشارته.

٣- اكتب معادلة نصف تفاعل التأكسد .

٤ - اكتب معادلة نصف تفاعل الإختزال .

٥- حدد حركة الألكترونات في الداره الخارجية (الأسلاك)

حدد حركة الأيونات الموجبة عبر القنطرة الملحية .

٧- حدد حركة الأيونات السالبة عبر القنطرة الملحية .

٨ ما عدد الإلكترونات المفقودة أو المكتسبة (المتنقلة)

٩ - ماذا يحدث لتركيز الأيونات الموجبة في وعاء التأكسد

• ١ – ماذا يحدث لتركيز الأيونات الموجبة في وعاء الإختزال .

١١ – ماذا يحدث لتركيز الأيونات السالبة في وعاء التأكسد

١٢ – ماذا يحدث لتركيز الأيونات السالبة في وعاء الإختزال

١٣ - أي القطبين تزداد كتلته ؟

١٤ - أي القطبين تقل كتلته ؟

الحل :

، Cu (۱ القطب سالب

Ag (۲ ، القطب موجب

 $Cu \longrightarrow Cu^{2+} + 2e^{-}$

 $Ag^+ + e^- \longrightarrow Ag$ (\$

ه) من قطب Cu إلى قطب

٦) باتجاه وعاء Ag

۷) باتجاه وعاء Cu

٨) ٢ إلكترون

۹) یزداد

۱۰) تقل

١١) تقل

۱۲) تزداد

۱۳ فطب Ag

Cu قطب (۱٤

إذا علمت أن التفاعل التالي يحدث في خلية علفانية ، أجب عن الأسئلة التي تليه:

 $Al(s) + Sn^{2+}(aq) \longrightarrow Al^{3+}(aq) \mid +Sn(s)$

١ – أيّ القطبين يمثل المصعد ؟

٧ – أيّ القطبين يمثل المصعد ؟

٣ - اكتب معادلة نصف تفاعل التأكسد .

٤ - اكتب معادلة نصف تفاعل الإختزال .

٥- اكتب معادلة التفاعل الكلى .

٦- حدّد إتجاه سريان التيار الكهربائي .

٧- حدد حركة الأيونات الموجبة عبر القنطرة الملحية.

٨- حدد حركة الأيونات السالبة عبر القنطرة الملحية.

٩ - أيّ الأقطاب تقل كتلته مع مرور الزمن ؟

• ١ - أيّ الأقطاب تزداد كتلته مع مرور الزمن ؟

يقل تركيزها ؟ $(\operatorname{Sn}^{2+} \operatorname{al}^{3+})$ يقل تركيزها ؟

١٢ – ما عدد مولات الإلكترونات المكتسبة أو المفقودة ؟

الحل :

Al -1

Sn-Y

Al \longrightarrow Al³⁺ + 3e⁻- \checkmark

 $\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn} - \epsilon$

 $2Al + 3Sn^{2+} \longrightarrow 2Al^{3+} + 3Sn - \bullet$

Sn إلى Al

٧- من وعاء Al إلى وعاء Sn

۸ من وعاء Sn إلى وعاء Al

Al -9

Sn-1.

Sn²⁺ - 11

٦-17 مول

: **(2)** مثال

خلية غلفانية يحدث فيها التفاعل التلقائي التالي:

 $Cd(s) + Pb^{2+}(aq) \longrightarrow Cd^{2+}(aq) + Pb(s)$

أجب عن الأسئلة الآتية :

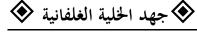
- ١ حدد المصعد ، وبيّن إشارته .
 - ٢ حدد المهبط ، وبيّن إشارته.
- ٣- اكتب معادلة نصف تفاعل التأكسد.
 - ٤ اكتب معادلة التفاعل الكلى
- ٥- حدد حركة الألكترونات في الداره الخارجية (الأسلاك)
 - ٦- حدد حركة الأيونات الموجبة عبر القنطرة الملحية.
 - ٧- حدد حركة الأيونات السالبة عبر القنطرة الملحية .
- ٨- ما عدد الإلكترونات المفقودة أو المكتسبة (المتنقلة)
- ٩ ماذا يحدث لتركيز الأيونات الموجبة في وعاء التأكسد
- ١ ماذا يحدث لتركيز الأيونات الموجبة في وعاء الإختزال .
- ١١ ماذا يحدث لتركيز الأيونات السالبة في وعاء التأكسد
- ١٢ ماذا يحدث لتركيز الأيونات السالبة في وعاء الإختزال
 - ١٣ أي القطبين تزداد كتلته ؟
 - ١٤ أي القطبين تقل كتلته ؟
 - ﴿ الحل :
 - 1

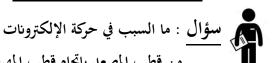
 - ,

 --0
 --٦
 --V
 -
 --q
 --1 •

شامثال 🕜 :

الشكل المجاور يمثل خلية غلفانية ، يحدث فيها تفاعل تلقائي بين القطبين (X) و (Y) ، ادرس الشكل جيداً ثم أجب عن الأسئلة التي تليه :


CB CB


- ١ حدد المصعد .
- ٢ اكتب المعادلة الكلية .
- ٣- حدد إتجاه حركة الألكترونات في الدارة الخارجية (الأسلاك)
 - ٤ ماذا يحدث لكتلة القطب (X) ؟
 - ٥- ما عدد الألكترونات المتنقلة.
 - ٦- أي القطبين له أعلى جهد إختزال .
 - (Y^+) أو (X^{2+}) أم تركيزها الموجبة الموجبة يقل تركيزها (X^{2+})
 - ٨- في أي وعاء يزداد تركيز الأيونات السالبة ؟
 - ٩ أي القطبين أكثر ميلاً للإختزال ؟
 - ١ أي القطبين أكثر ميلاً للتأكسد ؟

:	الحل الحل	
	•	

--Y
--\mathred{\Pi}
--0
--۳
--v
--9

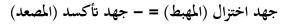
(المصعد) الخلية E° التاكسد (المصعد) الخلية المحترال (المهبط) التاكسد (المصعد)

المرحظة هامة جداً

من قطب المصعد باتجاه قطب المهبط .

الجواب : وجود قوة تعمل على دفع الإلكترونات وتسبب حركتها في سلك التوصيل .

٠٠ تعرف هذه القوة : بالقوة الدافعة الكهربائية .


القوة الدافعة الكهربائية :

أكبر قيمة لفرق الجهد بين قطبي الخلية الغلفانية .

✓ تقاس القوة الدافعة بالفولت

✓ الجهاز المستخدم لقياسها : الفولتميتر .

ن يُعبر عن القوة الدافعة الكهربائية: بـ جهد الخلية

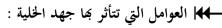
الاختزال للحدوث للقطب نفسة.

ميل نصف تفاعل التأكسد في قطب

معين هو عكس ميل نصف تفاعل

مثلاً : إذا كان E° اختزال Ag اختزال

. فإن E° فاكسد فولت فولت فولت


مثلاً : إذا كان E° اختزال Zn اختزال E° مثلاً

فإن E° فولت . فولت . فولت .

 E° التاكسد (المصعد) E° التاكسد (المصعد) E°

والمصعد) E° المحتوال (المهبط) E° اختوال (المصعد) E°

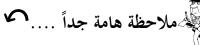
 E° اخترال (الأعلى) - E° اخترال (الأدنى) اخترال (الأدنى)

- تراكيز المحاليل .
- درجة الحرارة .
- الضغط الجوي .

لذلك يتم قياس جهد الخلية في الظروف المعيارية:

- الظروف المعيارية:

- تراكيز المحاليل = (١ مول/لتر)
 - درجة الحرارة = ٢٥ سْ
 - الضغط الجوي = ١ ض.ج


ويسمى جهد الخلية المقاس في الظروف المعيارية : ب جهد الخلية المعيارية ، ويشار له بالرمز ($\mathbf{E}^{\mathbf{o}}$

△ جهد القطب : يعبر عن ميل التفاعل في قطب معين للحدوث.

جهد قطب التأكسد: يمثل ميل نصف تفاعل التأكسد للحدوث.

- جهد قطب الاختزال : يمثل ميل نصف تفاعل الاختزال للحدوث .

جهد الخلية المعيارية = E° الاختزال (المهبط) + E° التاكسد (المصعد)

أن جهد اختزال المهبط أكبر من جهد اختزال المصعد

جهد اختزال (المهبط) > جهد اختزال (المصعد)

(المصعد) E° الاختزال (المهبط) E° الاختزال (المصعد) الخلية

شا مثال 🕦:

خلية غلفانية يحدث فيها التفاعل التلقائي الآتي :

$$Fe(s) + Cu^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cu(s)$$

فإذا كان جهد الاختزال المعياري لقطب Cu

$$($$
 احسب جهد الخلية المعياري (E

﴿ الحل :

نلاحظ من المعادلة حدوث تأكسد لذرات الحديد ،

واختزال لأيونات النحاس .

ن يُشكل النحاس قطب المهبط ، بينما يشكل الحديد المصعد

الخلية
$$E^{\circ}$$
 الاختزال (المهبط) E° اختزال (المصعد) E°

$$(\cdot, \xi \xi -) - \cdot, \forall \xi =$$

مثال 🕜:

خلية غلفانية يحدث فيها التفاعل التلقائي الآتي :

$$Z_{n(s)} + Ni^{2+}(aq) \longrightarrow Z_{n}^{2+}(aq) + Ni(s)$$
 : فإذا كانت

$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$$
 فولت ، ۷۲–

$$Ni^{2^+}(aq) + 2e^- \longrightarrow Ni(s)$$
 فولت ،,۲۵–

احسب جهد الخلية المعيارية $(E)^{\circ}$ احسب

الحل :

نلاحظ من المعادلة حدوث تأكسد لذرات Zn ،

واختزال لأيونات Ni .

ن يُشكل Ni قطب المهبط ، بينما يشكل Zn المصعد .

✓ نطبق العلاقة :

= ۱۹،۰ فولت

مثال 🕜 :

أغتزل أيونات النحاس (Cu^{2+}) بواسطة Pb وفق المعادلة :

$$Pb(s) Cu^{2+}(aq) \longrightarrow Pb^{2+}(aq) + Cu(s)$$

فإذا علمت أن قيمة جهد الخلية المعياري (E الحلية) يساوي فإذا علمت أن قيمة E وولت و E (\bullet , \pm \pm \pm)

اوجد جهد تأكسد المعياري لــ Pb

: الحل

نلاحظ من المعادلة حدوث تأكسد لذرات Pb ، واختزال لأيونات .Cu

✓ نطبق العلاقة:

الاختزال (المهبط)
$$E^{\circ}$$
 اخلية E° الاختزال (المهبط) E°

$$Pb_{\text{الخترال}} E^{\circ} - = Pb_{\text{الخترال}} E^{\circ}$$
 تأكسد

: **(3)** مثال

الجدول المجاور يمثل جهود اختزال بعض الفلزات

	Ni			الفلز
•,٣٤+	٠,٢٥-	1,14-	۰,٧٦–	الاختزال (فولت) E°

أجب عن الأسئلة الآتية .

ا القطبين هو المصعد في الخلية المكونة من قطبي -1 (Ni ، Mn) ?

الحل :

Zn) قطبين تقل كتلة في الخلية المكونة من قطبي $-\tau$ (Cu ،

الحل :

- ما قيمة جهد الخلية المعيارية للخلية المكونة من قطبي - ($Ni \cdot Zn$) ?

الحل :

2-1 ما قيمة جهد الخلية المعيارية للخلية المكونة من قطبي (Zn ، Mn)

جهد الاختزال المعياري

سؤال : لا يمكن قياس جهد أي قطب ما منفرداً ،

إلا إذا اقترن بنصف تفاعل آخر له جهد

معلوم: لماذا ؟

الجواب : لان نصف تفاعل التأكسد لا يحدث إلا بوجود ______ نصف تفاعل الاختزال

■ لذلك تم اتخاذ قطب الهيدروجين المعياري ، كقطب مرجعي لقياس جهد أي قطب آخر .

→ أسباب اختيار الهيدروجين كقطب مرجعي:

- لأن الهيدروجين يتوسط العناصر في نشاطه الكيميائي ، مما يسهل استخدامه كمهبط في تفاعلات ، ومصعد في تفاعلات أخرى .

 $2H^+(aq) + 2e^- \longrightarrow H_2(g)$ فولت ، = $H_2(g)$ فولت ، E

١٤٠ المعياري : على المعياري المعياري :

- قطب بلاتين ، مغموس

في محلول حمضي

یکون ترکیز أیون $\frac{\text{H}^+}{\text{H}^+}$ فیه (۱) مول/ لتر .

- يمر فوقه بصورة مستمرفك

تيار من غاز H_2 تحت

ضغط (۱) ض. ج وعند

درجة حرارة (٥٧ سْ)

مثال (1):

تم توصيل نصف خلية من الخارصين ،مكونة من الخارصين في محلول كبريتات الخارصين بتركيز (١مول/لتر) ، مع قطب الهيدروجين المعياري ، فتبين أن الألكترونات تسري من نصف خلية الخارصين إلى نصف خلية الهيدروجين ، وأن قراءة الفولتمير تساوي (٧٦,٠ فولت).

احسب جهد الاختزال المعياري للخارصين ؟

: الحل

بما أن الإلكترونات تسرى من الخارصين باتجاه قطب الهيدروجين

٠٠ يُشكل الهيدروجين المهبط ، بينما يشكل الخارصين المصعد.

✓ نطبق العلاقة :

الاختزال (المهبط)
$$E^{\circ}$$
 اختزال (المهبط) E° اختزال (المهبط) E°

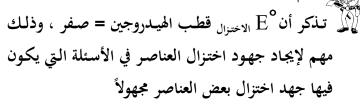
$$(Zn)$$
 صفر – صفر = ۰.۷٦

$$\cdot, v$$
 – صفر – (Zn) اختزال E°

مثال (١٠٠٠)

تم تكوين خلية غلفانية في الظروف المعيارية ، قطباها من الفضة والهيدروجين ، وقد وجد أن قيمة E° الفضة والميدروجين ، فإذا علمت أن قطب الفضة هو القطب الموجب في الخلية ، احسب جهد الاختزال المعياري للفضة .

بما ان الفضة هو القطب الموجب.


٠٠٠ يُشكل الفضة المهبط ، بينما يشكل الهيدروجين المصعد .

√ نطبق العلاقة :

الاختزال (المهيط)
$$E^{\circ}$$
 الاختزال (المهيط) E° اختزال (المصعد) الخيا

نوال (Ag) اختزال
$$E^{\circ}$$

مهم جداً جداً

مثلاً :تأمل الجدول التالي :

	#	
اخلية E	الأقطاب	رقم الخلية
٥٦,١ولت	Ag – Zn	1
٧٦,٠ فولت	$H_2 - Zn$	۲

ما قيمة جهد اختزال الفضة ؟

🔷 جدول جهود الاختزال المعيارية 🏈

◄◄ ملاحظات على جهود الاختزال المعيارية

لإي خلية غلفانية : يكون جهد إختزال المهبط أكبر من جهد إختزال المصعد.

(المصعد) المجين (المصعد) E^0

المادة ذات $\operatorname{E}^{oldsymbol{\circ}}$ الأعلى $\operatorname{E}^{oldsymbol{\circ}}$ أقوى عامل مؤكسد ⇒أضعف عامل مختزل

المادة ذات E° الاختزال الأقل E أضعف عامل مؤكسد ⇒ أقوى عامل مختزل

لإي نصف تفاعل إختزال:

 $x^+ + e^- \longrightarrow x$ عامل مؤكسد عامل مختزل

عند حساب $\stackrel{f c}{E}_{\rm let}$: قيمة موجبة \Rightarrow تفاعل تلقائي قيمة سالبة ⇒غير تلقائي

الفلزات التي تعمل على تحرير غاز H_2 من محاليل الحموض المخففة (تنطلق غاز الهيدروجين):

 ${
m E}^{
m o}$ اختال الفلز ${
m C}^{
m o}$ صفر (إي له قيمة ${
m E}^{
m o}$ اختال سالبة ${
m E}^{
m o}$

 $X(s) + H^{+}(aq) \longrightarrow X^{+}(aq) + H_{2}(g)$

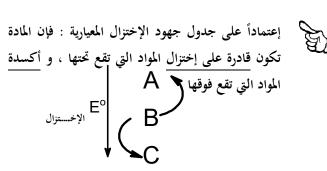
عند حفظ محلول مادة في وعاء فلزي : يجب أن نضمن عدم حصول تفاعل:

أقل من E^{o} أقل من

(جهد الخلية سالب)

(المهبط) جنوال (المهبط) (المهبط) E^{o}

للحصول على خلية لها أكبر فولتية (أكبر E^{o} علي) ،


- نختار عنصرین : أعلى $\operatorname{E}^{\operatorname{o}}$ $_{|$ ختال وأقل $\operatorname{E}^{\operatorname{o}}$

، (أقل E^{o} للحصول على خلية لها أقل فولتية نختار عنصرين : (١) أقرب قيمتين موجبتين .

(٢) أقرب قيمتين سالبتين .

٣) أقرب قيمة موجبة لقيمة سالبة .

 ${
m A}$ قادرة على إختزال ${
m C}$ وغير قادرة على إختزال ${
m B}$ $\, {
m C}$ قادرة على أكسدة $\, {
m A} \,$ وغير قادرة على أكسدة $\, {
m B} \,$

تذكر ما يلى :::

الكلمات التالية تدل على المهبط إذا وردت في السؤال .

محلول ، ملح ، خام ، أيونات

الكلمات التالية تدل على المصعد إذا وردت في السؤال .

وعاء ، إناء ، ملعقة ، شوكة ، مسمار ، صفيحة ، قطعة،

● الكلمات التالية لها نفس المعنى:

العنصر A يختزل العنصر B من محاليل -1

العنصر A يذوب في محلول العنصرA

۳- العنصر A يستخرج العنصر B من محاليل مركباته .

٤- العنصر A يرسب العنصر B من محاليل مركباته .

o- العنصر A يحل محل العنصر B من محاليل مركباته

جميع الكلمات تعنى

(B) جهد إختزال (A) أقل من جهد إختزال

طريقة (١):

الألومنيوم يتأكسد <table-cell-rows> المصعد

الخارصين يختزل 🗘 المهبط

وعند حساب قيمة $\stackrel{\circ}{E}$ الحلية $\stackrel{\circ}{E}$ نجد:

= + ۰,۹۰ فولت

ن بما أن قيمة E° الحلية E° موجبة هذا يعني أن التفاعل تلقائياً إذا لا يمكن الحفظ

طريقة (٧) :

ن التفاعل تلقائي 🗘 لايمكن الحفظ

تذكر أن : إذا كان جهد اختزال المهبط أكبر لا يمكن الحفظ

أ مثال (٢٠٠٠)

علماً بأن

هل يستطيع الحديد (Fe) اختزال أيون الخارصين (Ee) هل يستطيع الحديد (Ee) اختزال أيون المعادلة الآتية :

$$Fe + Zn^{2+} \longrightarrow Fe^{3+} + Zn$$

نصف تفاعل الاختزال	اختزال E ^o
$Fe^{3+}(aq) + 3e^{-} \longrightarrow Fe^{2+}(aq)$	٠,٠٤-
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	٠,٧٦-

: الحل : Fe + Zn²⁺ -----> Fe³⁺ + Zn اختزال تأكسد مصعد مهبط مصعد (•,•٤-)> (•,٧٧-)

ن التفاعل غير تلقائي → لا يمكن

تذكر أن : كل مادة تختزل ما تحتها وتؤكسد ما فوقها .

أمثلة توضيحية

: 🐧 مثال

وضح إمكانية حدوث التفاعل الآتي في الظروف المعيارية :

$$\operatorname{Br}_2(l) + 2\operatorname{Cl}^-(aq) \longrightarrow 2\operatorname{Br}^-(aq) + \operatorname{Cl}_2(g)$$

علماً بأن:

نصف تفاعل الاختزال	اختزال E ^o
$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	١,٠٦
$\text{Cl}_2(g) + 2e^- \longrightarrow 2\text{Cl}^-(aq)$	1,٣٦

کا لحل

من التفاعل نلاحظ أن البروم قد تعرض للاختزال للمالمهبط .

رالمصعد)
$$E^{\circ}$$
 اخترال (المصعد) اخترال (المصعد) اخترال (المصعد)

بها أن قيمة $\stackrel{oldsymbol{e}}{E}_{1}$ سالبة هذا يعني أن التفاعل لا يحدث تلقائياً .

طریقة اخری : (بدون إیجاد قیمة $\stackrel{\circ}{E}$ اخلیة) من التفاعل :

$$\operatorname{Br}_{2}(l) + 2\operatorname{Cl}^{-}(aq) \longrightarrow 2\operatorname{Br}^{-}(aq) + \operatorname{Cl}_{2}(g)$$

ا المحتوال المحتو

إذا كان جهد اختزال المهبط < جهد اختزال المصعد : يكون التفاعل غير تلقائي .

إذا كان جهد اختزال المهبط > جهد اختزال المصعد : يكون التفاعل تلقائي .

: 🕜 مثال 🖰 :

علمابان:

هل يمكن حفظ محلول كبريتات الخارصين (ZnSO₄) في وعاء مصنوع من الألومنيوم .

نصف تفاعل الاختزال	اختزال E^{o}
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	٠,٧٦-
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	1,77-

مثال 🔁:

هل يمكن تحضير (I_2) بأكسدة أيونات (I_1) بواسطة غاز Cl_2 كعامل مؤكسد ?

علما بأن

نصف تفاعل الاختزال	اختزال E ^o
$I_{2}(s) + 2e^{-} \longrightarrow 2\Gamma(aq)$	•,01+
$\text{Cl}_2(g) + 2e^- \longrightarrow 2\text{Cl}^-(aq)$	1,41+

الحل الحل

بما أن Cl_2 عامل مؤكسد ، يحدث له اختزال \Box المهبط أيونات \Box ، يحدث لها تأكسد \Box المصعد

٠٠٠ جهد اختزال المهبط > جهد اختزال المصعد

التفاعل تلقائي 🗘 يمكن

أ مثال (٥):

هل يمكن استخدام الكروم (Cr) لاستخراج القصدير Sn من أملاحه

نصف تفاعل الاختزال E^{0} $\operatorname{Cr}^{2^{+}}(aq) + 2e^{-} \longrightarrow \operatorname{Cr}(s)$ \bullet , $\vee \nabla \nabla \operatorname{Sn}^{2^{+}}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$

الحل:

علماً بأن

Cr جهد اختزال Sn > جهد اختزال \therefore

التفاعل تلقائي 🗘 يمكن

تذكر أن : كلمة ملح تدل على المهبط

بما أن جهد اختزال المهبط أكبر فإن التفاعل يحدث تلقائماً.

مثال 🔃

اعتماداً على الجدول المجاور ، والذي يمثل أنصاف تفاعلات إختزال لبعض العناصر ، وقيم جهود الإختزال لها :

(فولت) E ^o	نصف تفاعل الإختزال
٠,٢٥-	$Ni^{2+} + 2e^- \longrightarrow Ni$
1,77-	$Al^{3+} + 3e^{-} \longrightarrow Al$
٠,٨٠+	$Ag^{+} + e^{-} \longrightarrow Ag$
٠,٨٥+	$Hg^{2+} + 2e^{-} \longrightarrow Hg$
٠,١٤-	$Sn^{2+} + 2e^{-} \longrightarrow Sn$

- أجب عن الأسئلة التالية:
- ١ اختر أقوى عامل مؤكسد .
- ۲ اختر أقوى عامل مختزل .
- ٣- اختر أضعف عامل مؤكسد .
 - ٤ اختر أضعف عامل مختزل .
- الفلزات يتفاعل مع محلول HCl المخفف ، ويطلق غاز الهيدروجين .
- ٦- أي الفلزات لا يتفاعل مع محلول HCl المخفف ، ويطلق غاز الهيدروجين .
 - الأيونات التي يستطيع Sn إختزالها .
 - -ما العناصر التي يستطيع أيون Sn^{2+} أكسدتها .
 - 9- اختر فلزين : لتكوين خلية غلفانية لها أعلى فولتية ؟
 - ١ اختر فلزين : لتكوين خلية غلفانية لها أقل فولتية ؟
- $AgNO_3$) في وعاء ($AgNO_3$) في وعاء من القصدير Sn ?
- بلعقة من $(NiCl_2)$ بلعقة من عكن تحريك محلول كلوريد النيكل ((Ag)) بالفضة الفضة ((Ag)
- 17- ما الفلز الذي يمكن أن يستخدم لإستخراج بقية الفلزات من خاماتها .
- 14- هل يمكن إستخدام الألومنيوم (Al) للحصول على النيكل (Ni) من محلول NiSO₄ ؟
- ه ۱ إذا تم تركيب خلية غلفانية قطباها (Ag) و (Ni) حدد؟
 - المصعد والمهبط ؟
 - اكتب معادلة التفاعل الكلى .
 - بين إتجاه حركة الأيونات السالبة عبر القنطرة الملحية
 - أوجد مقدار جهد الخلية (E^{o}) -

١٦- بين إمكانية حدوث التفاعل التلقائي الآتي :

 $Hg(l) + Ni^{2+}(aq) \longrightarrow Hg^{2+}(aq) + Ni(s)$

-1V اكتب نصف تفاعل التأكسد في الخلية المكونة من العنصرين -1V و -1V) ?

١٨ - خلية غلفانية قطباها (Ni ، Ag) أي القطبين تزداد
 كتلته أثناء عمل الخلية ؟

الحل :

- الذي له أعلى جهد اختزال $ightharpoons Hg^{2+}$ (۱
- ۲) Al (۲ لذي له أقل جهد اختزال

- الذي له أقل جهد اختزال $ightharpoons A1^{3+}$ (۳
- £) Hg الذي له أعلى جهد اختزال له
- العناصر التي لها جهد اختزال سالبة .
 Ni , Al , Sn (٥
- Rg , Hg (٦ لعناصر التي لها جهد اختزال موجبة
 - Ag^{+} و Hg^{2+} (۷
 - ۸l و Ni (۸
 - Hg و Al (۹
 - Hg و Ag(۱۰
 - ١١) لا يمكن
 - ۱۲) نعم یمکن
 - Al (17
 - ۱٤) نعم يمكن
 - (10
 - أ- المصعد : النيكل
 - المهبط: الفضة

$$Ni(s) + 2Ag^{+}(aq) \longrightarrow Ni^{2+}(aq) + 2Ag(s) -$$

ت- باتجاه وعاء النيكل

- ١٦) غير تلقائي .
- $Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$ (1)
 - Ag (1A

اعتماداً على الجدول الجاور ، والذي يمثل قيم جهود الإختزال المعيارية لبعض الفلزات :

Cr	Mg	Ag	Cu	Sn	الفلز
۰,۷۳–	7,44	٠,٨٠+	٠,٣٤+	٠,١٤-	الإختزال (فولت) ${ ext{E}}^0$

أجب عن الأسئلة الآتية:

- ١ إختر أقوى عامل مختزل .
- ٢ اختر أضعف عامل مؤكسد .
- ٣- ما هي الفلزات التي تطلق غاز الهيدروجين من محلول حمض
 - HCl المخفف ؟
 - Sn^{2+} ما الفلز الذي يختزل أيونات Ag^+ ولا يختزل

- ٥- ما الأيون الذي يؤكسد Sn ولا يؤكسد Ag ؟
 ٦- بين إمكانية حدوث التفاعل الآتى :
- $Cr(s) + Cu^{2+}(aq) \longrightarrow Cr^{2+}(aq) + Cu$
- ٧- اختر فلزين: لتكوين خلية غلفانية لها أعلى جهد خلية؟
 - ۸- بین إمکانیة حفظ محلول AgNO₃ في وعاء Cu °
 - 9 بين إمكانية تحريك محلول CuSO₄ بملعقة من Sn ؟
- ۱۰- هل يمكن استخدام القصدير Sn للحصول على الكروم
 - Cr^{2+} من أيونات Cr
- ۱۱ أي الفلزات يمكن أن إستخدامها لترسيب الكروم Cr من
 - محاليل أملاحه ؟
 - الحل:
 - Mg (1
 - (الاشارة ضرورية) $m Mg^{2+}$ (ا
 - Sn, Mg, Cr (*
 - Cu (£
 - Cu^{2+} (\circ
 - ٦) تفاعل تلقائي
 - Mg (۷ و Ag
 - الوعاء المحلول الوعاء (۸ Cu AgNO₃ المصعد المصعد المصعد (٠,٣٤) < (٠,٨٠)

تذكر: إذا كان E° < الاختزال (المهبط) تذكر: إذا كان أكان المختزال (المهبط) فأن التفاعل تلقائي للمحكن الحفظ

تذكر: إذا كان °E الاختزال (المهبط) > °E الاختزال (المصعد) فأن التفاعل تلقائي 🗢 لا يمكن التحريك

١٠) لا يمكن – لأن جهد اختزال القصدير أكبر

Mg (11

: 🐧 مثال

اعتماداً على جهود الإختزال المعيارية لأنصاف التفاعلات المبينه في الجدول الآتي : أجب عن الأسئلة الأتية .

(فولت) E ^o	نصف تفاعل الإختزال		
1,77-	$Al^{3+} + 3e^{-} \longrightarrow Al$		
٠,٢٥-	$Ni^{2+} + 2e^- \longrightarrow Ni$		
٠,٣٤+	$Cu^{2^+} + 2e^- \longrightarrow Cu$		
٠,٨٠+	$Ag^+ + e^- \longrightarrow Ag$		

- ١ حدّد العامل المختزل الأقوى .
- -Ni) قطباها وكركة الإلكترونات في الخلية التي قطباها (Cu
 - ٣- هل يمكن حفظ محلول كبريتات النيكل في وعاء من Al ؟
 - ٤- اختر عنصراً يختزل أيونات Cu ويؤكسد Al ؟
 - ٥- عند وصل نصف خلية من Ag مع نصف خلية من Ni :
 - حدّد المصعد
 - ما قيمة جهد الخلية المعيارية ؟
 - ٦- اختر فلزين لعمل خلية غلفانية لها أقل جهد خلية ؟
 - الحل :
 - Al (1
 - Vi من Ni إلى Cu
 - ٧ (٣
 - Ni (£
 - ه) المصعد Ni
 - ٥ ، , ١ فولت
 - Cu (٦ و Ag

_ مثال 🕦 :

يبين الجدول المجاور القيم المطلقة لجهود الاختزال المعيارية للعناصر

. C, B, A:

E ^o (فولت)	ختزال	تفاعل الإ	نصف	: C , B , A . وقد لوحظ ما يلي :
٠,١٤	A ²⁺ (aq)	+2 e ⁻	$\rightarrow A_{(s)}$	- عند وصل نصف الخلية
٠,٤٠	$B^{2^+}_{(aq)}$	+2 e	\rightarrow B _(s)	A مع نصف الخلية B ،
٠,٨٥	C ²⁺ (aq)	+2 e	$\rightarrow C_{(s)}$	braceان الألكترونات تنتقل من

- إلى A .
- عند وصل نصف الخلية A مع قطب الهيدروجين المعياري الألكترونات تنتقل من A إلى قطب الهيدروجين .

- $oldsymbol{B}$ وأن أيونات $oldsymbol{\mathrm{C}}^{2+}$ تؤكسد العنصر
- ▲ اعتماداً على المعلومات السابقة ، اجب عما يأتي :
 - ١ ما العامل المؤكسد الأضعف ؟
- ٢- ما العنصر الذي لا يُطلق غاز الهيدروجين من محلول الحمض HCl المخفف.
- ٣- حدّد الفلزين اللذين يكوّنا خلية غلفانية لها أقل فرق جهد
- ٤- هل يمكن حفظ محلول HCl في وعاء مصنوع من الفلز C
 - (B-A) ما قيمة جهد الخلية المعيارية التي قطباها
 - الحل :
 - B^{2+} (1
 - C (Y
 - B , A (*
 - ٤) نعم
 - ٥) ۲٦,٠ فولت
 - 🗀 مثال 🕩 :

تم دراسة الفلزات ذات الرموز الافتراضية (A , D, R ,G, M) والتي تشكل أيونات ثنائية موجبة في محاليلها المائية حيث تبين ما يلى :

- عند وضع قطعة من الفلز A في محلول الحمض المخفف HCl يتصاعد غاز HCl
- تتحرك الإلكترونات من القطب D إلى القطب A في الدراة الخارجية في الخلية الغلفانية المكونة من الفلزين (A,D)
- M تتجه الأيونات السالبة في القنطرة إلى وعاء العنصر في الخلية الغلفانية المكونة من الفلزين $(G\,,\,M)$
- يمكن حفظ محلول أحد أملاح العنصر A في وعاء من العنصر M
- تقل كتلة القطب R عند تكوين خلية غلفانية من (D , R) القطبين

بناء على المعلومات اجب عن الأسئلة التالية:

- ١ حدّد أقوى عامل مختزل .
- ٧- في الخلية الغلفانية المكونة من القطبين (D,G) حدد

٦- حدّد الفلزين اللذين يكوّنان خلية غلفانية لها أكبر فرق جهد

٧- أيّ القطبين تقل كتلته في الخلية الغلفانية (Y-X)

- حدّد اتجاه حركة الأيونات الموجبة في الخلية الغلفانية التي قطباها (X-Z)

$$X$$
 (1

۲) -۱,۸۷ فولت

$$Z^{2+}$$
 (Υ

٤) ۲,۲۲ فولت

Z و X (٦

X (V

Z إلى X من (۸

M - هل يمكن تحريك محلول أحد أملاح الفلز M بملعقة من الفلز R

٤- حدد اتجاه حركة الإلكترونات في الدراة الخارجية للخلية الغلفانية المكونة من القطبين (A,G)

o- أيّ القطبين تقل كتلة عند تكوين خلية غلفانية من الفلزين (D,M)

٦- هل يحدث التفاعل الآتي تلقائياً ؟

$$R + 2H^+ \longrightarrow R^{2+} + H_2$$

حدّد فلزاً يستطيع اختزال أيونات \mathbf{G}^{2+} ولا يستطيع اختزال أيونات \mathbf{A}^{2+} .

: الحل

R (1

D (*

٣) لا يمكن

٤) من A إلى G

D (0

٦) نعم

M (v

بعض افضل ايام حياتك لم تأتِ بعد. Some of the best days of your life. haven't happened yet.

الله مثال (وزارة ۲۰۱۷/صيفية)

Z , يَّن الجدول الآتي بيانات للخلايا الغلفانية لفلزات افتراضية (Y,X)) أيوناتها ثنائية موجبة . ادرس البيانات في الجدول ثم أجب عن الأسئلة التي تليه

المصعد	جهد الخلية	الخلية الغلفانية
X	٠,٦	Y-X
Y	7,17	Z-Y
Z	٠,٢٥	H ₂ -Z

١ – حدّد العامل المختزل الأقوى .

٢ ما قيمة جهد الاختزال المعياري للفلز (Y) ؟

٣- حدّد العامل المؤكسد في الخلية الغلفانية (Z-Y).

(X-Z) ما قيمة جهد الخلية المعياري للخلية الغلفانية

هل يمكن حفظ محلول أحد أملاح الفلز Y في وعاء من الفلز

?X

جهود الاختزال المعيارية

الجدول التالي يمثل قيم جهود الإختزال المعيارية $(E^{
m o})$ لعدد $oldsymbol{0}$

من الفلزات:

Cu	Mg	Ag	Fe	الفلز
۰,۳٤+	7,47	٠,٨٠+	٠,٤٤-	E^0 الإختزال (فولت)

1 - حدّد الفلز الأقوى كعامل مختزل ؟

Y- أي منها لا يذوب في محلول HCl ؟

١- حدد العامل

٧- هل يمكن حفظ

محلول AgNO₃ في

وعاء من Cr ؟

٣- اكتب عنصراً

المؤكسد الأقوى ؟

٣- سمّ الفلزين اللذين يكونان خلية غلفانية بأكبر فولتية .

٤- بيّن ماذا يحدث عند سكب محلول نترات المغنيسيوم ي على صفيحة من النحاس ($Mg(NO_3)_2$)

٥- هل يمكن تحريك محلول كلوريد الحديد (III) بملعقة من

7- ما قيمة جهد الخلية المعياري للخلية الغلفانية (Fe-Cu

🕜 ادرس جهود الإختزال المعيارية لأنصاف التفاعلات المبينة في الجدول المجاور ثم أجب عن الأسئلة الآتية :

E ^o (فولت)	نصف تفاعل الإختزال
۰,۷۳–	$Cr^{3+} + 3e^{-} \longrightarrow Cr$
1,77-	$Al^{3+} + 3e^{-} \longrightarrow Al$
٠,٨٠+	$Ag^+ + e^- \longrightarrow Ag$
1,٣٦+	$Cl_2 + 2e^- \longrightarrow 2Cl^-$
٠,٢٥-	$Ni^{2+} + 2e^- \longrightarrow Ni$
٠,٣٤+	$Cu^{2+} + 2e^{-} \longrightarrow Cu$

واحداً فقط منها يسبب انطلاق غاز H_2 من محاليل الحموض المخففة ؟

٤ - اختر فلزين : لتكوين خلية غلفانية لها أقل فولتية ؟

٥- اختر فلزين: لتكوين خلية غلفانية لها أكبر فولتية ؟

? في الخلية الغلفانية (Ni-Cr) : حدد المهبط ?

V- في الخلية الغلفانية (Ni-Al) : حدد المصعد ؟

۸- هل يمكن أستخدام الفلز Cr في تحضير النحاس Cu من محاليل أملاحه ؟

تم استخدام عدد من الأقطاب الفلزية ومحاليها المائية (١مول/لتر) لعمل ٤ خلايا غلفانية مختلفة في الظروف المعيارية كما في الجدول (١) ، كما يبين الجدول (٢) جهود الإختزال المعيارية لعدد من انصاف التفاعلات:

E°	نصف تفاعل الإختزال
٠,٢٥-	$Ni^{2+} + 2e^- \longrightarrow Ni$
٠,٧٦-	$Zn^{2+}+2e^{-}\longrightarrow Zn$
٠,٨٠+	$Ag^+ + e^- \longrightarrow Ag$
٠,٣٤+	$Cu^{2^+} + 2e^- \longrightarrow Cu$
1,77-	$Al^{3+}+3e^{-}\longrightarrow Al$

جدول (۲) جدول (١)

● اعتماداً على المعلومات في الجدولين (١ ، ٢) ، أجب عما يأتى :

(1) عثل المصعد في الخلية (1) عثل المصعد في الخلية (1)

 (E^{o}) ما رقم الخلية التي لها أقل قيمة جهد (E^{o})

Zn

Ag Ni

Cu

Ni Cu

Al

Zn

٣- ماذا يحدث لكتلة القطب (B) في الخلية رقم (٣) ؟

ا أيّ الأيونات $({
m Al}^{3+}\,,{
m Ni}^{2+}\,,{
m Ag}^+)$ أقوى عامل مؤكسد ${
m 2-4}$

٥- باستخدام الجدول (٢) اختر فلزين لعمل خلية لها أعلى جهد ، واكتب معادلة التفاعل الكلى لهذه الخلية ؟

عبين الجدول المجاور القيم المطلقة لجهود الاختزال المعيارية للعناصر (M , D , C , B , A) إذا علمت أن ترتيب العناصر حسب قوتما كعوامل مختزلة هو D,B,M,A,C:

> وأن إشارة $^{\circ}$ لنصف تفاعل اختزال العنصر M سالبة .

> > اجب عما يأتي :

الخلية

 IE^{o} نصف تفاعل الإختزال (فولت) $A^+_{(aq)} + e^- \rightarrow A_{(s)}$ ٠,٨٠ $B^{3+}_{(aq)} + 3e^{-} \rightarrow B_{(s)}$ 1, 1. $C_{(aq)}^{3+} + 3e^{-} \rightarrow C_{(s)}$ 1, £ A $D^{^{+}}_{(aq)}$ 7,77 $+ e^{-} \rightarrow D_{(s)}$ $M_{(aq)}^{2+}$ +2 e $\rightarrow M_{(s)}$., 7 A

1- اكتب إشارة لکل نصف من ${
m E}$ انصاف تفاعلات الاختزال للعناصر ؟

٧- حدد العنصرين اللذين يكونان خلية غلفانية لها أعلى قيمة فولتية ، ثم أحسب قيمة جهد الخلية لها

 ٣- ماذا تتوقع أن يحدث عند وضع قطعة من العنصر (A) في محلول يحتوي على أيونات C^{3+} ؟ فسر الاجابة بالمعادلات .

٤- حدد العنصر الذي يتفاعل مع حمض HCl ويطلق غاز الهيدروجين و \mathbf{B}^{3+} الهيدروجين و \mathbf{B}^{3+} ؟

• اعتماداً على الجدول المجاور الذي يبين جهود الاختزال المعيارية لعدد من انصاف التفاعلات:

E ^o (فولت)	نصف تفاعل الإختزال
•,٧٣-	$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$
٠,٣٤+	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$
•,1٣-	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$
1,14-	$Mn^{2+}(aq) + 2e^{-} \longrightarrow Mn(s)$
1,77+	$\operatorname{MnO}_{2}(s) + 4\operatorname{H}^{+}(aq) + 2e^{-} \longrightarrow \operatorname{Mn}^{2+}(aq) + 2\operatorname{H}_{2}\operatorname{O}$

أجب عن الأسئلة الآتية:

١ - حدد أقوى عامل مؤكسد .

۲ - حدد العنصرين اللذين يكونان خلية غلفانية لها أقل قيمة فوليتية ، ثم احسب قيمة E° اخلية .

۳- هل يمكن استخدام Cu كوعاء لحفظ محلول PbSO₄ ؟

٤- في الخلية الغلفانية المكوّنة من القطبين (Cr-Mn) حدّد
 اتجاه حركة الأيونات السالبة عبر القنطرة الملحية .

o-1 أي الوعائين (Mn أم o-1) يمكن حفظ محلول أحد أملاح o-1 فيه o-1

٦- إذا كان التفاعل الآتي يحدث في خلية غلفانية :

 $MnO_2 + Ti + 6H^+ \rightarrow 2Mn^{2+} + TiO^{2+} + 3H_2O$ E^0 اخلية = 4.11 فولت ، فاكتب معادلة نصف التفاعل الذي يحدث عند المصعد ، ثم احسب قيمة E^0 له .

المعيارية لعدد من أنصاف التفاعلات .

أجب عن الأسئلة التالية :

نصف تفاعل الإختزال	E ^o (فولت)
$X^{3+}_{(aq)} + 3e^{-} \rightarrow X_{(s)}$	1,77-
$Y_{2(l)} + 2e \rightarrow 2Y_{(aq)}$	1,•7+
$Z^{2+}_{(aq)}$ +2 e $\to Z_{(s)}$?
$M^{+}_{(aq)} + e \rightarrow M_{(s)}$	٠,٨٠+

أ- رتب : $(M,Y^{ au},X)$ حسب قوتما كعوامل مختزلة

ب- تم بناء خلية غلفانية مكوّنة من القطبين

- ولت . إذا E° فكانت قيمة E° اخلية E° فولت . إذا علمت أن العنصر E° اقوى كعامل مؤكسد من العنصر E° فأجب عما يأتى :
- 1) احسب جهد الاختزال المعياري للعنصر Z.
- ٢) اكتب معادلة نصف التفاعل الذي يحدث عند
 المصعد .
 - ٣) أي القطبين يمثل المهبط وما إشارته.
- ٤) وضح اتجاه حركة الأيونات السالبة عبر القنطرة
 الملحبة .
- \mathbf{D} ، \mathbf{C} ، \mathbf{B} ، \mathbf{A} : آلآتية الآتية علول أحد الملاحة المائية بتركيز (1 مول/لتر) لعمل خلية غلفانية مع النيكل (\mathbf{Ni}) ومعلول أحد أملاحة المائية بتركيز (1 مول/لتر) . وكانت النتائج كما في الجدول التالي :

	اتجاه سريان الإ الدارة ا-	(E°) للخلية (فولت)	قطبا الخلية الغلفانية
إلى	من	(قولت)	۱
Ni	A	١,٤٠+	(A –Ni)
В	Ni	1,.0+	(B –Ni)
Ni	С	•,••+	(C –Ni)
D	Ni	٠,٦٠+	(D-Ni)
Ni	G	٠,٩٥+	(G-Ni)

أجب عن الأسئلة الآتية :

- ١ حدّد العامل المختزل الأقوي .
- Y- في الخلية الغلفانية التي قطباها (A-G) حدّد المهبط .
- C-D) القطبين تقل كتلته في الخلية الغلفانية التي قطباها
 - B في وعاء من A أحد أملاح A في وعاء من
- ٥ حدد الفلزين اللذين يكوّنان خلية غلفانية لهأ أكبر فرق جهد
- ${\sf C-A}$ في الخلية الغلفانية التي قطباها $({\sf C-A})$ حدّد اتجاه حركة الإلكترونات .
- ∇ في الخلية الغلفانية التي قطباها (G-D) حدّد اتجاه حركة الأيونات الموجبة عبر القنطرة الملحية .
 - . A اختر عنصراً يختزل أيونات C ولا يختزل أيونات A
 - 9 اختر عنصراً يستخدم كوعاء لحفظ أحد محاليل 9

من خلال دراستك للتفاعلات الافتراضية التالية التي تمثل خلايا غلفانية ، مع قيم $\stackrel{\circ}{E}_{\rm lul}$ ها :

ولت \cdot , $\mathbf{v} \cdot + \mathbf{v} = \mathbf{v} \cdot \mathbf{v} \cdot + \mathbf{v} \cdot \mathbf{v} \cdot$

١ ما هي صيغة أقوى عامل مختزل ؟

٧ - ما هي صيغة أقوى عامل مؤكسد ؟

٣- هل يمكن استخدام العنصر X في تحضير العنصر Z من

ع – هل يمكن حفظ محلول لأحد أملاح Z في وعاء مصنوع من الفلز Y ?

o حدّد العنصرين اللذين يكونا خلية غلفانية لها أكبر فرق جهد \mathbf{v} أم \mathbf{w} ?

V- في الخلية الغلفانية التي قطباها (Y-X) حدّد اتجاه حركة الإلكترونات عبر الأسلاك .

أجراء سلسلة من التجارب على الفلزات :

أحد املاحه .

وهي ثنائية التكافؤ وقد لوحظ ما يلي (Y, D, B, A) عنصر B يستخدم العنصر (A, B, A)

- لا يمكن حفظ أحد محاليل الفلز Y في وعاء مصنوع من
 الفلز D .
- يتصاعد غاز H_2 عند وضع سلك من الفلز A في محلول حمض HCl ، ولا يتصاعد غاز H_2 عند وضع سلك من الفلز B في حمض HCl .
- عند تكوين خلية غلفانية من الفلزين (D,B) فإن العنصر D يشكل المهبط ?

▲ اعتماداً على الملاحظات أجب عما يأتي:

١ – اختر الفلزين اللذين يكونا خلية غلفانية لها أكبر فولتية .

٧ - حدد أقوى عامل مختزل .

Y هل يمكن تحريك محلول الفلز Y بقطعة من الفلز X

٤- حدد العناصر التي لا تستطيع تحرير غاز الهيدروجين عند
 تفاعلها مع محلول الحمض HCl المخفف ؟

Y اختر عنصراً يستطيع أكسدة العنصر B واختزال أيونات Y

٦- في الخلية الغلفانية (A-Y) حدد القطب الذي تزاد كتلته مع مرور الزمن ؟

A-D) اكتب معادلة التفاعل التفاعل الخادث عند القطب السالب

٨- هل التفاعل الآتي تلقائي :

 $D + 2H^{+} \longrightarrow D^{2+} + H_{2}$

📭 عند دراسة الفلزات المشار إليها بالرموز الافتراضية الآتية :

: وهي تکون أيونات ثنائية موجبة ($X\,,M\,,Q\,,R\,,T$)

تم الحصول على النتائج الآتية :

- في الخلية الغلفانية المكونة من (X-R) تتحرك الألكترونات نحو القطب R .
- يستطيع الفلز (T) تحرير غاز H_2 ، عند وضع صفيحة الفلز T في محلول حمضي مخفف ، بينما لا يستطيع الفلز (Q) ذلك .
- M ترسبت ذرات الفلز (X) عند وضع صفیحة الفلز X^{2+} في محلول محتوي على أيونات X^{2+}
- لايمكن تحريك أي من محاليل الفلز (T) بملعقة مصنوعة
 من الفلز (R)

▲اعتماداً على المعلومات السابقة ، اجب عما يأتي:

- حدد العامل المؤكسد الأقوى .
- ٢) حدد العامل المختزل الأضعف .
- ٣) ما الفلزان اللذين يكونا خلية غلفانية لها أعلى فولتية .
 - X حدد الفلزات التي تسطيع أكسدة العنصر X .
 - ه) اختر أيوناً يؤكسد الفلز R ولا يؤكسد الفلز Q .
- (X) هل يمكن حفظ أحد محاليل الفلز (X) في وعاء مصنوع من الفلز (Q) .

(X-T) في الخلية الغلفانية المكونة من القطبين (

أ) حدد المهبط

ب) حدد اتجاه حركة الأيونات الموجبة عبر القنطرة الملحمة .

٨) أيّ القطبين يمثل المهبط في الخلية المكوّنة من قطبي
 (M ,Q)

السؤال الرابع

- \cdot , $\forall A = M \cdot 1$, $\xi A = B \cdot 7$, $\forall Y = D$ (1
 - $1, \xi \Lambda + = C \cdot \cdot, \Lambda \cdot + = A \cdot$
 - C (۲ و D
 - ٣) يحدث تفاعل ، يؤدي إلى ترسيب ٢
 - $3A + C^{3+} \longrightarrow 3A^+ + C$
- M (£

السؤال الخامس

- MnO_2 (1
- Mn (۲ و Cr ه فولت ، د فولت
 - ٣) نعم
 - ٤) من Cr إلى Mn
 - Pb (o
- $H_2O + Ti \longrightarrow TiO^{2+} + 2H^+ + 4e^-$ (7
 - + ۸۸,۰ فولت

السؤال السادس

- $Y^- \le M \le X$ (1
 - (7
- ٠,٤٠- (١
- $X \longrightarrow X^{3+} + 3e^{-}(Y)$
 - ٣ ، موجبة
 - ٤) من Z إلى X

إجابةورقةالعمل

لسؤال الأول

- Mg (1
- Ag (۲ و Cu
- Ag (۳ و Mg
- لا يحدث تفاعل ، لان جهد الخلية المعيارية سالبة
 (التفاعل غير تلقائي)
 - ه) نعم یمکن
 - ٦) ۷۷,۰ فولت

السؤال الثانر

- Cl₂ (1
 - 7) (
- Ni, Al, Cr (*
 - Ag (٤ و Cu
 - Al، Ag (ه
 - Ni (7
 - Al (v
 - ۸) نعم یمکن

السؤال الثالث

- Zn (1
- ۲) رقم (۲)
 - ۳) تزداد
- Ag^+ (\$
- Al . Ag (o
- $3Ag^{+} + Al \longrightarrow 3Ag + Al^{3}$

السؤال السابع

- A (1
- G (1
- C (*
- ٤) نعم
- B . A (
- G إلى A إلى
- D إلى G
 - G (A
 - В (9

السؤال الثامن

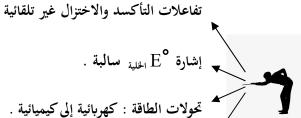
- Z (1 W^{2+} (7
 - ٧ (٣
 - ٤) نعم
- $W \cdot Z$ (o
 - X (1
- Y إلى X إلى (۷

السؤال التاسع

- Y . A (1
 - A (Y
 - 7 (2
- Y, D, B (£
 - D (0
 - Y (1
- $A \longrightarrow A^{2+} + 2e^{-} (V$
 - ٨) لا

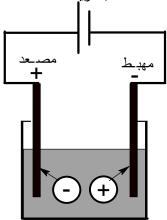
السؤال العاشر

- Q²⁺ (1
 - Q (Y
- W و Q (۳


 - M (£ T²⁺ (•
 - ٦) نعم
- - T (1 (V Q (A

ب) من X إلى T

تنظيم الوقت .. أهم محفرات التفوق....


خلايا التحليل الكهربائي

خلية التحليل الكهربائي : أداة تستخدم مواد كهرلية ، والطاقة الكهربائية لإحداث تفاعل كيميائي .

المصعد : (+) المهبط (-)

- ♦ في خلايا التحليل الكهربائي: نستخدم أقطاب خاملة من الغرافيت أو اللاتين . (لا تشترك في تفاعلات التأكسد والاختزال)
- ⇒ عند مرور تيار كهربائي في محلول أو مصهور مادة أيونية ، فإن
 الإيونات تتحرك باتجاه الأقطاب المخالفة لها بالشحنة
 بطار بــــة

- أهمية البطارية :
- دفع الإلكترونات من المصعد إلى المهبط.
- تحريك الأيونات نحو الأقطاب المخالفة لها بالشحنة .

التحليل الكهربائي لمصاهير المواد الأيونية

● مثال توضيح:

ما نواتج التحليل الكهربائي لمصهور كلوريد الصوديوم NaCl في خلية تحليل كهربائي ذات أقطاب خاملة من الغرافيت ؟

الحل 🔱

 $NaC1 \xrightarrow{\Delta} Na^+ + C1^-$ معادلة تأين الملح : $Na^+ + C1^-$ هعادلة عند الأيونات نحو الأقطاب المخالفة لها بالإشارة ،وتتعادل

■ الأيون الموجب (Na⁺) يتجة نحو القطب السالب (المهبط) ويحدث له اختزال :

 $Na^+ + e^- \longrightarrow Na: المهبط الاختزال /المهبط$

■ الأيون السالب(Cl⁻) يتجه نحو القطب الموجب (المصعد) ويحدث له تأكسد :

 $2C1^- \longrightarrow Cl_2 + 2e^-$ نصف تفاعل التأكسد/المصعد: : التفاعل الكلى :

 $2Na^+ + 2Cl^- \longrightarrow 2Na + Cl_2$: عند حساب جهد الخلية E° عند حساب جهد

1,77 - 7,71 - =

= - ۷ ۰ , ٤ فولت

لاحظ أن جهد الخلية E° الخلية سالبة

كال مما يعني عدم إمكانية حدوث التفاعل بشكل تلقائي

لذا نحن بحاجة لتزيد الحلية بمصدر للطاقة الكهربائية جهده أكبر من (٤,٠٧) فولت لجعل التفاعل يحدث

الحل ﻠ

 $2Cl^{-} \longrightarrow Cl_{2} + 2e^{-} - 1$

 $Mg^{2+} + 2e^{-} \longrightarrow Mg - \Upsilon$

٣-

(Cl)اخلية $E^{\circ} - (Mg)$ اخترال $E^{\circ} = E$

1, 47 - 7, 47 - =

= - ٣,٧٣ فولت

يكون جهد البطارية أكبر من ٣,٧٣ فولت

3 – موجبة

الله مثال 🕜 :

أثناء مرور تيار كهربائي في خلية تحليل كهربائي تحتوي على مصهور CaI_2 (أقطاب غرافيت)

إذا علمت أن قيم جهود الاختزال المعيارية .

(فولت ، , عند = I_2 ، فولت ، باتد خولت کولت) فولت (فولت ، باتد کولت)

أجب عن الأسئلة الآتية:

١ – ما المادة المُتكوّنة عند المهبط.

٢ - ما المادة المُتكوّنة عند المصعد .

٣- اكتب معادلة التفاعل الحادث عند القطب الموجب

٤ - اكتب معادلة التفاعل الحادث عند القطب السالب

ما مقدار جهد البطارية اللازم لحدوث التفاعل .

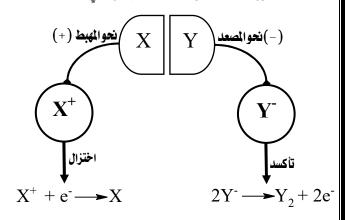
الحل Џ

.....

.....

.....

.....


بشكل عام : **ا**

✓ تتفكك المادة الأيونية إلى أيونات موجبة ، وأيونات سالبة .

✓ الأيونات الموجبة → تتجه نحو القطب السالب
 (المهبط) ويحدث لها اختزال.

✓ الأيونات السالبة ⇒ تتجه نحو القطب الموجب
 (المصعد) ويحدث لها تأكسد

مثلاً : مصهور المادة الأيونية XY .(افتراضي)

: 🕥 مثال

في خلية التحليل الكهربائي لمصهور بروميد البوتاسيوم (KBr)

المادة التي تتكون عند المصعد هي :

: الحل 🛠

Γ	→KBr•	
المهبط		لمصعد →

٠٠ المادة المتكونة عند المصعد :غاز البروم

شال 🛈 :

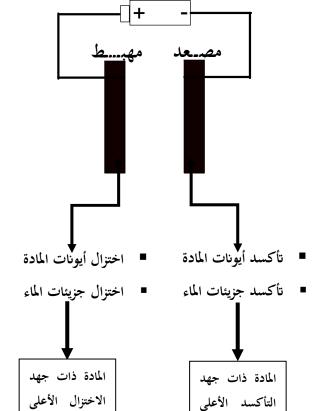
خلية تحليل كهربائي تحتوي على مصهور MgCl_2 فإذا

علمت أن قيم جهود الاختزال المعيارية .

(فولت ۱,۳۲ = Cl_2 ، فولت ۲,۳۷ = Mg^{2+}

١ – اكتب معادلة نصف التفاعل/المصعد .

٧- اكتب معادلة نصف التفاعل/المهبط.


٣- ما مقدار جهد البطارية اللازم لحدوث التفاعل .

٤ - ما شحنة قطب المصعد في الخلية .

التحليل الكهريائي لمحاليل المواد الأيونية

التحليل الكهربائي لمحاليل المواد الأيونية أكثر تعقيداً من مصاهير المواد الأيونية .

السبب : وجود تنافس بين جزيئات الماء و أيونات المادة الأيونية عند أقطاب خلية التحليل :

هي التي تتجمع

عند المصعد

ما نواتج التحليل الكهربائي لمحلول بروميد الصوديوم NaBr في خلية تحليل كهربائي ذات أقطاب خاملة من الغرافيت ؟

هي التي تتجمع

عند االمهبط

معادلة تأين NaBr

$$NaBr \longrightarrow Na^+ + Br^-$$

التفاعلات المحتملة عند المهبط:

 Na^+ اختزال أيونات Na^+

 $Na^+ + e^- \longrightarrow Na$ $\forall, \forall 1-= E^{\circ}$

😯 اختزال جزيئات الماء :

- التفاعلات المحتملة عند المصعد :
 - (۱) تأكسد أيونات Br

$$2Br^{-} \longrightarrow Br_{2} + 2e^{-}$$
 1, • $7 - = E^{\circ}$

(٢) تأكسد جزيئات الماء:

$$2H_2O \longrightarrow O_2 + 4e^- + 4H^+ \qquad 1,77- = E^\circ$$
 وحيث أن جهد تأكسد البروم أكبر \hookrightarrow لذلك يحدث تأكسد للبروم ويتجمع عند المصعد

النواتج : المصعد : البروم

المهبط : غاز الهيدروجين .

معادلة التفاعل الكلى:

$$2H_2O +2e^- \longrightarrow H_2 + 2OH^-$$
: الاختزال/المهبط $Br_2 + 2e^- \longrightarrow Br_2 + 2e^-$ التأكسد/المصعد: $Br_2 + 2e^-$

$$2H_2O 2Br^- \longrightarrow H_2 + 2OH^- + Br_2$$

ملاحظة : تكون أيونات $^{ ext{OH}}$ مع أيونات $^{ ext{Na}}$ معلول قاعدي .

مثال 🕦 :

 $Pb(NO_3)_2$ ما نواتج التحليل الكهربائي لمحلول نترات الرصاص والخرافيت ، في خلية تحليل كهربائي تحتوي على أقطاب خاملة من الغرافيت \clubsuit

$$Pb(NO_3)_2 \xrightarrow{H_2O} Pb^{2+} + 2NO_3^-$$
 : يا الأيونات والجزيئات الموجودة في المحلول هي H_2O_3 , NO_3^- , Pb^{2+}

التفاعلات المحتملة عند المهبط:

 $\cdot \operatorname{Pb}^{2+}$ اختزال أيونات \cdot

$$Pb^{2+} + 2e^{-} \longrightarrow Pb$$
 •, 1 \(\text{v-} = E^{\circ} \)

(٢) اختزال جزيئات الماء:

$$2H_2O + 2e^- \longrightarrow H_2 + 2OH^- , \Lambda \Psi - = E^{\circ}$$

وحيث أن جهد اختزال الرصاص أكبر كلذلك يحدث اختزال للرصاص ويتجمع عند المهبط.

- التفاعلات المحتملة عند المصعد:
 - : NO₃ تأكسد أيونات (١)

لكن عملياً : أيونات NO_3 تبقى في المحلول دون أن يطرأ عليها أي تغير

(٢) تأكسد جزيئات الماء :

$$2H_2O \longrightarrow O_2 + 4e^- + 4H^+ \qquad 1.77 - = E^{\circ}$$
 . يتأكسد الماء منتجاً غاز الأكسجين

النواتج : المصعد : الرصاص

المهبط: الأكسجين.

معادلة التفاعل الكلى :

$$Pb^{2+} + 2e^- \longrightarrow Pb$$
 : الاختزال/المهبط

$$2H_2O \longrightarrow O_2 + 4e^- + 4H^+ : التأكسد /المصعد$$

 $2Pb^{2+} + 2H_2O \longrightarrow 2Pb + O_2 + 4H^+$

الملاحظات هامة جداً الملكمة ال

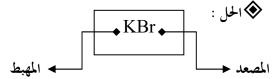
(۱) إذا احتوى المحلول على أيون موجب لفلز نشيط: Mn, Al, Mg, Ca, Na, K, Li مثل

 H_2 غاز وينطلق غاز يكون الماء أسهل اختزال عند المهبط وينطلق غاز

💠 أما إذا احتوت على أيون موجب أخر :

مثل : Cu, Ag, Pb, Zn, Cr, Fe, Ni وتتجمع فإن هذه الأيونات تكون أسهل اختزلاً من الماء ، وتتجمع عند المهبط

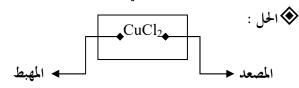
- ﴿ إِذَا كَانَ الأَيُونَ السَّالَبِ فِي الْحُلُولُ :
- $I^-,Br^-,Cl^-,F^-:$ altering $\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\ens$


فإن هذه الأيونات تكون أسهل تأكسداً من الماء عند المصعد وتتجمع على شكل جزيئات .

 NO_3^- , $SO_4^{2^-}$, $CO_3^{2^-}$: الذرات الذرات : $$^{\bullet}$$ فإن هذه الأيونات لا يحصل لها تأكسد ، ويتأكسد الماء عند المصعد وينطلق غاز O_2

أ مثال 🕜 :

في خلية التحليل الكهربائي لمحلول بروميد البوتاسيوم


(KBr) المادة المتكونة عندالمصعد هي :

نلاحظ أن Br أسهل تأكسداً من الماء : لذلك تتكون جزيئات البروم .

أ مثال 🔁 :

عند التحليل الكهربائي لمحلول CuCl_2 تركيزه (\cdot , \cdot ,) مول/ لتر ، المادة المتكونة عند المهبط هي :.....

ن للاحظ أن Cu أسهل اختزلاً من الماء : لذلك يتكون النحاس عند المهبط .

مثال 🙆 :

أكمل الجدول التالي ، بكتابة نواتج التحليل الكهربائي لمحاليل المواد ،عند المصعد والمهبط باستخدام خلية تحليل كهربائي ذات أقطاب خاملة من الغرافيت :

بل الكهربائي	1.141	
المهبط	المصعد	المحلول –
		Ag_2SO_4
		NaNO ₃
		CaBr ₂
		PbCl ₂
		KI
		ZnSO ₄
		LiBr
		MnCO ₃
		NaCl
		K ₂ SO ₄
		AgI

تطبيقات حياتية

استخدام اليود في المجال الطبي

- يوديد البوتاسيوم (KI) من المركبات غير العضوية ، يوجد على شكل بلورات بيضاء
 - يتأين KI في الماء وفق المعادلة التالية :

$$KI(s) \xrightarrow{H_2O} K^+(aq) + \Gamma^-(aq)$$

- عند مرور التيار الكهربائي في خلية التحليل
 الكهربائي لمحلول يوديد البوتاسيوم
 - H_2 تختزل جزيئات الماء وينتج غاز H_2 عند المهبط
 - تتأكسد أيونات اليود (f I) عند المصعد

$$2I^- \longrightarrow I_2 + 2e^-$$

- معادلة التفاعل الكلى:

$$2I^- + 2H_2O \longrightarrow I_2 + H_2 + 2OH^-$$

- يتفاعل اليود الناتج مع الأيون (\mathbf{I}^-) الموجود في المحلول ، ويتكون أيون (\mathbf{I}_3^-) ذو اللون البني ، كما في المعادلة

$$I_2 + I^- \longrightarrow I_3^-$$

- أهمية أيون (I_3^-) يدخل في تحضير الأدوية التي تستخدم في علاج المرضى عند نقص اليود عندهم أو استؤصلت الغدة الدرقية من أجسامهم

سؤال : يستخدم التحليل الكهربائي لمحلول ${
m KI}$ في تحضير أيون (${
m I_3}^-$) المستخدم في صناعة الأدوية ، اكتب المعادلات التي توضح ذلك .

شامثال 🚺 :

عند مرور تيار كهربائي في محلول $NaNO_3$ باستحدام أقطاب البلاتين لوحظ تصاعد غاز الهيدروجين عند المهبط ، وتصاعد غاز الأكسجين عند المصعد ، كيف تُفسّر ذلك .

: الحل

(عند المهبط:

تتواجد أيونات ⁺Na وجزيئات الماء

الماء أسهل إختزلاً من Na^+ لأن جهد اختزاله أكبر

معادلة التفاعل عند المهبط هي:

 $2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$

لذا يتصاعد غاز الهيدروجين عند المهبط.

عند المصعد:

تتواجد أيونات ${
m NO_3}^{-}$ وجزيئات الماء ، وقد وجد عملياً

أن تتواجد أيونات ⁻NO₃ تبقى في المحلول

لذا يتأكسد الماء منتجاً غاز الأكسجين كما في المعادلة

التالية :

$$2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$$

شا مثال 🕚:

(P) هل يمكن الحصول على المغنيسيوم (Mg) بالتحليل

الكهربائي لمصهور MgCl_2 (أقطاب غرافيت)

الجواب : نعم

بالتحليل (Mg) هل يمكن الحصول على المغنيسيوم

الكهربائى لمحلول $MgCl_2$) الكهربائى المحلول

الجواب : لا

لأن الماء اسهل اختزلاً من Mg ، ينطبق غاز

الهيدروجين عند المهبط.

الفصل الثاني/الخلايا الكهروكيميائية

يتكون هذا السؤال من عدد من الفقرات ، لكل فقرة أربع بدائل ، واحدة منها صحيحة ، انقل الى دفتر اجابتك رقم الفقرة الصحيحة و رمز الإجابة الصحيحة :

- الكهربائي لمحلول مائي ليوديد البوتاسيوم KI عند التحليل الكهربائي لمحلول مائي ليوديد البوتاسيوم باستخدام أقطاب من الغرافيت ، فإن ما يحدث عند المهبط هه :
 - ٢) ترسب اليود ج) انطلاق غاز الهيدروجين
 - ب) ترسب البوتاسيوم د) انطلاق غاز الأكسجين
 - إذا تم تحليل مصهور هيدريد الليثيوم (LiH) كهربائياً
 باستخدام اقطاب بلاتين ، فإن تفاعل المصعد هو :
 - $Li^+ + e^- \longrightarrow Li$ (P
 - $Li \longrightarrow Li^+ + e^-$ (ب
 - $2H^{-} \longrightarrow H_{2} + 2e^{-}$ (*
 - $2H^+ + 2e^- \longrightarrow H_2$ (ع
 - 🌋 يكون المصعد في الخلية الغلفانية هو القطب :
 - السالب الذي تحدث عنده عملية التأكسد
 - ب) السالب الذي تحدث عنده عملية الاختزال
 - ج) الموجب الذي تحدث عنده عملية التأكسد
 - د) الموجب الذي تحدث عنده عملية التأكسد
- عند التحليل الكهربائي لمحلول NaCl تركيزه (١ مول/لتر) باستخدام أقطاب خاملة فإن الذي يتكون عند المصعد :
 - ۴ (ج Na خرات (۹
 - OH⁻ (د Cl₂ غاز و CH
 - و احدى العبارات الآتية تتفق مع الخلية الغلفانية
 - لخلية سالبة ($^{f e}$) للخلية سالبة
 - ب) إشارة المصعد سالبة
 - ج) تتنقل الإلكترونات فيها من المهبط إلى المصعد
 - د) يحدث تفاعل التأكسد عند المهبط

- عند التحليل الكهربائي لمحلول كلوريد الصوديوم باستخدام اقطاب غرافيت تكون النوتج كما يأتى :
 - ٩) هيدروجين وأكسجين ج) صوديوم و أكسجين
 - ب) هیدروجین و کلور د) صودیوم و کلور
- إحدى العبارات الآتية غير صحيحة فيما يتعلق بخلية التحليل
 الكهربائي وهي :
 - ٩) شحنة المصعد موجبة .
 - ب) جهد الخلية له قيمة سالبة
 - ج) يحدث تفاعل اختزال عند المهبط
 - د) تتجه الأيونات الموجبة نحو المصعد
- - ۲,۰۰ فولت ج) ۲,۰۰ فولت
 - ب) ٤,٣٤ فولت د) ٢,٣٠ فولت
- بافنا علمت أن: E° إذا علمت أن: E° المتوال (, ٤٤) المتوال التلقائي هو :
 - $Fe + Zn^{2+} \longrightarrow Fe^{2+} + Zn$ (§
 - $Fe + Mn^{2+} \longrightarrow Fe^{2+} + Mn$ (ب
 - $Mn + Zn^{2+} \longrightarrow Mn^{2+} + Zn$ (**
 - $Z_n + Mn^{2+} \longrightarrow Z_n^{2+} + Mn$
- اذا $X^{2+} + H_2 \rightarrow X + 2H^+$: في التفاعل الآتي E° كانت E° كانت E° اخلية E° كانت E° هي :
 - $\operatorname{H}^{^{+}}$ عامل موكسد أضعف من X^{2+}
 - ${
 m X}$ ب ${
 m H}_2$ عامل مختزل أضعف من
 - ج) التفاعل غير تلقائي الحدوث.
 - د) E° د) دینال E° فولت
- Y^{2+} إذا علمت ان وعاء من الفلز X يمكنه حفظ أيونات و X و لا يمكنه حفظ أيونات X^{2+} ، فإن ترتيب العناصر حسب قوتما كعوامل مختزلة هو
 - Y < Z < X (* X < Y < Z (*)
 - Y < X < Z (2) Z < X < Y (4)

- اعتماداً على التفاعلات الآتية في الخلايا الغلفانية :
- $2Al^{3+} + 3Mg \longrightarrow 2Al + 3Mg^{2+}$, \ \ \ + = اخلية E°
- $2Al^{3+}+3Cu \longrightarrow 2Al+3Cu^{2+}$ \forall , •• = يكون ترتيب العناصر حسب قوتما كعوامل مختزلة هو يكون ترتيب العناصر حسب قوتما كعوامل مختزلة و
 - يعون ترتيب المعاصر حسب قوق عواس حرب العو Cu < Al < Mg جCu < Mg < Al ()
 - Al < Cu < Mg (Al < Mg < Cu)
 - 🎔 إذا علمت أن :
 - $Cu^{2+} + 2e^{-} \longrightarrow Cu$ $, \forall \xi = E^{\circ}$
 - $N_i^{2^+} + 2e^- \longrightarrow N_i$ $, \forall o-= E$
 - $Cd^{2+}+2e^{-}\longrightarrow Cd$, $\xi \cdot -= E^{\circ}$
 - $Cr^{2+} + 2e^{-} \longrightarrow Cr$ $\cdot, \forall \forall -= E^{\circ}$
 - فإن الخلية الغلفانية التي لها أقل فولتية هي :
 - (Ni-Cu) (* (Cd-Cr) (*
 - (Cd-Cu) (د Ni-Cr) (ب
- (Z , Y , X) ثلاث فلزات جهود اختزالها المعيارية (Z , Y , X) ثلاث فلزات على الترتيب : أي الجمل التالية صحيحة فيما يتعلق بالعناصر المذكورة
 - العنصر X لا يختزل أيونات العنصر Y .
 - ب) أيونات العنصر Y تؤكسد العنصر Z .
 - ج) العنصر Z أضعف عامل مختزل .
 - د) أيونات العنصر Y أقوى عامل مؤكسد .
- - ۴) تزداد كتلة صفيحة القصدير Sn .
 - بن الكلور يزداد تركيز + في نصف خلية الكلور
 - ج) تسرى الألكترونات من الكلور للقصدير
- د) تسري الأيونات الموجبة نحو نصف خلية Sn .
- في التفاعل الآتي الذي يحدث في إحدى الخلايا الغلفانية $I_2 + Fe \longrightarrow 2I^- + Fe^{2+}$ فإن
 - $^{\mathsf{Fe}}$ عامل مختزل أقوى $^{\mathsf{T}}$.
 - ب) أعامل مختزل أضعف من Fe.
 - Fe^{2+} ج $_2$ عامل مختزل أضعف من
 - Fe^{2+} د) عامل مختزل أقوى من

- في التفاعل الآتي الذي يحدث في إحدى الخلايا الغلفانية \boxed{W} إذا كان جهد الاختزال المعياري لقطب الحديد $\boxed{Fe+2e^-\longrightarrow Fe}$ فولت فإن أحد الأقطاب التالية له القدرة على أكسدة الحديد وله القدرة أيضاً على اختزال أيونات النيكل \boxed{W}
- $\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn} \operatorname{Ne} \operatorname{E}^{\circ}$ (ب
- $Co^{2+} + 2e^{-} \longrightarrow Co \quad \bullet, \forall \land -= E^{\circ} \quad (\approx$
- $N_i^{2+} + 2e^- \longrightarrow N_i \longrightarrow N_i \longrightarrow N_i$
- $MgCl_2$) عند التحليل الكهربائي لمحلول كلوريد المغنيسيوم ($MgCl_2$) مول/لتر ، باستخدام أقطاب غرافيت فإن :
 - β يزداد OH في المحلول الناتج .
 - ب) يتأكسد الماء عند المصعد .
 - Mg و H_2 . Mg و
 - د) يقل ${
 m Mg}^{2+}$ في المحلول الناتج .
- HCl إذا علمت أن العنصر Y لا يذوب في محلول حمض Y^{2+} عند Y^{2+} مول/لتر Y^{2+} عند Y^{2+} عند Y^{2+} و أن أيون Y^{2+} لا يؤكسد العنصر Y^{2+} ، فأيّ العبارات الآتية صحيحة :
 -) لا يمكن حفظ محاليل أملاح Z في وعاء من Y .
 - . Z أكبر من جهد اختزال Y أكبر من جهد اختزال
- ج) Z جهد التأكسد المعياري للعنصر Z له إشارة موجبة .
 - \cdot د H_2 عامل مختزل أقوى من \cdot
- واتج التحليل الكهربائي لمخلوط محلول MgI_2 و Cl_{2djrt} E^o ، فولت E^o ، فولت E^o ، فولت E^o) فولت (1,۳٦=
 - (Cl_2,Mg) (* (I_2,Cu) (f
 - (Cl_2, H_2) (د) (Cl_2, Cu) (د)
- (۳) إذا تم تحليل محلول هيدريد الصوديوم NaH كهربائياً باستخدام أقطاب خاملة ، فإن تفاعل المهبط هو :
- $2H_{2}O \longrightarrow O_{2} + 4H^{+} + 4e^{-}$ 1, YY-= E^{o} (f
- $2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$, $\Lambda \Upsilon -= E^o$ (ب
- $Na^+ + e^- \longrightarrow Na$ $\forall, \forall \epsilon -= E^0 \quad (\neq a)$
- $2H^- \longrightarrow H_2 + 2e^-$ عفر = E° (د)

- ٣ إذا كان جهد الاختزال المعياري لقطب الكادميوم :
- دولت \cdot , **٤ · -=** \cdot Co²⁺ + 2e⁻ \rightarrow Co
- ، فإن احد الأقطاب التالية له القدرة على أكسدة الكادميوم
 - فقط وليس له القدرة على أكسدة القصدير Sn :
 - $Pd^{2+} + 2e^{-} \longrightarrow Pd$, $V = E^{0}$ (f
 - $\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$ $\cdot, 1 = E^{\circ}$ (ب
 - $Fe^{2+} + 2e^{-} \longrightarrow Fe$ $\cdot, \xi \xi = E^{\circ}$ (*
 - $N_i^{2+} + 2e^- \longrightarrow N_i \qquad \cdot, \forall o = E^o \qquad (a)$
 - المعادلة الآتية تمثل تفاعلاً ممكن الحدوث في الظروف المعيارية ${\mathfrak T} = {\mathbb T} + 2{\rm Ag}^+ \longrightarrow {\mathbb T} = {\mathbb T}$
 - عامل مختزل أقوى من Ag (۲
 - Zn^{2^+} ب) عامل مؤكسد أقوى من Ag^+
 - ${
 m Ag}$ عامل مختزل أضعف من ${
 m Zn}$.
 - د) Zn عامل مؤكسد .
 - أيّ الفلزات التالية يذوب في حمض HCl المخفف ولا يذوب في عملول $ZnSO_4$ علماً أن جهد اختزال $ZnSO_4$ علماً القواس بوحدة (., v.) وجهود اختزال لكل فلز بين الأقواس بوحدة الفولت
 - (·, ٣٤+) Cu (* (·, ٢٥-) Ni ()
 - (۲,۳۷–) Mg (۲,۷۱-) Na (ب
 - فولت) في جكن حفظ محلول $FeCl_2$ (فولت) في جميع الأوعية من المواد التالية ما عدا :
 - $(\cdot, \forall \cdot)$ Cr $(\cdot, \land \cdot)$ Ag (\uparrow)
 - (٠,٢٥-) Ni (١٠,١٤-) Pb (ب
 - 🤨 إذاكان التفاعل الآتي يحدث في خلية غلفانية :
 - $^{\dot{\mathbf{Q}}}$ 3Mg + 2Al³⁺ \longrightarrow 3Mg²⁺ + 2Al
 - ا الإلكترونات تسرى من Mg إلى Al في الأسلاك .
 - ب) التاكسد يحدث عند قطب Al.
 - ج) Mg هو المهبط.
 - د) Al هو المصعد.
- تند التحليل الكهربائي لمحلول (KI) باستخدام أقطاب خاملة ، يكون الناتج عند المهبط هو
 - H₂ (≠ K (†
 - O_2 (ع I_2 (ب

- Cu , Ni , Zn , Al : إذا علمت ان العناصر الاتية $^{\textcircled{m}}$ مرتبة من أقوى عامل مختزل إلى أضعف عامل مختزل ، فإننا نستطيع عمل خلية غلفانية بأكبر فولتية من اختيار الفلزين $^{\textcircled{n}}$ Ni $^{\textcircled{n}}$ Al $^{\textcircled{n}}$
 - ب) Cu و Zn و Cu
- الجدول المجاور يمثل خلايا غلفانية و قيم جهد اختزال لها وإذا علمت أن اتجاه سريان الخلية E° ما الجلية في Ag-Ni الإلكترونات في الدارة الحارجية في Zn-Ag كلا الحليتين نحو قطب Ag
- فإن الترتيب الصحيح لها حسب قوتما كعوامل مختزلة هو :
- Ag < Zn < Ni (* Ni < Zn < Ag (*
- Zn < Ni < Ag د Ag < Ni < Zn
- عند وضع سلك من الخارصين (Zn) في وعاء من محلول الخمض HCl ، يصاعد غاز الهيدروجين ، أيّ العبارات الآتية صحيحة .
 - لا يذوب سلك الخارصين في محلول الحمض .
 - ب) الخارصين أقوى كعامل مختزل من غاز الهيدروجين .
 - ج) خلية للتفاعل قيميته سالبة . ${
 m E}^{
 m o}$
 - د) ختزال الخارصين اكبر من صفر فولت . $\operatorname{E}^{\mathrm{o}}$
- الله عند حدوث اختلال في التوازن الكربائي في كل من نصفي الخلية الغلفانية ، فإن المسؤول عن إعداد التوازن الكهربائي
 - ۲) جهاز الفولتميتر ج) المصعد
 - ب) المهبط د) القنطرة الملحية
- عند عمل تحليل كهربائي لمصهور كلوريد الصوديوم (NaCl) فإن جهد الخلية المعيارية بالفولت يساوي :
- $-=Na_{اخترال}E^{0}$ فولت ، + فولت ، اخترال ۱٫۳۲ هولت ، علماً بإن + فولت + بازن + فولت ، + بازن +
 - £, V+ (= 1, To- (f
 - ب) +٥٣٠ د) ٤,٠٧٠
 - ٣ يكتسب المصعد في الخلية الغلفانية شحنة سالبة نتيجة :
 - ٩) سريان الإلكترونات نحوه .
 - ب) تجمع الأيونات الموجبة عليه .
 - ج) تجمع الإلكترونات السالبة عليه .
 - د) حدوث عملية الاختزال .

P	-٣	7	-۲	7	-1
P	-٦	7-	-0	ب	- ٤
7:	– ٩	<i>\range</i>	-۸	د	-٧
7:	-17	ب	-11	4	-1.
ب	-10	ł.	-1 £	P	-14
P	-14	ł.	-17	P	-17
ب	- ۲ 1	P	-7.	4	-19
P	-7 £	ب	-77	4	-77
*	- * *	P	- ۲٦	ł·	- 70
ب	-4.	ب	- ۲ ۹	4	-71
7:	-44	١	-41	ب	-٣1
P	41	۵	-40	*	-71
		ب	-47	P	-*>

- (Cu , Al ,Ag , Zn , Ni) لديك الفلزات الآتية (Cu , Al ,Ag , Zn , Ni) و جهود اختزالها على التالي (-٠,٧٦- ، -,٧٦٠ ، فولت ، أيها يصلح لحفظ علول كبريتات النحاس (CuSO₄)
 - Ag (* Ni (f
 - ب) Al د)
- عند وضع سلك من الخارصين في محلول HCl المخفف يتصاعد غاز الهيدروجين ، لكن عند وضع سلك من النحاس لم يتصاعد غاز الهيدروجين ، وعند عمل خلية غلفانية من قطبي الخارصين والنحاس أيّ العبارات الآتية صحية
 - را كترونات من قطب Cu لقطب (۴
 - ب) الخارصين هو القطب الموجب
 - ج) تزداد كتلة قطب الخارصين
 - د) يحدث اختزال لأيونات النحاس.
- ا إذا علمت أن المعادلة الآتية ممكنة الحدوث في الظروف المعيارية :

فإن
$$Br_2 + Ni \longrightarrow 2Br^- + Ni^{2+}$$

$$\mathrm{Ni}^{2+}$$
 عامل مؤكسد أقوى من Br_2 (۱

$$Ni^{2+}$$
 عامل مختزل أضعف من Br_2

ج) Ni عامل مؤكسد أقوى من
$$\mathrm{Br}_2$$
 .

د)
$$\mathrm{Br}^{ extsf{-}}$$
 عامل مختزل أقوى من

 Br_2) ابدا علمت أنه يتم تحضير اليود (I_2) بواسطة البروم (أ

$$Br_{2} + 2I^{-} \longrightarrow 2Br^{-} + I_{2}$$
 (P

$$I_2 + 2Br^- \longrightarrow 2I^- + Br_2$$
 (4)

$$2Br^{-} + 2I^{-} \longrightarrow Br_{2} + I_{2}$$
 (**

$$Br_2 + I_2 \longrightarrow 2I^- + 2Br^-$$

معادلة تحضير أيون I_3^- الذي يدخل في تحضير الأدوية المستخدمة في علاج مرضى نقص إفراز اليود هي :

$$2I^{-} + I^{-} \longrightarrow I_{3}^{-} \qquad (f$$

$$I_{2} + I^{-} \longrightarrow I_{3}^{-} \qquad (\downarrow)$$

$$3KI \longrightarrow 3K^+ + I_3^-$$
 (**

$$3I_2 + 6e^- \longrightarrow 2I_3^- \tag{2}$$

السؤال الأول:

من خلال دراستك للجدول التالي الذي يتضمن جهود الاختزال المعيارية لعدد من العناصر الافتراضية .

Cd ²⁺						العنصر
٠,٤٠-	٠,٨٠	1,٣٦	٠,٤٤-	1,•٦	٠,٧٤-	(فولت) E^{o}

اجب عن الأسئلة التالية:

- ١) ما صيغة العامل المؤكسد الأضعف ؟
- ١) ما صيغة العامل المختزل الأضعف ؟
- $m{\pi}$ حدد اتجاه حركة الإلكترونات في الدارة الخارجية للخلية الغلفانية التي قطباها (Ag-Cd)
- في هل يمكن حفظ محلول كبريتات الكادميوم $CdSO_4$ في وعاء مصنوع من العنصر Ag ؟
- حدداتجاه حركة الأيونات الموجبة عبر القنطرة الملحية في الخلية الغلفانية المكونة من الأقطاب (Cr-Cd)؟
- $\, {
 m Fe}$ ما قيمة جهد الخلية المعياري للخلية الغلفانية (${
 m Cl}_2$
- Cr المخفف العنصر HCl مع حمض العنصر $^{\circ}$
 - ٨) ما الفلزان اللذان يشكلان خلية غلفانية لها أكبر فرق
 جهد ممكن ؟
 - ٩) ما الفلزان اللذان يشكلان خلية غلفانية لها أقل فرق
 جهد ممكن ؟
 - أيّ القطبين تزاداد كتلته في الخلية الغلفانية التي
 قطباها (Fe Ag) ؟
 - اکسدة عنصر ${\rm Fe}^{2+}$ اکسدة عنصر الکروم ${\rm Cr}$ ${\rm Cr}$

١٢) هل المعادلة الآتية تمثل خلية غلفانية تلقائية :

 $Br_2 + 2Cl^- \longrightarrow 2Br^- + Cl_2$

۱۳) ما هي نواتج التحليل الكهربائي لمزيج من مصهوري : Fe Br₂ و

و لا يختزل أيونات ${
m Cd}^{2+}$ و لا يختزل أيونات ${
m Cr}^{3+}$?

(١٥) ما العنصر الذي يستطيع ترسيب عنصر الحديد ١٥٥) من محلولة الملحى FeSO₄ ؟

١٦) اكتب نصف تفاعل التأكسد للخلية الغلفانية التي قطباها (Cr- Fe) ؟

الإجابة:

 Cl_2 (Y Cr^{3+} (Y

٣) من Cd إلى Cd غم

ه) بإتجاه Cd بإتجاه ۱,۷٦ فولت

 Cr و $\operatorname{Ag}(\mathsf{V})$

Fe (۹ و Ag (۱۰ Cd

١١) نعم (١١) لا

Br2: المهبط Ag: المصعد (١٣

Cr (10 Fe (12

 $Cr \longrightarrow Cr^{3+} + 3e^{-}(17)$

السؤال الثاني:

من خلال دراستك للمعادلات الافتراضية الآتية التي تمثل خلايا كهروكيميائية ، وقيم جهود الخلايا المعيارية لها (بوحدة الفولت) :

$$C^{2+} + B \longrightarrow C + B^{2+}$$
 فولت $1, 19 + = \frac{1}{16}E^{0}$
 $D + 2H^{+} \longrightarrow D^{2+} + H_{2}$ فولت $0, 0, 0$ أجلية $0, 0, 0$ أجلية وأجب عن الأسلئة التالية 0

١- ما قيمة جهد الاختزال المعياري لـ

$${}^{\circ}A^{2+} + 2e - \longrightarrow A$$

A هل يمكن حفظ محلول أحد أملاح A في وعاء مصنوع من الفلز C ؟

- ما العنصر الذي لا يتآكل إذا سُكب عليه محلول يحتوي على أيونات + A^{2+} ؟

٤- اختر فلزين يكونا خلية غلفانية لها أكبر فرق جهد ؟

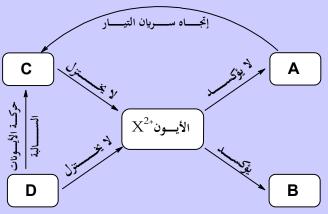
D ما الأيون الذي يمكن حفظه في وعاء من الفلز D ولا يمكن حفظه في وعاء من الفلز D ?

٦- ما صيغة العامل المؤكسد الأقوى ؟

 ${\rm E}^{
m o}$ DSO4 ما نواتج التحليل الكهربائي للحلول ${\rm E}^{
m o}$ الح ${\rm V}$. (فولت) . ${\rm AT}$

C-D في الخلية الغلفانية التي قطباها (C-D) حدد اتجاه حركة الأيونات الموجبة عبر القنطرة الملحية ؟

الإجابة :


$$\int_{D} D^{2+} (\mathbf{T} \qquad A^{2+} (\mathbf{S}))^{2+} \mathbf{T}$$

 O_2 المهبط: D ، المصعد غاز (۷

۸) بإتجاه وعاء D

السؤال الثالث:

بالاعتماد على المخطط المجاور الذي يمثل خمسة عناصر افتراضية ذات شحنة ثنائية موجبة .

- ا أجب عن الأسئلة التالية:
- ١- حدد العامل المؤكسد الإقوى ؟
- ٧ اختر عنصرين يكّونان خلية لها أكبر فرق جهد ممكن ؟
- B^{2+} في إناء مصنوع من B^{2+} العنصر B^{2+} العنصر B^{2+} العنصر B^{2+}
 - ٤- إختر أيوناً يؤكسد A و لا يؤكسد D?
- \mathbf{c} خلية غلفانية قطباها (\mathbf{C} \mathbf{A}) أي القطبين تقل كتلة مع مرور الزمن ؟
 - ٦- ما العنصر الذي يتآكل في محلول XSO₄ ?
 - $^{\circ}$ اُيّ الفلزين A: A أم C أقوى كعامل مختزل $^{\circ}$
- A) هـل يمكن أستخدام الفلز D لتحضير الفلز A من محلول أحد أملاحه A

الإجابة :

$$\frac{B}{X}$$
 $B D (Y D^{2+} (N D^{2+}$

$$C$$
 B (\mathcal{I} A (\mathcal{I}

$$_{
m D}$$
 لا يمكن (۸ $m A$ (۷

السؤال الرابع:

بالاعتماد على المعلومات الآتية لعدد من العناصر الافتراضية (P,O,N,M,L,K) والتي عدد التأكسد لكل منها هو (+1) :

- اثناء عملية التحليل الكهربائي لمزيج مصهوري KSO_4 . LSO_4 وجد أن الفلز LSO_4
- الفلز O لا يستطيع ترسيب الفلز M من أحد املاحه
 المائية .
- لا يمكن استخلاص الفلز N من أحد أملاحه المائية بالتحليل الكهربائي ، بينما يمكن استخلاص الفلز K .
- الوعاء المصنوع من الفلز N يستطيع حفظ محلول أحد أملاح الفلز O .
- عند وضع الفلز K في محلول HCl المخفف ، فإنه يحدث تفاعل اما في حالة الفلز L لا يحدث تفاعل.
- عند تكوين خلية بين الفلزين (P-P) فإن الأيونات السالبة تزداد في وعاء P .
 - أجب عن الأسئلة الآتية:
 - ١ حدد صيغة أقوى عامل مختزل .
- O ما هو رمز الأيون الذي يستطيع أكسدة O ولا يستطيع أكسدة الفلز O الأيون الذي يستطيع أكسدة الفلز
- K^{2+} ما هـو رمـز العنصـر الـذي لا يسـتطيع اختـزال P^{2+} ويستطيع اختزال P^{2+} ?
- 2-1 ما هو رمز العنصر الذي يشكل القطب السالب في الخلية (N-K) ؟
- o- هل يمكن تحضير العنصر N من خاماته بواسطة العنصر K ؟
- 7- ما إتجاه حركة الأيونات السالبة عبر القنطرة الملحية في الخلية المكونة من (O-M) ؟
 - $^{
 m P}$ هل يمكن تحريك أيونات ${
 m O}^{2^+}$ بملعقة من الفلز $^{
 m P}$
 - ٨- اختر عنصرين يكّونا خلية غلفانية لها أكبر فرق جهد ؟
- 9 خلية غلفانية قطباها (M-P) أي القطبين تزداد كتلة مع مرور الزمن ؟

الإجابة :

$$N^2+(\Upsilon)$$
 M(Υ

P (9

السؤال الخامس:

الجدول الجاور يُبين أربع خلايا غلفانية تلقائية الحدوث في الظروف المعيارية وبعض المعلومات عنها .

مماممات	اخلية E°	لب	القطب	
معلومات	فولت	В	A	الخلية
H_2 ينطلق غاز	٠,٩٠	X	H_2	•
یزداد [Z ²⁺]	١,٣	Q	Z	7
تزداد كتلة Q	١,٥	Q	X	٣
X هو المهبط	٠,٧٠	M	X	٤

- ١ حدد العامل المختزل الأقوى ؟
- ٢ حدد العنصرين اللذين يكونا خلية غلفانية لها أكبر فرق
 جهد ممكن ؟
- X هل يمكن حفظ محلول Z^{2+} في وعاء من العنصر X ؟
- ٤ حدد العنصر الذي لا يذوب في محلول حمض HCl المخفف ؟
- ٥ ما إتجاه سريان التيار عبر الأسلاك في الخلية (M-Z) ؟
- آب ما العنصر الذي يختزل أيونات Z ولا يختزل أيونات M
- ٧- هل يمكن حفظ محلول حمض HCl المخفف في وعاء
 - مصنوع من الفلز Q ؟

الإجابة

- M
 otin Q
 otin Y
 otin M
 o
 - Q (٤ يكن ٤) Q
- ه) من M إلى Z
 من M إلى Z

السؤال

تم ّ إجراء سلسلة من التجارب على الفلزات المُشار لها بالرموز (L,D,X,Q,A) وهي تكّون أيونات ثنائية موجبة ، وقد لوحظ ما يلى .

السؤال السادس:

- ترسبت ذرات A عند وضع سلك من الفلز D في علول يحتوي على أيونات A^{2+} .
- يتصاعد غاز H_2 عند وضع سلك من الفلز Q في H_2 عند وضع سلك من الفلى غاز H_2 المخفف ، ولا ينطلق غاز H_2 عند غمس سلك من الفلى X في حميض X المخفف
- A الفلز Q^{2+} الفلز Q^{2+} الفلز Q^{2+} الفلز Q^{2+}
- عند تفاعل الفلز L مع أحد محاليل X^{2^+} تكون قيمة جهد الخلية المعيارية سالبة .
 - أجب عن الأسئلة التالية :
 - ١- حدد العامل المؤكسد الأقوى.
 - . أيّ الفلزات A أم X أقوى كعامل مختزل
 - ٣- أختر أيوناً يؤكسد Q ولا يؤكسد L .
- X-A) اكتب معادلة التفاعل الحاصل عند المهبط .
- ٥- اختر فلزاً يمكن استخدامه كوعاء لحفظ أحد محاليل
 أملاح الفلز X.
- $L + A^{2+}$ $\longrightarrow L^{2+} + A$: هل التفاعل الآتي تلقائياً $\bf T$
- DSO_4 و QSO_4 فإن حند تحليل مزيج من مصهوري
 - الفلز الذي يتكون عند المهبط هو:
- Q^{2+} إذا سُكب محلول يحتوى على Q^{2+} على صفيحة من الفلز L هل تتوقع حدوث تفاعل .

الإجابة : الإجابة : A (۲ L²⁺(۱

$$Q \quad X \longrightarrow X^{2+} + 2e^{-\epsilon} (\epsilon \quad X^{2+})$$

السؤال السابع:

يُبـيّن الجـدول الآتي جهـود الاختـزال المعياريــة $ilde{\mathbb{E}}^\circ$ لعـدد مـن أيونات الفلزات .

Zn ²⁺	Al ³⁺	Ni ²⁺	Cu ²⁺	Ag^+	Fe ³⁺	الأيون
- ۲۷٫۰۹	1,77-	٠,٢٥-	٠,٣٤	٠,٨٠	٠,٤٤-	اختزال $\stackrel{\circ}{E}$

- أجب عن الأسئلة الآتية:
- ١ حدد العامل المختزل الأقوى .
- Y Z د العامل المختزل في الخلية الغلفانية المكونة من قطبي Cu و Z
- ٣- ما قيمة جهد الخلية الغلفانية المعياري للخلية المكونة من
 قطبي Ni و Zn ؟
 - ٤- هل يمكن تحريك أحد أملاح Al بمعلقة من Fe ؟
- حدد الفلزين اللذين يكونا خلية غلفانية لها أكبر فرق جهد ممكن .
- -7 أيّ القطبين تقل كتلته في الخلية الغلفانية المكونة من قطبي -7 و -7 .
- ٧- حدد اتجاه حركة الإلكترونات في الدارة الخارجية للخلية
 المكونة من قطبي Zn و Ni .
- Ni و Ni مدد المصعد في الخلية المغلفانية المكونة من قطبي Ni . Fe
 - أختر أيوناً يؤكسد Fe ولا يؤكسد Qu .
- معادلة $FeCl_3$ عند التحليل الكهربائي لمصهور التفاعل الحاصل عند المهبط .

الإجابة:

- Cu (Y Al ()
- ۳) ۵۱ (۲ فولت ٤) نعم
- ە) Al و Ag
- Fe (۸ Ni إلى Zn من (۷
- $Fe^{3+} + 3e^{-} \longrightarrow Fe \ () \cdot \qquad Ni^{2+} ()$

السؤال الثامن:

الجدول الآتي يتحوي على (٥) خلايا غلفانية مكونة من (٦) فلزات مشار إليها برموز افتراضية وجميعها تكون أيونات ثنائية موجبة (F,E,D,C,B,A)

المعلومات	الخلية الغلفانية
تتجه الأيونات الموجبة في القنطرة نحو الوعاء B .	(B-C)
تتجه الأيونات السالبة في القنطرة نحو الوعاء E	(F-E)
تزداد كتلة القطب D مع مرور الزمن .	(A- D)
تتحرك الإلكترونات من القطب F الى القطب C	(F-C)
يقل تركيز الأيونات (A ²⁺)	(B- A)

- أجب عن الأسئلة الآتية :
 - ١ ما العامل المختزل الأقوى .
- $^{-}$ ما الفلزات التي تستطيع أيونات $^{-}$ أن تؤكسدها .
- $^{\circ}$ B في مصنوع من الفلز $^{\circ}$ B في وعاء مصنوع من الفلز
 - ٤ حدد الأيونات التي تُختزل بالعنصر B ؟
 - ٥ اختز فلزين يكّونا خلية غلفانية لها أكبر فرق جهد ممكن .
 - ٦- أيّ القطبين تقل كتلة في الخلية التي قطباها (B-C) ؟
- ٧- في الخلية (D-A): اكتب التفاعل الحاصل عن القطب
 السالب ؟
 - ٨ اختر فلزاً يختزل أيونات A و لا يختزل أيونات C ؟
 - 9 اختر أيوناً يؤكسد الفلز B و لا يستطيع ان يؤكسد D ؟
 - $^\circ$ B مل يمكن تحريك احد محاليل الفلز $^\circ$ بملعقة من الفلز $^\circ$
 - أوى كعامل مؤكسد ؟ A^{2+} أم أقوى كعامل مؤكسد ؟
 - من محلول E من محلول استخدام الفلز الفلز الفلز استخدام الفلز المتحدام المتحدا

أملاحه ؟

	E		الإجابة :
	F	E . F (Y	E (1
	F C B A D	D ²⁺ , A ²⁺ (£	٣) نعم
	A	C (٦	E , D (•
1	D	В (А	$A \longrightarrow A^{2+} + 2e^{-}(V)$
		۱۰) نعم	A^{2+} (9
		۱۲) لا <u>م</u> كن	A^{2+} (11

السؤال التاسع:

يُسين الجدول المجاور بيانات لخلايا غلفانية تلقائية الحدوث في الظروف المعيارية .

الأيون الموجب الذي يزداد تركيزه وعاء التأكسد	°E _{اخلية} (فولت)	الأقطاب	رقم الخلية
R ³⁺	٠,٣٠	R -X	١
Y^{2+}	٠,٥١	B-Y	۲
H^{+}	٠,٣٤	H ₂ -Y	٣
A^{2+}	٠,٥٩	Y -A	ź
X^{2+}	٠,٢١	X -A	٥

- أجب عن الأسئلة الآتية:
 - ١ ما العامل المؤكسد الأقوى ؟
- Y أيّ العنصرين يذوب في محلول الحمض B) HCl أم B) ?
 - ٣- اختر عنصرين يمكن أن يكونا خلية غلفانية لها أقل جهد .
 - Y ولا يؤكسد X ولا يؤكسد Y
 - \circ هل يمكن حفظ محلول RSO_4 في وعاء من
 - ٦- ما رقم الخلية التي تقل فيها كتلة قطب Y ؟
 - ٧- ما إتجاه سريان التيار الكهربائي في الخلية رقم (٥) ؟
 - $^{\circ}$ (B- A) ما قيمة جهد الخلية المكونة من قطبي $^{\circ}$
 - ٩ اكتب معادلة التفاعل الكلي في الخلية رقم (١) ؟
- الكهربائي لأحد محاليل B بالتحليل الكهربائي المحد محاليل المحالي $^{\rm P}$ مالاح B $^{\rm P}$
- معادلة XCl_2 ، اكتب معادلة التفاعل الحادث عند المهبط .

	X	الإجابة:
A	X (Y	B ²⁺ (1
A Y H	$A^{2+}(\mathbf{t})$	۳) X و A
↓ 1	۶ ٦) رقم (۲)	٥) نعم
	۱,۱۰ (۸ فولت	۷) من X إلى A
	$3X^{2+} + 2R$	$-3X + 2R^{3+}$ (9
	$X^{2+} + 2e^{-} \longrightarrow X () 1$	۱۰) نعم

R

السؤال العاشر:

X , N , M , Z) الفلزات على الفلزات (X , N , M , Z) وهي فلـزات ثنائيـة التكـافؤ، وقـد تم تسـجيل البيـانات الواردة في الجدول :

المعلومات	
يستخدم العنصر X في تحضير بقية العناصر من محاليل أملاحها	١
العنصر M يتفاعل مع أيونات العنصر Z ولكنه لا يتفاعل مع أيونات العنصر Y .	۲
عند بناء خلية قطباها N والهيدروجين ، تنتقل الالكترونات من الهيدروجين إلى قطب N .	٣
يذوب Z في محلول ١ مول / لتر HCl.	٤

- أجب عن الأسئلة الآتية :
- ١ حدّد العامل المؤكسد الأقوى.
- ٢ حدّد الفلزين اللذين يكوّنان خلية غلفانية لها أكبر فرق جهد
 - Z في خلية غلفانية قطباها M و Z أيهما يُمثّل المهبط Z
- N هل يمكن حفظ محلول أحد أملاح N في وعاء مصنوع من مادة Y ؟
- o في خلية غلفانية قطباها Y و N حدّد اتجاه حركة الألكترونات عبر الأسلاك ?
 - ٦- هل التفاعل الآتي تلقائياً:
 - $X_{(s)} + H^{+}_{(aq)} \longrightarrow X^{2+}_{(aq)} + H_{2(g)}$
 - ٧- اختر فُلزاً يختزل أيونات M و لا يختزل أيونات X ?
 - $^{\circ}$ أيّ الفلزات (Z أم M) أقوى كعامل مختزل $^{\circ}$

الإجابة :

Y (V

	$X \cdot N$ (Y	N^{2+} ()
Y M	٤) لا يمكن	Z (*
M	٦) نعم	ه) من Y إلى N
17	1	O ; O (

M (A

 $\mathbf{I}\mathbf{x}$

السؤال الحادي عشر:

يبيّن الجدول المجاور القيم المطلقة لجهود الاختزال المعيارية للعناصر:

ا°E (فولت)	نصف تفاعل الإختزال
•, £ £	$A^{2+} + 2e^{-} \longrightarrow A$
1,70	$B^{2+} + 2e^{-} \longrightarrow B$
٠,٧٦	$C^{2+} + 2e^{-} \longrightarrow C$
٠,٣٤	$D^{2+} + 2e^{-} \rightarrow D$
1,77	$E^{3+} + 3e^{-} \rightarrow E$

- E ، D ، A ، B ، C وقد لوحظ ما يلي :
- العنصر C يختزل
 العنصرين B و A .
 تقل كتلة القطب E في
 الخلية التي قطباها (B-E)
- العنصر D لا يذوب في علمال حمض HCl المخفف.

محلول حمض HCl المخفف . بينما يذوب العنصر B في محلول حمض HCl .

- أجب عن الأسئلة الآتية:
- 1) ما قيمة جهد التأكسد للعنصر B?
 - ٢) حدد العامل المختزل الآقوى ؟
- ٣) حدد العنصرين اللذين يكونان خلية غلفانية لها أعلى فولتية ؟
 - $^{\circ}$ C هل تستطيع أيونات $^{\circ}$ أكسدة العنصر $^{\circ}$
- ه) ما قيمة جهد الخلية المعيارية للخلية المكونة من العنصرين ($D \circ A$)
 - الفلز E) هل يمكن حفظ أحد محاليل العنصر E في وعاء مصنوع من الفلز A ?
- ۷) هل يمكن استخدام العنصر E في تحضير بقية العناصر من عاليل مركباتها .

E		جابة:	الإ
	₽ /₽	 ы.	()

السؤال الثالث عشر:

بالاعتماد على التفاعلات الآتية التي تحدث في خلايا غلفانية تلقائية الحدوث أجب عن الأسئلة الآتية :

1)
$$A + X^{3+} \longrightarrow A^{2+} + X$$

$$(Y)$$
 B + Y^{2+} \longrightarrow B²⁺ + Y

$$Y = X + B^{3+} \longrightarrow X^{3+} + B$$

١ – حدّد العامل المؤكسد الأقوى .

٢ - اختر عنصرين يكّونا خلية غلفانية لها أكبر فرق جهد .

. A^{2+} و لا يختزل B^{3+} اختر عنصراً يختزل

 \mathbf{Y}^{3+} هل يستطيع \mathbf{X}^{3+} أكسدة عنصر

٥- هال يمكن تحضير العنصر Y من محلول أحد أملاحة
 باستخدام العنصر A ؟

 BCl_2 العناصر يمكن استخدامه كوعاء لحفظ محلول

(X-A) إذا تم تكوين خلية غلفانية قطباها (

- أيّ القطبين يمثل المهبط.

- اكتب معادلة نصف تفاعل التأكسد.

 Λ - اكتب معادلة التفاعل الحادث عند المهبط أثناء التحليل الكهربائي لمصهور XBr_3 (أقطاب غرافيت) .

٩- في المعادلة رقم(١) أيّ القطبين تقل كتلته مع مرور الزمن.

١٠ في المعادلة رقم(٣) حدد إتجاه حركة الأيونات السالبة
 عبر القنطرة الملحية .

يزداد (${f B}^{2+}$ ، ${f Y}^{2+}$) الأيونات (${f Y}^{2+}$) يزداد تركيزها .

الإجابة:

A
$$_{\mathbf{Y}}$$
 Y - $_{\mathbf{Y}}$

$$A \rightarrow A^{2+} + 2e^{-}$$
 $X - V$

$$X - q \quad X^{3+} + 3e^{-} \times X - A$$

السؤال الثاني عشر:

تم استخدام عدد من الأقطاب الفلزية ومحاليها المائية (1مول/لتر) لعمل ٤ خلايا غلفانية مختلفة في الظروف المعيارية كما في الجدول (١) ، كما يبين الجدول (٢) جهود الإختزال المعيارية لعدد من انصاف التفاعلات.

E°	نصف تفاعل الإختزال
·, Yo-	$Ni^{2+} + 2e^- \longrightarrow Ni$
۰,۷٦–	$Zn^{2+}+2e^{-} \longrightarrow Zn$
٠,٨٠+	$Ag^+ + e^- \longrightarrow Ag$
+ ۴٤, ٠	$Cu^{2+} + 2e^{-} \longrightarrow Cu$
1,77-	$Al^{3+} + 3e^{-} \longrightarrow Al$

القطب		رقم
В	A	الخلية
Zn	Ni	1
Ag	Cu	۲
Ni	Al	4
Cu	Zn	٤

جدول (۲)

جدول (١)

اعتماداً على المعلومات في الجدولين (١ ، ٢) ، أجب عما يأتي

(1) أم (1) أم (1) كثل المصعد في الخلية (1)

 $^{\circ}$ (E^{o}) ما رقم الخلية التي لها أقل قيمة جهد $^{\circ}$

 * ماذا يحدث لكتلة القطب (B) في الخلية رقم *

؟ مؤكسد عامل مؤكسد (Al^{3+} , Ni^{2+} , Ag^+) اقوى عامل مؤكسد

٥- باستخدام الجدول (٢) اختر فلزين لعمل خلية لها أعلى جهد

 $^{\circ}$ ما قيمة جهد E^{o} ما قيمة جهد

٧- حدّد إتجاه حركة الإلكترونات في الخلية رقم (٤) .

 N_i هل يمكن حفظ محلول أحد أملاح N_i في وعاء مصنوع من مادة N_i ؟

ho الأيونين (ho ho ho الا يمكن اختزاله بالتحليل الكهربائي للحاليل أملاحه ho (ho اختزال الماء = ho , ho فولت) الكهربائي عالمادة الناتجة عند المهبط في خلية التحليل الكهربائي للزيج من مصهوري ho ho

الإجابة :

$$\operatorname{Ag}^+$$
 - یزداد Ag^+

$$Cu - 1$$
 $Al^{3+} - 9$

السؤال الرابع عشر:

الجدول التالي يُمثل معلومات لأربع خلايا غلفانية ، حيث تتكون كل خلية من قطب الهيدروجين المعياري وأحد الفلزات الإفتراضية الآتية (X , Y , Z , R) وهي ذات شحنة ثنائية موجبة .

معلومات	E° _{اخلية} (فولت)	الخلية	رقم الخلية
يمثل X القطب الموجب	٠,٨٥+	X-H ₂	١
تزداد كتلة قطب الهيدروجين	٠,١٤+	Y-H ₂	۲
H_2 إنجاه سريان التيار من Z إلى	•, 70+	$Z-H_2$	4
یزداد ترکیز R ²⁺	1,14+	R-H ₂	٤

- أجب عن الأسئلة الآتية:
- ١- ما صيغة العامل المختزل الأقوى .
- ٧- اختر فلزين يكونا خلية لها أقل جهد ممكن .
- ٣- أيّ الفلـزين(X أم Z) لا يحـرر غـاز الهيـدروجين مـن
 محلول حمض HCl المخفف .
- ξ ما قيمة جهد الخلية المعيارية للخلية الغلفانية التي قطباها من الفلزين (Y-R)
- O- O المخفف في وعاء O- O المخفف في وعاء مصنوع من الفلز O- O- O .
- - Y هل يستطيع Z^{2+} أكسدة عنصر Z^{2+}

الإجابة :

R - Y

X - ۳ فولت X ب ۱,۰٤ فولت

o- لا يكن R²⁺ -٦

 $X^{2+} - V$ کون

السؤال الخامس عشر:

تم استتخدام الفلزات الإفتراضية الآتية وهي ذات شحنة ثنائية موجبة (E,D,C,B,A) مع محلول أحد أملاحها المائية بتركيز (1 مول/لتر) مع عنصر النيكل (Ni) المغموس في أحد أملاحه المائية بتركيز (1 مول/لتر) وتم الحصول على النتائج الأتية .

		_
النتائج	اخلية E°	أقطاب
اساج	(فولت)	الخلية
حركة الأيونات الموجبة باتجاه وعاء A	٠,٥٩	Ni-A
تزداد كتلة Ni مع مرور الزمن .	٠,٥١	Ni-B
Ni في وعاء من C^{2+}	٠,٠٩	Ni-C
حركة الأيونات السالبة باتجاه وعاء D	7,17	Ni-D
يقل تركيز أيونات ^{"2} Ni مع الزمن	٠,٩٣	Ni-E

- أجب عن الأسئلة الآتية:
- ١ ما صيغة العامل المؤكسد الأقوى .
- ٢ اختر فلزين يكّونا خلية لها أعلى جهد ممكن .
- ۳- في خلية غلفانية قطباها C و A أيهما يُمثّل المهبط ?
- E في خلية غلفانية قطباها D و E اكتب معادلة التفاعل الحادث عند القطب السالب .
- هل يمكن تحريك أحد محاليل E^{2+} بملعقة مصنوعة من الفلز C .
- ام B) من محلول أحد أملاحه . B) من محلول أحد أملاحه .
- V عند التحليل الكهربائي لمحلول ASO_4 باستخدام خلية ذات أقطاب غرافيت ، ما المادة المُتكّونة عند المصعد ؟

الإجابة:

$$A o D - Y$$
 $A^{2+} - Y$

$$D \longrightarrow D^{2+} + 2e^{-} - \epsilon$$
 A $- \forall$

٧- غاز الأكسجين

السؤال السابع عشر:

تم إجراء سلسلة من التجارب على الفلزات الإفتراضية الآتية · وهي تشكل أيونات ثنائية موجبة في ($D\;,\,X\;,\,Q\;,\,A$)

مركباتها . وقد تم الحصول على النتائج التالية .

- lacktriangle ترسبت ذرات الفلز A عند وضع سلك من الفلز D في ${f A}^{2+}$ على أيونات ${f A}^{2+}$.
- يتصاعد غاز الهيدروجين عند غمس مسمار من الفلز Q في محلول الحمض HCl المخفف .
- عند تحريك محلول يحتوي على أيونات Q²⁺ بملقة مصنوعة من الفلز A ترسبت ذرات Q .
- لا يتفاعل سلك من الفلز X مع محلول محلول الحمض HC1 المخفف .

أجب عن الأسئلة الآتية:

١ – حدّد العامل المختزل الأضعف .

٢ - حدّد العامل المؤكسد الأضعف.

X ولا يؤكسد A ولا يؤكسد X

٤- هل يمكن تحضير العنصر X بالتحليل الكهربائي من علول XSO₄ ؟

٥- هل التفاعل الآتي تلقائي :

 $D + 2H^+ \longrightarrow D^{2+} + H_2$

7- إذا اردت ترسيب ذرات الفلز A من محلول يحتوي أيونات . D ، فأي الفلزات تختار X أم

 ${f A}$ و ${f Q}$ ماذا يحدث لتركيز أيونات ${f Q}^{2+}$ في خلية قطباها ${f Q}$

 $(X \cdot A)$ ايّ القطبين يمثل المهبط في الخلية المكونة من قطبي $(X \cdot A)$

الإجابة:

 $D^{2+} - Y$ X -1

Q²⁺ -۳ ٤ – نعم

٥- نعم D -7

X -λ ٧– تقل

السؤال السادس عشر:

لديك الفلزات (Y,X,D,C,B,A) والتي تشكل أيونات ثنائية موجبة في مركباتها . فإذا علمت أن :

- ullet العنصر A يختزل أيونات X^{2+} ، ولا يختزل X^{2+} .
- يمكن حفظ محاليل كل من B و D في وعاء من Y
- يمكن استخلاص الفلز D من أيوناته باستخدام B
- العنصر B لا يحرر الهيدروجين من محاليله الحمضية ، ولكن العنصر X يذوب في محلول الحمض HCl

أجب عن الأسئلة الآتية:

 $^\circ$ DSO $_4$ ما نواتج التحليل الكهربائي لمحلول $^\circ$

٢) ما الفلز الذي لا يحرر غاز الهيدروجين من محلول الحمض HCl المخفف ، ولا يختزل أيونات D ؟

٣) ماذا يحدث لكتلة القطب X في الخلية الغلفانية التي قطباها D و X ؟

 ${f B}$ ماذا يحدث لتركيز أيونات ${f C}^{2+}$ في خلية قطباها ${f C}$ و

 هل يمكن حفظ محلول نترات العنصر A في وعاء مصنوع من الفلز B

٦) اكتب معادلة التفاعل الذي يحدث عند المصعد في خلية AH_2 التحليل الكهربائى لمصهور

٧) حدّد فلزين لعمل خلية غلفانية لها فرق جهد أعلى .

الإجابة:

O2: مهبط: D: مهبط

۳– يقل Y - Y

٥- نعم ٤ – تزداد

 $2H^{-} \rightarrow H_2 + 2e^{-} - 1$

C -۷ و Y

السؤال التاسع عشر:

تم استخدام عدد من الأقطاب ومحاليها المائية (امول/لتر) لعمل ٣ خلايا غلفانية مختلفة في الظروف المعيارية كما في الجدول (١) ، كما يبين الجدول (٢) القيم المطلقة لجهود الإختزال المعيارية لعدد من أيونات الفلزات

$[E^{\circ}]$	الأيون		نات التي
فولت	29.21		تركيزها
٠,٧٤	A^{3+}		$[H^{+}]$
۰,۸٥	B^{2+}		$[\mathbf{B}^{2}]$
• , £ £	C^{2+}		$[C^{3+}]$

J. U		ء کی
الأيونات التي يقل تركيزها	الأقطاب	الخلية
$[H^{+}]$	C-H ₂	١
$[B^{2+}]$	B-A	۲
$[C^{3+}]$	A-C	٣

جدول (۲)

جدول (۱)

أجب عن الأسئلة الآتية:

- ١ حدّد العامل المؤكسد الأقوى .
- ٧- اختر فلزين يكونا خلية غلفانية لها أقل جهد ممكن .
 - ٣- في الخلية رقم (٢) : حدّد المصعد
 - ٤ في الخلية رقم (٣) : أيّ الأقطاب تقل كتلته .
- ٥- هل يمكن حفظ محلول HCl في وعاء من الفلز B؟
 - ٦- ما قيمة جهد الخلية رقم (٢) ؟
- V- عند التحليل الكهربائي لمصهور ACl_2 ، ما مقدار جهد البطارية اللازم لحدوث التفاعل ، علماً بأن جهد اختزال Cl_2 يساوي 1,77 فولت .
- A هـل يمكـن تحضـير الفلـز A مـن محاليـل أملاحـه المائيـة باستخدام الفلز B ؟

الإجابة :

$$C, A - Y$$
 $B^{2+} - Y$

السؤال الثامن عشر:

تم تكوين خمسة خلايا غلفانية تلقائية من فلزات افتراضية ذات شحنة ثنائية موجبة (Z, E, C, A, Y, X) وقد تم تسجيل النتنائج الآتية في الجدول الآتى :

معلومات	الخلية الغلفانية	الرقم
$ m Y$ يتجه أيونات $ m NO_3$ في القنطرة نحو	C-Y	١
\to تتجه أيونات $ ext{Na}^+$ في القنطرة نحو	E-Z	۲
تقل كتلة A مع مرور الزمن	A-X	7
اتجاه سريان التيار من القطب E إلى Y	E-Y	¥
يقل [A ²⁺]	C-A	٥

أجب عن الأسئلة الآتية:

١- ما العامل المؤكسد الأقوى ؟

٧- ما العامل المختزل الأقوى ؟

٣- اختر فلزين يكُّونا خلية لها أعلى جهد ممكن .

 $^{\circ}$ هل يمكّن تحريك محلول $^{\circ}$ ABr بملعقة مصنوعة من $^{\circ}$

o- خلية غلفانية قطباها (X-Y) ، اكتب معادلة التفاعل الحادث عند القطب السالب .

٦- ما اتجاه سريان التيار الكهربائي عبر الأسلاك في الخلية
 التي قطباها (Z-C) ؟

X - 1 اختر أيونا يؤكسد Y ولا يؤكسد

. Z^{2+} ولا يختزل أيونات Y^{2+} ولا يختزل أيونات - .

ولا يذوب في محلول XSO_4 ولا يذوب في محلول CSO_4 .

الإجابة :

$$Z-Y$$
 $X^{2+}-Y$

$$Y \longrightarrow Y^{2+} + 2e^{-} - o$$

$$\mathbf{C}^{2+}$$
 –۷ \mathbf{C} الى \mathbf{Z} من \mathbf{Z} الى

