
Solutions Manual for
A Practical Introduction to

Data Structures and Algorithm
Analysis
Second Edition

Clifford A. Shaffer
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

November 30, 2000

Copyright c©2000 by Clifford A. Shaffer.

Contents

Preface ii

1 Data Structures and Algorithms 1

2 Mathematical Preliminaries 5

3 Algorithm Analysis 17

4 Lists, Stacks, and Queues 23

5 Binary Trees 32

6 General Trees 40

7 Internal Sorting 46

8 File Processing and External Sorting 54

9 Searching 58

10 Indexing 64

11 Graphs 69

12 Lists and Arrays Revisited 76

13 Advanced Tree Structures 82

i

ii Contents

14 Analysis Techniques 88

15 Limits to Computation 94

Preface

Contained herein are the solutions to all exercises from the textbook A Practical
Introduction to Data Structures and Algorithm Analysis, 2nd edition.

For most of the problems requiring an algorithm I have given actual code. In
a few cases I have presented pseudocode. Please be aware that the code presented
in this manual has not actually been compiled and tested. While I believe the algo-
rithms to be essentially correct, there may be errors in syntax as well as semantics.
Most importantly, these solutions provide a guide to the instructor as to the intended
answer, rather than usable programs.

iii

1

Data Structures and Algorithms

Instructor’s note: Unlike the other chapters, many of the questions in this chapter
are not really suitable for graded work. The questions are mainly intended to get
students thinking about data structures issues.

1.1 This question does not have a specific right answer, provided the student
keeps to the spirit of the question. Students may have trouble with the con-
cept of “operations.”

1.2 This exercise asks the student to expand on their concept of an integer repre-
sentation. A good answer is described by Project 4.5, where a singly-linked
list is suggested. The most straightforward implementation stores each digit
in its own list node, with digits stored in reverse order. Addition and multi-
plication are implemented by what amounts to grade-school arithmetic. For
addition, simply march down in parallel through the two lists representing
the operands, at each digit appending to a new list the appropriate partial
sum and bringing forward a carry bit as necessary. For multiplication, com-
bine the addition function with a new function that multiplies a single digit
by an integer. Exponentiation can be done either by repeated multiplication
(not really practical) or by the traditional Θ(logn)-time algorithm based on
the binary representation of the exponent. Discovering this faster algorithm
will be beyond the reach of most students, so should not be required.

1.3 A sample ADT for character strings might look as follows (with the normal
interpretation of the function names assumed).

1

2 Chap. 1 Data Structures and Algorithms

// Concatenate two strings
String strcat(String s1, String s2);

// Return the length of a string
int length(String s1);

// Extract a substring, starting at ‘start’,
// and of length ‘length’
String extract(String s1, int start, int length);

// Get the first character
char first(String s1);

// Compare two strings: the normal C++ strcmp func-
tion. Some
// convention should be indicated for how to inter-
pret the
// return value. In C++, this is -
1 for s1<s2; 0 for s1=s2;
// and 1 for s1>s2.
int strcmp(String s1, String s2)

// Copy a string
int strcpy(String source, String destination)

1.4 The answer to this question is provided by the ADT for lists given in Chap-
ter 4.

1.5 One’s compliment stores the binary representation of positive numbers, and
stores the binary representation of a negative number with the bits inverted.
Two’s compliment is the same, except that a negative number has its bits
inverted and then one is added (for reasons of efficiency in hardware imple-
mentation). This representation is the physical implementation of an ADT
defined by the normal arithmetic operations, declarations, and other support
given by the programming language for integers.

1.6 An ADT for two-dimensional arrays might look as follows.

Matrix add(Matrix M1, Matrix M2);
Matrix multiply(Matrix M1, Matrix M2);
Matrix transpose(Matrix M1);
void setvalue(Matrix M1, int row, int col, int val);
int getvalue(Matrix M1, int row, int col);
List getrow(Matrix M1, int row);

3

One implementation for the sparse matrix is described in Section 12.3 Another im-
plementation is a hash table whose search key is a concatenation of the matrix coor-
dinates.

1.7 Every problem certainly does not have an algorithm. As discussed in Chapter 15,
there are a number of reasons why this might be the case. Some problems don’t
have a sufficiently clear definition. Some problems, such as the halting problem,
are non-computable. For some problems, such as one typically studied by artificial
intelligence researchers, we simply don’t know a solution.

1.8 We must assume that by “algorithm” we mean something composed of steps are
of a nature that they can be performed by a computer. If so, than any algorithm
can be expressed in C++. In particular, if an algorithm can be expressed in any
other computer programming language, then it can be expressed in C++, since all
(sufficiently general) computer programming languages compute the same set of
functions.

1.9 The primitive operations are (1) adding new words to the dictionary and (2) search-
ing the dictionary for a given word. Typically, dictionary access involves some sort
of pre-processing of the word to arrive at the “root” of the word.
A twenty page document (single spaced) is likely to contain about 20,000 words. A
user may be willing to wait a few seconds between individual “hits” of mis-spelled
words, or perhaps up to a minute for the whole document to be processed. This
means that a check for an individual word can take about 10-20 ms. Users will
typically insert individual words into the dictionary interactively, so this process can
take a couple of seconds. Thus, search must be much more efficient than insertion.

1.10 The user should be able to find a city based on a variety of attributes (name, location,
perhaps characteristics such as population size). The user should also be able to in-
sert and delete cities. These are the fundamental operations of any database system:
search, insertion and deletion.
A reasonable database has a time constraint that will satisfy the patience of a typical
user. For an insert, delete, or exact match query, a few seconds is satisfactory. If the
database is meant to support range queries and mass deletions, the entire operation
may be allowed to take longer, perhaps on the order of a minute. However, the time
spent to process individual cities within the range must be appropriately reduced. In
practice, the data representation will need to be such that it accommodates efficient
processing to meet these time constraints. In particular, it may be necessary to sup-
port operations that process range queries efficiently by processing all cities in the
range as a batch, rather than as a series of operations on individual cities.

1.11 Students at this level are likely already familiar with binary search. Thus, they
should typically respond with sequential search and binary search. Binary search
should be described as better since it typically needs to make fewer comparisons
(and thus is likely to be much faster).

1.12 The answer to this question is discussed in Chapter 8. Typical measures of cost
will be number of comparisons and number of swaps. Tests should include running
timings on sorted, reverse sorted, and random lists of various sizes.

4 Chap. 1 Data Structures and Algorithms

1.13 The first part is easy with the hint, but the second part is rather difficult to do without
a stack.

a) bool checkstring(string S) {
int count = 0;
for (int i=0; i<length(S); i++)

if (S[i] == ’(’) count++;
if (S[i] == ’)’) {

if (count == 0) return FALSE;
count--;

}
}
if (count == 0) return TRUE;
else return FALSE;

}
b) int checkstring(String Str) {

Stack S;
int count = 0;
for (int i=0; i<length(S); i++)

if (S[i] == ’(’)
S.push(i);

if (S[i] == ’)’) {
if (S.isEmpty()) return i;
S.pop();

}
}
if (S.isEmpty()) return -1;
else return S.pop();

}

1.14 Answers to this question are discussed in Section 7.2.
1.15 This is somewhat different from writing sorting algorithms for a computer, since

person’s “working space” is typically limited, as is their ability to physically manip-
ulate the pieces of paper. Nonetheless, many of the common sorting algorithms have
their analogs to solutions for this problem. Most typical answers will be insertion
sort, variations on mergesort, and variations on binsort.

1.16 Answers to this question are discussed in Chapter 8.

2

Mathematical Preliminaries

2.1 (a) Not reflexive if the set has any members. One could argue it is sym-
metric, antisymmetric, and transitive, since no element violate any of
the rules.

(b) Not reflexive (for any female). Not symmetric (consider a brother and
sister). Not antisymmetric (consider two brothers). Transitive (for any
3 brothers).

(c) Not reflexive. Not symmetric, and is antisymmetric. Not transitive
(only goes one level).

(d) Not reflexive (for nearly all numbers). Symmetric since a+ b = b+ a,
so not antisymmetric. Transitive, but vacuously so (there can be no
distinct a, b, and c where aRb and bRc).

(e) Reflexive. Symmetric, so not antisymmetric. Transitive (but sort of
vacuous).

(f) Reflexive – check all the cases. Since it is only true when x = y, it
is technically symmetric and antisymmetric, but rather vacuous. Like-
wise, it is technically transitive, but vacuous.

2.2 In general, prove that something is an equivalence relation by proving that it
is reflexive, symmetric, and transitive.

(a) This is an equivalence that effectively splits the integers into odd and
even sets. It is reflexive (x + x is even for any integer x), symmetric
(since x + y = y + x) and transitive (since you are always adding two
odd or even numbers for any satisfactory a, b, and c).

(b) This is not an equivalence. To begin with, it is not reflexive for any
integer.

(c) This is an equivalence that divides the non-zero rational numbers into
positive and negative. It is reflexive since xẋ > 0. It is symmetric since
xẏ = yẋ. It is transitive since any two members of the given class
satisfy the relationship.

5

6 Chap. 2 Mathematical Preliminaries

(d) This is not an equivalance relation since it is not symmetric. For exam-
ple, a = 1 and b = 2.

(e) This is an eqivalance relation that divides the rationals based on their
fractional values. It is reflexive since for all a, a−a = 0. It is symmetric
since if a−b = x then b−a = −x. It is transitive since any two rationals
with the same fractional value will yeild an integer.

(f) This is not an equivalance relation since it is not transitive. For exam-
ple, 4 − 2 = 2 and 2 − 0 = 2, but 4 − 0 = 4.

2.3 A relation is a partial ordering if it is antisymmetric and transitive.

(a) Not a partial ordering because it is not transitive.
(b) Is a partial ordering bacause it is antisymmetric (if a is an ancestor of

b, then b cannot be an ancestor of a) and transitive (since the ancestor
of an ancestor is an ancestor).

(c) Is a partial ordering bacause it is antisymmetric (if a is older than b,
then b cannot be older than a) and transitive (since if a is older than b
and b is older than c, a is older than c).

(d) Not a partial ordering, since it is not antisymmetric for any pair of sis-
ters.

(e) Not a partial ordering because it is not antisymmetric.
(f) This is a partial ordering. It is antisymmetric (no violations exist) and

transitive (no violations exist).

2.4 A total ordering can be viewed as a permuation of the elements. Since there
are n! permuations of n elements, there must be n! total orderings.

2.5 This proposed ADT is inspired by the list ADT of Chapter 4.

void clear();
void insert(int);
void remove(int);
void sizeof();
bool isEmpty();
bool isInSet(int);

2.6 This proposed ADT is inspired by the list ADT of Chapter 4. Note that while
it is similiar to the operations proposed for Question 2.5, the behaviour is
somewhat different.

void clear();
void insert(int);
void remove(int);
void sizeof();

7

bool isEmpty();
// Return the number of elements with a given valueint
countInBag(int);

2.7 The list class ADT from Chapter 4 is a sequence.
2.8 long ifact(int n) { // make n <= 12 so n! for long int

long fact = 1;
Assert((n >= 0) && (n <= 12), "Input out of range");
for (int i=1; i<= n; i++)

fact = fact * i;
return fact;

}
2.9 void rpermute(int *array, int n) {

swap(array, n-1, Random(n));
rpermute(array, n-1);

}
2.10 (a) Most people will find the recursive form natural and easy to understand.

The iterative version requires careful examination to understand what
it does, or to have confidence that it works as claimed.

(b) Fibr is so much slower than Fibi because Fibr re-computes the
bulk of the series twice to get the two values to add. What is much
worse, the recursive calls to compute the subexpressions also re-com-
pute the bulk of the series, and do so recursively. The result is an expo-
nential explosion. In contrast, Fibi computes each value in the series
exactly once, and so its running time is proportional to n.

2.11 // Array curr[i] indicates current position of ring i.
void GenTOH(int n, POLE goal, POLE t1, POLE t2,

POLE* curr) {
if (curr[n] == goal) // Get top n-1 rings set up

GenTOH(n-1, goal, t1, t2, curr);
else {

if (curr[n] == t1) swap(t1, t2); // Get names right
// Now, ring n is on pole t2. Put others on t1.
GenTOH(n-1, t1, goal, t2, curr);
move(t2, goal);
GenTOH(n-1, goal, t1, t2, curr); // Move n-1 back

}
}

2.12 At each step of the way, the reduction toward the base case is only half as
far as the previous time. In theory, this series approaches, but never reaches,
0, so it will go on forever. In practice, the value should become computa-
tionally indistinguishable from zero, and terminate. However, this is terrible
programming practice.

8 Chap. 2 Mathematical Preliminaries

2.13 void allpermute(int array[], int n, int currpos) {
if (currpos == (n-1)} {

printout(array);
return;

}
for (int i=currpos; i<n; i++) {

swap(array, currpos, i);
allpermute(array, n, currpos+1);
swap(array, currpos, i); // Put back for next pass

}
}

2.14 In the following, function bitposition(n, i) returns the value (0 or
1) at the ith bit position of integer value n. The idea is the print out the
elements at the indicated bit positions within the set. If we do this for values
in the range 0 to 2n − 1, we will get the entire powerset.
void powerset(int n) {

for (int i=0; i<ipow(2, n); i++) {
for (int j=0; j<n; j++)

if (bitposition(n, j) == 1) cout << j << " ";
cout << endl;

}

2.15 Proof: Assume that there is a largest prime number. Call it Pn, the nth
largest prime number, and label all of the primes in order P1 = 2, P2 = 3,
and so on. Now, consider the number C formed by multiplying all of the n
prime numbers together. The value C + 1 is not divisible by any of the n
prime numbers. C + 1 is a prime number larger than Pn, a contradiction.
Thus, we conclude that there is no largest prime number. ✷

2.16 Note: This problem is harder than most sophomore level students can handle.
Proof: The proof is by contradiction. Assume that

√
2 is rational. By defini-

tion, there exist integers p and q such that
√

2 =
p

q
,

where p and q have no common factors (that is, the fraction p/q is in lowest
terms). By squaring both sides and doing some simple algebraic manipula-
tion, we get

2 =
p2

q2

2q2 = p2

Since p2 must be even, p must be even. Thus,

9

2q2 = 4(
p

2
)2

q2 = 2(
p

2
)2

This implies that q2 is also even. Thus, p and q are both even, which contra-
dicts the requirement that p and q have no common factors. Thus,

√
2 must

be irrational. ✷

2.17 The leftmost summation sums the integers from 1 to n. The second summa-
tion merely reverses this order, summing the numbers from n − 1 + 1 = n
down to n − n + 1 = 1. The third summation has a variable substitution of
i−1 for i, with a corresponding substitution in the summation bounds. Thus,
it is also the summation of n− 0 = n to n− (n− 1) = 1.

2.18 Proof:
(a) Base case. For n = 1, 12 = [2(1)3 + 3(1)2 + 1]/6 = 1. Thus, the

formula is correct for the base case.
(b) Induction Hypothesis.

n−1∑
i=1

i2 =
2(n− 1)3 + 3(n− 1)2 + (n− 1)

6
.

(c) Induction Step.

n∑
i=1

i2 =
n−1∑
i=1

i2 + n2

=
2(n− 1)3 + 3(n− 1)2 + (n− 1)

6
+ n2

=
2n3 − 6n2 + 6n− 2 + 3n2 − 6n + 3 + n− 1

6
+ n2

=
2n3 + 3n2 + n

6
.

Thus, the theorem is proved by mathematical induction. ✷

2.19 Proof:
(a) Base case. For n = 1, 1/2 = 1 − 1/2 = 1/2. Thus, the formula is

correct for the base case.
(b) Induction Hypothesis.

n−1∑
i=1

1
2i

= 1 − 1
2n−1

.

10 Chap. 2 Mathematical Preliminaries

(c) Induction Step.

n∑
i=1

1
2i

=
n−1∑
i=1

1
2i

+
1
2n

= 1 − 1
2n−1

+
1
2n

= 1 − 1
2n

.

Thus, the theorem is proved by mathematical induction. ✷

2.20 Proof:
(a) Base case. For n = 0, 20 = 21 − 1 = 1. Thus, the formula is correct

for the base case.
(b) Induction Hypothesis.

n−1∑
i=0

2i = 2n − 1.

(c) Induction Step.

n∑
i=0

2i =
n−1∑
i=0

2i + 2n

= 2n − 1 + 2n

= 2n+1 − 1.

Thus, the theorem is proved by mathematical induction. ✷

2.21 The closed form solution is 3n+1−3
2 , which I deduced by noting that 3F (n)−

F (n) = 2F (n) = 3n+1 − 3. Now, to verify that this is correct, use mathe-
matical induction as follows.
For the base case, F (1) = 3 = 32−3

2 .
The induction hypothesis is that

∑n−1
i=1 = (3n − 3)/2.

So,

n∑
i=1

3i =
n−1∑
i=1

3i + 3n

=
3n − 3

2
+ 3n

=
3n+1 − 3

2
.

Thus, the theorem is proved by mathematical induction.

11

2.22 Theorem 2.1
∑n

i=1(2i) = n2 + n.

(a) Proof: We know from Example 2.3 that the sum of the first n odd
numbers is n2. The ith even number is simply one greater than the ith
odd number. Since we are adding n such numbers, the sum must be n
greater, or n2 + n. ✷

(b) Proof: Base case: n = 1 yields 2 = 12 + 1, which is true.
Induction Hypothesis:

n−1∑
i=1

2i = (n− 1)2 + (n− 1).

Induction Step: The sum of the first n even numbers is simply the sum
of the first n− 1 even numbers plus the nth even number.

n∑
i=1

2i = (
n−1∑
i=1

2i) + 2n

= (n− 1)2 + (n− 1) + 2n
= (n2 − 2n + 1) + (n− 1) + 2n
= n2 − n + 2n
= n2 + n.

Thus, by mathematical induction,
∑n

i=1 2i = n2 + n. ✷

2.23 Proof:
Base case. For n = 1, Fib(1) = 1 < 5

3 . For n = 2, Fib(2) = 1 < (5
3)2.

Thus, the formula is correct for the base case.
Induction Hypothesis. For all positive integers i < n,

Fib(i) < (
5
3
)i.

Induction Step. Fib(n) = Fib(n − 1) + Fib(n − 2) and, by the Induction
Hypothesis, Fib(n− 1) < (5

3)n−1 and Fib(n− 2) < (5
3)n−2. So,

Fib(n) < (
5
3
)n−1 + (

5
3
)n−2

<
5
3
(
5
3
)n−2 + (

5
3
)n−2

12 Chap. 2 Mathematical Preliminaries

=
8
3
(
5
3
)n−2

< (
5
3
)2(

5
3
)n−2

=
5
3

n

.

Thus, the theorem is proved by mathematical induction. ✷

2.24 Proof:

(a) Base case. For n = 1, 13 = 12(1+1)2

4 = 1. Thus, the formula is correct
for the base case.

(b) Induction Hypothesis.

n−1∑
i=0

i3 =
(n− 1)2n2

4
.

(c) Induction Step.

n∑
i=0

i3 =
(n− 1)2n2

4
+ n3

=
n4 − 2n3 + n2

4
+ n3

=
n4 + 2n3 + n2

4

=
n2(n2 + 2n + 2)

4

=
n2(n + 1)2

4

Thus, the theorem is proved by mathematical induction. ✷

2.25 (a) Proof: By contradiction. Assume that the theorem is false. Then, each
pigeonhole contains at most 1 pigeon. Since there are n holes, there is
room for only n pigeons. This contradicts the fact that a total of n + 1
pigeons are within the n holes. Thus, the theorem must be correct. ✷

(b) Proof:

i. Base case. For one pigeon hole and two pigeons, there must be
two pigeons in the hole.

ii. Induction Hypothesis. For n pigeons in n − 1 holes, some hole
must contain at least two pigeons.

13

iii. Induction Step. Consider the case where n + 1 pigeons are in n
holes. Eliminate one hole at random. If it contains one pigeon,
eliminate it as well, and by the induction hypothesis some other
hole must contain at least two pigeons. If it contains no pigeons,
then again by the induction hypothesis some other hole must con-
tain at least two pigeons (with an extra pigeon yet to be placed). If
it contains more than one pigeon, then it fits the requirements of
the theorem directly.

✷

2.26 (a) When we add the nth line, we create n new regions. But, we start
with one region even when there are no lines. Thus, the recurrence is
F (n) = F (n− 1) + n + 1.

(b) This is equivalent to the summation F (n) = 1 +
∑

i=1 ni.
(c) This is close to a summation we already know (equation 2.1).

2.27 Base case: T(n− 1) = 1 = 1(1 + 1)/2.
Induction hypothesis: T(n− 1) = (n− 1)(n)/2.
Induction step:

T(n) = T(n− 1) + n

= (n− 1)(n)/2 + n

= n(n + 1)/2.

Thus, the theorem is proved by mathematical induction.
2.28 If we expand the recurrence, we get

T(n) = 2T(n− 1) + 1 = 2(2T(n− 2) + 1) + 1) = 4T(n− 2 + 2 + 1.

Expanding again yields

T(n) = 8T(n− 3) + 4 + 2 + 1.

From this, we can deduce a pattern and hypothesize that the recurrence is
equivalent to

T(n) =
n∑

i=0

−12i = 2n − 1.

To prove this formula is in fact the proper closed form solution, we use math-
ematical induction.
Base case: T(1) = 21 − 1 = 1.

14 Chap. 2 Mathematical Preliminaries

Induction hypothesis: T(n− 1) = 2n−1 − 1.
Induction step:

T(n) = 2T(n− 1) + 1
= 2(2n−1 − 1) + 1
= 2n − 1.

Thus, as proved by mathematical induction, this formula is indeed the correct
closed form solution for the recurrence.

2.29 (a) The probability is 0.5 for each choice.
(b) The average number of “1” bits is n/2, since each position has 0.5

probability of being “1.”
(c) The leftmost “1” will be the leftmost bit (call it position 0) with prob-

ability 0.5; in position 1 with probability 0.25, and so on. The number
of positions we must examine is 1 in the case where the leftmost “1” is
in position 0; 2 when it is in position 1, and so on. Thus, the expected
cost is the value of the summation

n∑
i=1

i

2i
.

The closed form for this summation is 2 − n+2
2n , or just less than two.

Thus, we expect to visit on average just less than two positions. (Stu-
dents at this point will probably not be able to solve this summation,
and it is not given in the book.)

2.30 There are at least two ways to approach this problem. One is to estimate the
volume directly. The second is to generate volume as a function of weight.
This is especially easy if using the metric system, assuming that the human
body is roughly the density of water. So a 50 Kilo person has a volume
slightly less than 50 liters; a 160 pound person has a volume slightly less
than 20 gallons.

2.31 (a) Image representations vary considerably, so the answer will vary as a
result. One example answer is: Consider VGA standard size, full-color
(24 bit) images, which is 3 × 640 × 480, or just less than 1 Mbyte per
image. The full database requires some 30-35 CDs.

(b) Since we needed 30-35 CDs before, compressing by a factor of 10 is
not sufficient to get the database onto one CD.
[Note that if the student picked a smaller format, such as estimating the
size of a “typical” gif image, the result might well fit onto a single CD.]

15

2.32 (I saw this problem in John Bentley’s Programming Pearls.) Approach 1:
The model is Depth X Width X Flow where Depth and Width are in miles
and Flow is in miles/day. The Mississippi river at its mouth is about 1/4 mile
wide and 100 feet (1/50 mile) deep, with a flow of around 15 miles/hour =
360 miles/day. Thus, the flow is about 2 cubic miles/day.

Approach 2: What goes out must equal what goes in. The model is Area X
Rainfall where Area is in square miles and Rainfall is in (linear) miles/day.
The Mississipi watershed is about 1000 X 1000 miles, and the average rainfal
is about 40 inches/year ≈ .1 inches/day ≈ .000002 miles/day (2 X 10−6).
Thus, the flow is about 2 cubic miles/day.

2.33 Note that the student should NOT be providing answers that look like they
were done using a calculator. This is supposed to be an exercise in estima-
tion!

The amount of the mortgage is irrelevant, since this is a question about rates.
However, to give some numbers to help you visualize the problem, pick a
$100,000 mortgage. The up-front charge would be $1,000, and the savings
would be 1/4% each payment over the life of the mortgage. The monthly
charge will be on the remaining principle, being the highest at first and grad-
ually reducing over time. But, that has little effect for the first few years.
At the grossest approximation, you paid 1% to start and will save 1/4% each
year, requiring 4 years. To be more precise, 8% of $100,000 is $8,000, while
7 3/4% is $7,750 (for the first year), with a little less interest paid (and there-
fore saved) in following years. This will require a payback period of slightly
over 4 years to save $1000. If the money had been invested, then in 5 years
the investment would be worth about $1300 (at 5would be close to 5 1/2
years.

2.34 Disk drive seek time is somewhere around 10 milliseconds or a little less
in 2000. RAM memory requires around 50 nanoseconds – much less than
a microsecond. Given that there are about 30 million seconds in a year, a
machine capable of executing at 100 MIPS would execute about 3 billion
billion (3 ∗ 1018) instructions in a year.

2.35 Typical books have around 500 pages/inch of thickness, so one million pages
requires 2000 inches or 150-200 feet of bookshelf. This would be in excess of
50 typical shelves, or 10-20 bookshelves. It is within the realm of possibility
that an individual home has this many books, but it is rather unusual.

2.36 A typical page has around 400 words (best way to derive this is to estimate
the number of words/line and lines/page), and the book has around 500 pages,
so the total is around 200,000 words.

16 Chap. 2 Mathematical Preliminaries

2.37 An hour has 3600 seconds, so one million seconds is a bit less than 300 hours.
A good estimater will notice that 3600 is about 10% greater than 3333, so the
actual number of hours is about 10% less than 300, or close to 270. (The real
value is just under 278). Of course, this is just over 11 days.

2.38 Well over 100,000, depending on what you wish to classify as a city or town.
The real question is what technique the student uses.

2.39 (a) The time required is 1 minute for the first mile, then 60/59 minutes
for the second mile, and so on until the last mile requires 60/1 = 60
minutes. The result is the following summation.

60∑
i=1

60/i = 60
60∑
i=1

1/i = 60H60.

(b) This is actually quite easy. The man will never reach his destination,
since his speed approaches zero as he approaches the end of the journey.

3

Algorithm Analysis

3.1 Note that n is a positive integer.
5n log n is most efficient for n = 1.
2n is most efficient when 2 ≤ n ≤ 4.
10n is most efficient for all n > 5. 20n and 2n are never more

efficient than the other choices.
3.2 Both log3 n and log2 n will have value 0 when n = 1.

Otherwise, 2 is the most efficient expression for all n > 1.
3.3 2 log3n log2 n n2/3 20n 4n2 3n n!.
3.4 (a) n + 6 inputs (an additive amount, independent of n).

(b) 8n inputs (a multiplicative factor).
(c) 64n inputs.

3.5 100n.
10n.
About 4.6n (actually, 3

√
100n).

n + 6.
3.6 (a) These questions are quite hard. If f(n) = 2n = x, then f(2n) = 22n =

(2n)2 = x2.
(b) The answer is 2(nlog2 3). Extending from part (a), we need some way to

make the growth rate even higher. In particular, we seek some way to
make the exponent go up by a factor of 3. Note that, if f(n) = nlog2 3 =
y, then f(2n) = 2log2 3nlog2 3 = 3x. So, we combine this observation
with part (a) to get the desired answer.

3.7 First, we need to find constants c and no such that 1 ≤ c × 1 for n > n0.
This is true for any positive value c < 1 and any positive value of n0 (since
n plays no role in the equation).
Next, we need to find constants c and n0 such that 1 ≤ c × n for n > n0.
This is true for, say, c = 1 and n0 = 1.

17

18 Chap. 3 Algorithm Analysis

3.8 Other values for n0 and c are possible than what is given here.

(a) The upper bound is O(n) for n0 > 0 and c = c1. The lower bound is
Ω(n) for n0 > 0 and c = c1.

(b) The upper bound is O(n3) for n0 > c3 and c = c2 + 1. The lower
bound is Ω(n3) for n0 > c3 and c = c2.

(c) The upper bound is O(n log n) for n0 > c5 and c = c4 + 1. The lower
bound is Ω(n log n) for n0 > c5 and c = c4.

(d) The upper bound is O(2n) for n0 > c7100 and c = c6 + 1. The
lower bound is Ω(2n) for n0 > c7100 and c = c6. (100 is used for
convenience to insure that 2n > n6)

3.9 (a) f(n) = Θ(g(n)) since log n2 = 2 log n.
(b) f(n) is in Ω(g(n)) since nc grows faster than log nc for any c.
(c) f(n) is in Ω(g(n)). Dividing both sides by log n, we see that log n

grows faster than 1.
(d) f(n) is in Ω(g(n)). If we take both f(n) and g(n) as exponents for 2,

we get 2n on one side and 2log2 n = (2log n)2 = n2 on the other, and n2

grows slower than 2n.
(e) f(n) is in Ω(g(n)). Dividing both sides by log n and throwing away

the low order terms, we see that n grows faster than 1.
(f) f(n) = Θ(g(n)) since log 10 and 10 are both constants.
(g) f(n) is in Ω(g(n)) since 2n grows faster than 10n2.
(h) f(n) is in O(g(n)). 3n = 1.5n2n, and if we divide both sides by 2n,

we see that 1.5n grows faster than 1.
3.10 (a) This fragment is Θ(1).

(b) This fragment is Θ(n) since the outer loop is executed a constant num-
ber of times.

(c) This fragment is Θ(n2) since the loop is executed n2 times.
(d) This fragment is Θ(n2 log n) since the outer for loop costs n log n for

each execution, and is executed n times. The inner loop is dominated
by the call to sort.

(e) For each execution of the outer loop, the inner loop is generated a “ran-
dom” number of times. However, since the values in the array are a
permutation of the values from 0 to n− 1, we know that the inner loop
will be run i times for each value of i from 1 to n. Thus, the total cost
is

∑n
i=1 i = Θ(n2).

(f) One branch of the if statement requires Θ(n) time, while the other
requires constant time. By the rule for if statements, the bound is the
greater cost, yielding Θ(n) time.

19

3.11 (a)

n! = n× (n− 1) × · · · × n

2
× (

n

2
− 1) × · · · × 2 × 1

≥ n

2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n

2
)n/2

Therefore

lg n! ≥ lg
(
n

2

)n
2

≥ 1
2
(n lg n− n).

(b) This part is easy, since clearly

1 · 2 · 3 · · ·n < n · n · n · · ·n,

so n! < nn yielding log n! < n log n.
3.12 Clearly this recurrence is in O(log n

√
n) since the recurrance can only be

expanded log n times with each time being
√
n or less. However, since this

series drops so quickly, it might be reasonable to guess that the closed form
solution is O(

√
n). We can prove this to be correct quite easily with an

induction proof. We need to show that T(n) ≤ c
√
n for a suitable constant

c. Pick c = 4.
Base case: T(1) ≤ 4.
Induction Hypothesis: T(n) ≤ 4

√
n.

Induction Step:

T(2n) = T(n) +
√

2n
≤ 4

√
n +

√
2n

= 2
√

2
√

2n = (2
√

2 + 1)
√

2n
≤ 4

√
2n.

Therefore, by mathematical induction we have proven that the closed form
solution for T(n) is in O(

√
n).

3.13 The best lower bound I know is Ω(log n), since a value cannot be reduced
more quickly than by repeated division by 2. There is no known upper bound,
since it is unknown if this algorithm always terminates.

3.14 Yes. Each deterministic algorithm, on a given input, has a specific running
time. Its upper and lower bound are the same – exactly this time. Note that
the question asks for the EXISTENCE of such a thing, not our ability to
determine it.

20 Chap. 3 Algorithm Analysis

3.15 Yes. When we specify an upper or lower bound, that merely states our knowl-
edge of the situation. If they do not meet, that merely means that we don’t
KNOW more about the problem. When we understand the problem com-
pletely, the bounds will meet. But, that does NOT mean that we can actually
determine the optimal algorithm, or the true lower bound, for every problem.

3.16 // Return position of first elem (if any) with value K
int newbin(int K, int* array, int left, int right) {

int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Look at middle of subarray
if (K <= array[i]) r = i; // In left half
if (K > array[i]) l = i; // In right half

}
if (r > right) return ERROR; // K not in array
if (array[r] != K) return ERROR; // K not in array
else return r; // r at value K

}

3.17 int newbin(int K, int* array, int left, int right) {
// Return position of greatest element <= K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Look at middle of subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
// Search value not in array
if (l < left) return ERROR; // No value less than K
else return l; // l at first value less than K

}

3.18 Initially, we do not know the position n in the array that holds the smallest
value greater than or equal to K, nor do we know the size of the array (which
can be arbitrarily larger than n). What we do is begin at the left side, and
start searching for K. The secret is to jump twice as far to the right on each
search. Thus, we would initially search array positions 0, 1, 2, 4, 8, 16, 32
and so on. Once we have found a value that is larger than or equal to what
we are searching for, we have bounded the subrange of the array from our
last two searches. The length of this subarray is at most n units wide, and
we have done this initial bracketing in at most log n + 1 searches. A normal

21

binary search of the subarray will find the position n in an additional log n
searches at most, for a total cost in O(log n) searches.

3.19 Here is a description for a simple Θ(n2) algorithm.

boolean Corner(int n, int m, Piece P1, Piece** array) {
for (int i=0; i<n; i++)

for (int j=0; j<n; j++) {
if (compare(P1, array[i][j], LEFT)) return FALSE;
if (compare(P1,array[i][j],BOTTOM)) return FALSE;

}
return TRUE;

}

void jigsaw(int n, int m, Piece** array) {
\\ First, find the lower left piece by checking each
\\ piece against the others to reject pieces until one
\\ is found that has no bottom or left connection.
for (i=0; i<n; i++)

for (j=0; j<m; j++)
if (Corner(n, m, array[i][j], array)) { // Found

SWAP(array[i][j], array[0][0]); // Swap pieces
break;

}
\\ Now, fill in row by row, column by column.
for (i=0; i<n; i++)

for (j=0; j<m; j++) {
if (j==0) { // First in row

if (i!=0) { // Don’t repeat corner piece
for (ii=0; ii<n; ii++)

for (jj=0; jj<m; jj++)
if (compare(array[i][j], array[ii][jj],

TOP)) {
tempr = ii;
tempc = jj;

}
SWAP(array[i][j], array[tempr][tempc]);

}}
else {

for (ii=0; ii<n; ii++)
for (jj=0; jj<m; jj++)

if (compare(array[i][j], array[ii][jj],
RIGHT))

{ tempr = ii; tempc = jj; }

22 Chap. 3 Algorithm Analysis

SWAP(array[i][j], array[tempr][tempc]);
}

}
}

Finding the corner takes O(n2m2) time, which is the square of the number of
pieces. Filling in the rest of the pieces also takes O(n2m2) time, the number
of pieces squared. Thus, the entire algorithm takes O(n2m2) time.

3.20 If an algorithm is Θ(f(n)) in the average case, then by definition it must
be Ω(f(n)) in the average case. Since the average case cost for an instance
of the problem requires at least cf(n) time for some constant c, at least one
instance requires at least as much as the average cost (this is an example of
applying the Pigeonhole Principle). Thus, at least one instance costs at least
cf(n), and so this means at least one instance (the worst case) is Ω(f(n)).

3.21 If an algorithm is Θ(f(n)) in the average case, then by definition it must
be O(f(n)) in the average case. Therefore, the average case cost for an
instance of the problem requires at most cf(n) time for some constant c. By
the pigeonhole principle, some instance (the best case) must therefore cost at
most cf(n) time. Therefore, the best case must be O(f(n)).

4

Lists, Stacks, and Queues

4.1 Call the list in question L1.

L1.setStart();
L1.next();
L1.next();
val = L1.remove();

4.2 (a) 〈| 10, 20, 15〉.
(b) 〈39 | 12, 10, 20, 15〉.

4.3 list L1(20);
L1.append(2);
L1.append(23);
L1.append(15);
L1.append(5);
L1.append(9);
L1.next();
L1.next();

4.4 // Interchange the order of current and next elements
void switch(List<Elem> L1) {

Elem temp;
if (!L1.remove(temp)) ERROR;
L1.next();
L1.insert(temp);

}
4.5 template <class Elem>

void LList<Elem>::reverse() { // Reverse list contents
if(head->next == NULL) return;
// First, fix fence by pushing it forward one step
if (fence->next == NULL) fence = head;
else fence = fence->next;
// Now, reverse the list

23

24 Chap. 4 Lists, Stacks, and Queues

link<Elem>* temp1 = head->next;
link<Elem>* temp2 = temp1->next;
while (temp2 != NULL) {

link<Elem>* temp3 = temp2->next;
temp2->next = temp1;
temp1 = temp2;
temp2 = temp3;

}
head->next = temp1;

}

4.6 (a) The following members are modified.

template <class Elem>
void LList<Elem>::LList(const int sz) {

head = tail = curr = new link; // Create header
head->next = head;

}

template <class Elem>
void LList<Elem>::clear() { // Remove Elems

while (head->next != NULL) { // Return to free
curr = head->next; // (keep header)
head->next = curr->next;
delete curr;

}
tail = curr = head->next = head; // Reinitialize

}

// Insert Elem at current position
template <class Elem>
void LList<Elem>::insert(const Elem& item) {

assert(curr != NULL); // Must be pointing to Elem
curr->next = new link(item, curr->next);
if (tail->next != head) tail = tail->next;

}

template <class Elem> // Put at tail
void LList<Elem>::append(const Elem& item)

{ tail = tail->next = new link(item, head); }

// Move curr to next position
template <class Elem>
void LList<Elem>::next()

{ curr = curr->next; }

25

// Move curr to prev position
template <class Elem>
void LList<Elem>::prev() {

link* temp = curr;
while (temp->next!=curr) temp=temp->next;
curr = temp;

}

(b) The answer is rather similar to that of Part (a).
4.7 The space required by the array-based list implementation is fixed. It must be

at least n spaces to hold n elements, for a lower bound of Ω(n). However, the
actual number of elements in the array (n) can be arbitrarily small compared
to the size of the list array.

4.8 D is number of elements; E is in bytes; P is in bytes; and n is number of
elements. Setting number of elements as e and number of bytes as b, the
equation has form

e > eb/(b + b) = eb/b = e

for a comparison of e > e which is correct.
4.9 (a) Since E = 8, P = 4, and D = 20, the break-even point occurs when

n = (20)(8)/(4 + 8) = 13
1
3
.

So, the linked list is more efficient when 13 or fewer elements are
stored.

(b) Since E = 2, P = 4, and D = 30, the break-even point occurs when

n = (30)(2)/(2 + 4) = 10.

So, the linked list is more efficient when less than 10 elements are
stored.

(c) Since E = 1, P = 4, and D = 30, the break-even point occurs when

n = (30)(1)/(1 + 4) = 6.

So, the linked list is more efficient when less than 6 elements are stored.
(d) Since E = 32, P = 4, and D = 40, the break-even point occurs when

n = (40)(32)/(32 + 4) = 35.5.

So, the linked list is more efficient when 35 or fewer elements are
stored.

26 Chap. 4 Lists, Stacks, and Queues

4.10 I assume an int requires 4 bytes, a double requires 8 bytes, and a pointer
requires 4 bytes.

(a) Since E = 4 and P = 4, the break-even point occurs when

n = 4D/8 =
1
2
D.

Thus, the linked list is more space efficient when the array would be
less than half full.

(b) Since E = 8 and P = 4, the break-even point occurs when

n = 8D/12 =
2
3
D.

Thus, the linked list is more space efficient when the array would be
less than two thirds full.

4.11 We need only modify push and pop, as follows.

bool push(const Elem& item) { // Push ELEM onto stack
if (top + length(item) < size) return false; // Full
for (int i=0; i<length(item) i++)

listArray[top++] = item[i];
listArray[top++] = length(item);

}

bool pop(Elem& it) { // Pop ELEM from top of stack
if (top == 0) return false;
int length = listarray[top--];
for (int i=1; i<=length; i++)

it[length - i] = listarray[top--];
return it;

}

4.12 Most member functions get a new parameter to indicate which stack is ac-
cessed.

// Array-based stack implementation
template <class Elem> class AStack2 {
private:

int size; // Maximum size of stack
int top1, top2; // Index for top element (two)
Elem *listArray; // Array holding stack elements

public:
AStack2(int sz =DefaultListSize) // Constructor

{ size = sz; top = 0; listArray = new Elem[sz]; }

27

˜AStack2() { delete [] listArray; } // Destructor
void clear(int st) {

if (st == 1) top1 = 0;
else top2 = size - 1;

bool push(int st, const Elem& item) {
if (top1+1 >= top2) return false; // Stack is full
if (st == 1) listarray[top1++] = item;
else listarraay[top2--] = item;
return true;

}
bool pop(int st, Elem& it) { // Pop top element

if ((st == 1) && (top1 == 0)) return false;
if ((st == 2) && (top2 == (size-1))) return false;
if (st == 1) it = listArray[--top1];
else it = listArray[++top2];
return true;

}
bool topValue(int st, Elem& it) const { // Return top

if ((st == 1) && (top1 == 0)) return false;
if ((st == 2) && (top2 == (size-1))) return false;
if (st == 1) it = listArray[top1-1];
else it = listArray[top2+1];
return true;

}
int length(int st) const {

if (st == 1) return top1;
else return size - top2 - 1;

}
};

4.13 // Array-based queue implementation
template <class Elem>
class AQueue: public Queue<Elem> {
private:

int size; // Maximum size of queue
int front; // Index of front element
int rear; // Index of rear element
Elem *listArray; // Array holding queue elements
bool isEmpty;

public:
AQueue(int sz =DefaultListSize) { // Constructor

// Make list array one unit larger for empty slot
size = sz+1;
rear = 0; front = 1;

28 Chap. 4 Lists, Stacks, and Queues

listArray = new Elem[size];
isEmpty = true;

}
˜AQueue() { delete [] listArray; } // Destructor
void clear() { front = rear; isEmpty = true; }
bool enqueue(const Elem& it) {

if ((isEmpty != true) &&
(((rear+1) % size) == front)) return false;

rear = (rear+1) % size; // Circular increment
listArray[rear] = it;
isEmpty = false;
return true;

}
bool dequeue(Elem& it) {

if (isEmpty == true) return false; // Empty
it = listArray[front];
front = (front+1) % size; // Circular increment
if (((rear+1) % size) == front) isEmpty == true;
return true;

}
bool frontValue(Elem& it) const {

if (isEmpty == true) return false; // Empty
it = listArray[front];
return true;

}
virtual int length() const {

if (isEmpty == true) return 0;
return ((rear+size) - front + 1) % size;

}
};

4.14 bool palin() {
Stack<char> S;
Queue<char> Q;

while ((c = getc()) != ENDOFSTRING) {
S.push(c);
Q.enqueue(c);

}
while (!S.isEmpty()) {

if (S.top() != Q.front()) return FALSE;
char dum = S.pop();
dum = Q.dequeue();

}
return TRUE;

29

}

4.15 FIBobj stores a value and an operand type. If the operand is IN, then the
value is a parameter to the Fibonacci function. If the operand is OUT, then
the value is an intermediate result. When we pop of an IN value, it must
be evaluated. When we have available two intermediate results, they can be
added together and returned to the stack.

enum FIBOP {IN, OUT};

class FIBobj {
public:

int val;
FIBOP op;

FIBobj(int v, FIBOP o)
{ val = v; op = o; }

};

long fibs(int n) {
AStack<Fibobj> S;
FIBobj f;

f.val = n; f.op = IN;
S.push(f);
while (S.length() > 0) {

S.pop(f);
int val = f.val;
FIBOP op = f.op;
if (op == IN)

if (val <= 2) {
f.val = 1; f.op = OUT;
S.push(f);

}
else {

f.val = val - 1; f.op = IN;
S.push(f);
f.val = val - 2;
S.push(f);

}
else // op == OUT
if (S.length() > 0) { // Else do nothing, loop ends

S.pop(f); // 2nd operand
if (f.op == OUT) {

30 Chap. 4 Lists, Stacks, and Queues

f.val += val;
s.push(f);

}
else { // switch order to evaluate 2nd operand

FIBobj temp;
temp.val = val; temp.op = OUT;
S.push (f);
S.push (temp);

}
}

}
return val; // Correct result should be in val now

}

4.16 The stack-based version will be similar to the answer for problem 4.15, so I
will not repeat it here. The recursive version is as follows.

int recur(int n) {
if (n == 1) return 1;
return recur((n+1)/2) + recur(n/2) + n;

}

4.17 int GCD1(int n, int m) {
if (n < m) swap(n, m);
while ((n % m) != 0) {

n = n % m;
swap(m, n);

}
return m;

}

int GCD2(int n, int m) {
if (n < m) swap(n, m);
if ((n % m) == 0) return m;
return GCD2(m, n % m);

}
4.18 void reverse(Queue& Q, Stack& S) {

ELEM X;
while (!Q.isEmpty()) {

X = Q.dequeue();
S.push(X);

}
while (!S.isEmpty()) {

X = S.pop();
Q.enqueue(X);

31

}
}

4.19 Some additional access capability must be added. One approach is to add
more pointers to the linked list structure. By granting direct access half way
in, from there to the quarter lists, etc., it is possible to gain O(logn) insert
and search times. This concept will lead to the Skip List of Chapter 13.
Alternatively, we can adopt the tree concept, discussed in Chapter 5.

4.20 (a) bool balance(String str) {
Stack S;
int pos = 0;
while (str.charAt(pos) != NULL) {

if (str.charAt(pos++) == ’(’)
S.push(’(’);

else if (str.charAt(pos++) == ’)’)
if (S.isEmpty()) return FALSE;
else S.pop();

}
if (S.isEmpty()) return TRUE;
else return FALSE;

}
(b) int balance(String str) {

Stack S;
int pos = 0;
while (str.charAt(pos) != NULL) {

if (str.charAt(pos++) == ’(’)
S.push(pos);

else if (str.charAt(pos++) == ’)’)
if (S.isEmpty()) return pos;
else S.pop();

}
if (S.isEmpty()) return -1;
else return S.pop();

}

5

Binary Trees

5.1 Consider a non-full binary tree. By definition, this tree must have some inter-
nal node X with only one non-empty child. If we modify the tree to remove
X , replacing it with its child, the modified tree will have a higher fraction of
non-empty nodes since one non-empty node and one empty node have been
removed.

5.2 Use as the base case the tree of one leaf node. The number of degree-2 nodes
is 0, and the number of leaves is 1. Thus, the theorem holds.
For the induction hypothesis, assume the theorem is true for any tree with
n− 1 nodes.
For the induction step, consider a tree T with n nodes. Remove from the tree
any leaf node, and call the resulting tree T ′. By the induction hypothesis, T ′

has one more leaf node than it has nodes of degree 2.
Now, restore the leaf node that was removed to form T ′. There are two
possible cases.
(1) If this leaf node is the only child of its parent in T , then the number of
nodes of degree 2 has not changed, nor has the number of leaf nodes. Thus,
the theorem holds.
(2) If this leaf node is the child of a node in T with degree 2, then that node
has degree 1 in T ′. Thus, by restoring the leaf node we are adding one new
leaf node and one new node of degree 2. Thus, the theorem holds.
By mathematical induction, the theorem is correct.

32

33

5.3 Base Case: For the tree of one leaf node, I = 0, E = 0, n = 0, so the
theorem holds.
Induction Hypothesis: The theorem holds for the full binary tree containing
n internal nodes.
Induction Step: Take an arbitrary tree (call it T) of n internal nodes. Select
some internal node x from T that has two leaves, and remove those two
leaves. Call the resulting tree T’. Tree T’ is full and has n−1 internal nodes,
so by the Induction Hypothesis E = I + 2(n− 1).
Call the depth of node x as d. Restore the two children of x, each at level
d+1. We have now added d to I since x is now once again an internal node.
We have now added 2(d + 1) − d = d + 2 to E since we added the two leaf
nodes, but lost the contribution of x to E. Thus, if before the addition we had
E = I + 2(n − 1) (by the induction hypothesis), then after the addition we
have E + d = I + d + 2 + 2(n− 1) or E = I + 2n which is correct. Thus,
by the principle of mathematical induction, the theorem is correct.

5.4 (a) template <class Elem>
void inorder(BinNode<Elem>* subroot) {

if (subroot == NULL) return; // Empty, do nothing
preorder(subroot->left());
visit(subroot); // Perform desired action
preorder(subroot->right());

}
(b) template <class Elem>

void postorder(BinNode<Elem>* subroot) {
if (subroot == NULL) return; // Empty, do nothing
preorder(subroot->left());
preorder(subroot->right());
visit(subroot); // Perform desired action

}
5.5 The key is to search both subtrees, as necessary.

template <class Key, class Elem, class KEComp>
bool search(BinNode<Elem>* subroot, Key K);

if (subroot == NULL) return false;
if (subroot->value() == K) return true;
if (search(subroot->right())) return true;
return search(subroot->left());

}

34 Chap. 5 Binary Trees

5.6 The key is to use a queue to store subtrees to be processed.

template <class Elem>
void level(BinNode<Elem>* subroot) {

AQueue<BinNode<Elem>*> Q;
Q.enqueue(subroot);
while(!Q.isEmpty()) {

BinNode<Elem>* temp;
Q.dequeue(temp);
if(temp != NULL) {

Print(temp);
Q.enqueue(temp->left());
Q.enqueue(temp->right());

}}}

5.7 template <class Elem>
int height(BinNode<Elem>* subroot) {

if (subroot == NULL) return 0; // Empty subtree
return 1 + max(height(subroot->left()),

height(subroot->right()));
}

5.8 template <class Elem>
int count(BinNode<Elem>* subroot) {

if (subroot == NULL) return 0; // Empty subtree
if (subroot->isLeaf()) return 1; // A leaf
return 1 + count(subroot->left()) +

count(subroot->right());
}

5.9 (a) Since every node stores 4 bytes of data and 12 bytes of pointers, the
overhead fraction is 12/16 = 75%.

(b) Since every node stores 16 bytes of data and 8 bytes of pointers, the
overhead fraction is 8/24 ≈ 33%.

(c) Leaf nodes store 8 bytes of data and 4 bytes of pointers; internal nodes
store 8 bytes of data and 12 bytes of pointers. Since the nodes have
different sizes, the total space needed for internal nodes is not the same
as for leaf nodes. Students must be careful to do the calculation cor-
rectly, taking the weighting into account. The correct formula looks as
follows, given that there are x internal nodes and x leaf nodes.

4x + 12x
12x + 20x

= 16/32 = 50%.

(d) Leaf nodes store 4 bytes of data; internal nodes store 4 bytes of pointers.
The formula looks as follows, given that there are x internal nodes and

35

x leaf nodes:
4x

4x + 4x
= 4/8 = 50%.

5.10 If equal valued nodes were allowed to appear in either subtree, then during a
search for all nodes of a given value, whenever we encounter a node of that
value the search would be required to search in both directions.

5.11 This tree is identical to the tree of Figure 5.20(a), except that a node with
value 5 will be added as the right child of the node with value 2.

5.12 This tree is identical to the tree of Figure 5.20(b), except that the value 24
replaces the value 7, and the leaf node that originally contained 24 is removed
from the tree.

5.13 template <class Key, class Elem, class KEComp>
int smallcount(BinNode<Elem>* root, Key K);

if (root == NULL) return 0;
if (KEComp.gt(root->value(), K))

return smallcount(root->leftchild(), K);
else

return smallcount(root->leftchild(), K) +
smallcount(root->rightchild(), K) + 1;

5.14 template <class Key, class Elem, class KEComp>
void printRange(BinNode<Elem>* root, int low,

int high) {
if (root == NULL) return;
if (KEComp.lt(high, root->val()) // all to left

printRange(root->left(), low, high);
else if (KEComp.gt(low, root->val())) // all to right

printRange(root->right(), low, high);
else { // Must process both children

printRange(root->left(), low, high);
PRINT(root->value());
printRange(root->right(), low, high);

}
}

5.15 The minimum number of elements is contained in the heap with a single node
at depth h− 1, for a total of 2h−1 nodes.
The maximum number of elements is contained in the heap that has com-
pletely filled up level h− 1, for a total of 2h − 1 nodes.

5.16 The largest element could be at any leaf node.
5.17 The corresponding array will be in the following order (equivalent to level

order for the heap):

12 9 10 5 4 1 8 7 3 2

36 Chap. 5 Binary Trees

5.18 (a) The array will take on the following order:

6 5 3 4 2 1

The value 7 will be at the end of the array.
(b) The array will take on the following order:

7 4 6 3 2 1

The value 5 will be at the end of the array.
5.19 // Min-heap class

template <class Elem, class Comp> class minheap {
private:

Elem* Heap; // Pointer to the heap array
int size; // Maximum size of the heap
int n; // # of elements now in the heap
void siftdown(int); // Put element in correct place

public:
minheap(Elem* h, int num, int max) // Constructor

{ Heap = h; n = num; size = max; buildHeap(); }
int heapsize() const // Return current size

{ return n; }
bool isLeaf(int pos) const // TRUE if pos a leaf

{ return (pos >= n/2) && (pos < n); }
int leftchild(int pos) const

{ return 2*pos + 1; } // Return leftchild pos
int rightchild(int pos) const

{ return 2*pos + 2; } // Return rightchild pos
int parent(int pos) const // Return parent position

{ return (pos-1)/2; }
bool insert(const Elem&); // Insert value into heap
bool removemin(Elem&); // Remove maximum value
bool remove(int, Elem&); // Remove from given pos
void buildHeap() // Heapify contents

{ for (int i=n/2-1; i>=0; i--) siftdown(i); }
};

template <class Elem, class Comp>
void minheap<Elem, Comp>::siftdown(int pos) {

while (!isLeaf(pos)) { // Stop if pos is a leaf
int j = leftchild(pos); int rc = rightchild(pos);
if ((rc < n) && Comp::gt(Heap[j], Heap[rc]))

j = rc; // Set j to lesser child’s value
if (!Comp::gt(Heap[pos], Heap[j])) return; // Done

37

swap(Heap, pos, j);
pos = j; // Move down

}
}

template <class Elem, class Comp>
bool minheap<Elem, Comp>::insert(const Elem& val) {

if (n >= size) return false; // Heap is full
int curr = n++;
Heap[curr] = val; // Start at end of heap
// Now sift up until curr’s parent < curr
while ((curr!=0) &&

(Comp::lt(Heap[curr], Heap[parent(curr)]))) {
swap(Heap, curr, parent(curr));
curr = parent(curr);

}
return true;

}

template <class Elem, class Comp>
bool minheap<Elem, Comp>::removemin(Elem& it) {

if (n == 0) return false; // Heap is empty
swap(Heap, 0, --n); // Swap max with last value
if (n != 0) siftdown(0); // Siftdown new root val
it = Heap[n]; // Return deleted value
return true;

}

38 Chap. 5 Binary Trees

// Remove value at specified position
template <class Elem, class Comp>
bool minheap<Elem, Comp>::remove(int pos, Elem& it) {

if ((pos < 0) || (pos >= n)) return false; // Bad pos
swap(Heap, pos, --n); // Swap with last value
while ((pos != 0) &&

(Comp::lt(Heap[pos], Heap[parent(pos)])))
swap(Heap, pos, parent(pos)); // Push up if large

siftdown(pos); // Push down if small key
it = Heap[n];
return true;

}

5.20 Note that this summation is similar to Equation 2.5. To solve the summation
requires the shifting technique from Chapter 14, so this problem may be too
advanced for many students at this time. Note that 2f(n) − f(n) = f(n),
but also that:

2f(n) − f(n) = n(
2
4

+
4
8

+
6
16

+ · · · + 2(log n− 1)
n

) −

n(
1
4

+
2
8

+
3
16

+ · · · + log n− 1
n

)

= n(
log n−1∑

i=1

1
2i

− log n− 1
n

)

= n(1 − 1
n
− log n− 1

n
)

= n− log n.

5.21 Here are the final codes, rather than a picture.

l 00
h 010
i 011
e 1000
f 1001
j 101
d 11000
a 1100100
b 1100101
c 110011
g 1101
k 111

39

The average code length is 3.23445
5.22 The set of sixteen characters with equal weight will create a Huffman coding

tree that is complete with 16 leaf nodes all at depth 4. Thus, the average code
length will be 4 bits. This is identical to the fixed length code. Thus, in this
situation, the Huffman coding tree saves no space (and costs no space).

5.23 (a) By the prefix property, there can be no character with codes 0, 00, or
001x where “x” stands for any binary string.

(b) There must be at least one code with each form 1x, 01x, 000x where
“x” could be any binary string (including the empty string).

5.24 (a) Q and Z are at level 5, so any string of length n containing only Q’s and
Z’s requires 5n bits.

(b) O and E are at level 2, so any string of length n containing only O’s and
E’s requires 2n bits.

(c) The weighted average is

5 ∗ 5 + 10 ∗ 4 + 35 ∗ 3 + 50 ∗ 2
100

= 2.7

bits per character
5.25 This is a straightforward modification.

// Build a Huffman tree from minheap h1
template <class Elem>HuffTree<Elem>*
buildHuff(minheap<HuffTree<Elem>*,

HHCompare<Elem> >* hl) {
HuffTree<Elem> *temp1, *temp2, *temp3;
while(h1->heapsize() > 1) { // While at least 2 items

hl->removemin(temp1); // Pull first two trees
hl->removemin(temp2); // off the heap
temp3 = new HuffTree<Elem>(temp1, temp2);
hl->insert(temp3); // Put the new tree back on list
delete temp1; // Must delete the remnants
delete temp2; // of the trees we created

}
return temp3;

}

6

General Trees

6.1 The following algorithm is linear on the size of the two trees.

// Return TRUE iff t1 and t2 are roots of identical
// general trees
template <class Elem>
bool Compare(GTNode<Elem>* t1, GTNode<Elem>* t2) {

GTNode<Elem> *c1, *c2;
if (((t1 == NULL) && (t2 != NULL)) ||

((t2 == NULL) && (t1 != NULL)))
return false;

if ((t1 == NULL) && (t2 == NULL)) return true;
if (t1->val() != t2->val()) return false;
c1 = t1->leftmost_child();
c2 = t2->leftmost_child();
while(!((c1 == NULL) && (c2 == NULL))) {

if (!Compare(c1, c2)) return false;
if (c1 != NULL) c1 = c1->right_sibling();
if (c2 != NULL) c2 = c2->right_sibling();

}}

6.2 The following algorithm is Θ(n2).

// Return true iff t1 and t2 are roots of identical
// binary trees
template <class Elem>
bool Compare2(BinNode<Elem>* t1, BinNode<Elem* t2) {

BinNode<Elem> *c1, *c2;
if (((t1 == NULL) && (t2 != NULL)) ||

((t2 == NULL) && (t1 != NULL)))
return false;

if ((t1 == NULL) && (t2 == NULL)) return true;

40

41

if (t1->val() != t2->val()) return false;
if (Compare2(t1->leftchild(), t2->leftchild())

if (Compare2(t1->rightchild(), t2->rightchild())
return true;

if (Compare2(t1->leftchild(), t2->rightchild())
if (Compare2(t1->rightchild(), t2->leftchild))

return true;
return false;

}

6.3 template <class Elem> // Print, postorder traversal
void postprint(GTNode<Elem>* subroot) {

for (GTNode<Elem>* temp = subroot->leftmost_child();
temp != NULL; temp = temp->right_sibling())

postprint(temp);
if (subroot->isLeaf()) cout << "Leaf: ";
else cout << "Internal: ";
cout << subroot->value() << "\n";

}
6.4 template <class Elem> // Count the number of nodes

int gencount(GTNode<Elem>* subroot) {
if (subroot == NULL) return 0
int count = 1;
GTNode<Elem>* temp = rt->leftmost_child();
while (temp != NULL) {

count += gencount(temp);
temp = temp->right_sibling();

}
return count;

}

6.5 The Weighted Union Rule requires that when two parent-pointer trees are
merged, the smaller one’s root becomes a child of the larger one’s root. Thus,
we need to keep track of the number of nodes in a tree. To do so, modify the
node array to store an integer value with each node. Initially, each node is
in its own tree, so the weights for each node begin as 1. Whenever we wish
to merge two trees, check the weights of the roots to determine which has
more nodes. Then, add to the weight of the final root the weight of the new
subtree.

6.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1 0 0 0 0 0 0 6 0 0 0 9 0 0 12 0

6.7 The resulting tree should have the following structure:

42 Chap. 6 General Trees

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Parent 4 4 4 4 -1 4 4 0 0 4 9 9 9 12 9 -1

6.8 For eight nodes labeled 0 through 7, use the following series of equivalences:
(0, 1) (2, 3) (4, 5) (6, 7) (4 6) (0, 2) (4 0)
This requires checking fourteen parent pointers (two for each equivalence),
but none are actually followed since these are all roots. It is possible to
double the number of parent pointers checked by choosing direct children of
roots in each case.

6.9 For the “lists of Children” representation, every node stores a data value and a
pointer to its list of children. Further, every child (every node except the root)
has a record associated with it containing an index and a pointer. Indicating
the size of the data value as D, the size of a pointer as P and the size of an
index as I , the overhead fraction is

3P + I

D + 3P + I
.

For the “Left Child/Right Sibling” representation, every node stores three
pointers and a data value, for an overhead fraction of

3P
D + 3P

.

The first linked representation of Section 6.3.3 stores with each node a data
value and a size field (denoted by S). Each child (every node except the root)
also has a pointer pointing to it. The overhead fraction is thus

S + P

D + S + P

making it quite efficient.
The second linked representation of Section 6.3.3 stores with each node a
data value and a pointer to the list of children. Each child (every node except
the root) has two additional pointers associated with it to indicate its place
on the parent’s linked list. Thus, the overhead fraction is

3P
D + 3P

.

6.10 template <class Elem>
BinNode<Elem>* convert(GTNode<Elem>* genroot) {

if (genroot == NULL) return NULL;

43

GTNode<Elem>* gtemp = genroot->leftmost_child();
btemp = new BinNode(genroot->val(), convert(gtemp),

convert(genroot->right_sibling()));
}

6.11 • Parent(r) = (r − 1)/k if 0 < r < n.
• Ith child(r) = kr + I if kr + I < n.
• Left sibling(r) = r − 1 if r mod k �= 1 0 < r < n.
• Right sibling(r) = r + 1 if r mod k �= 0 and r + 1 < n.

6.12 (a) The overhead fraction is

4(k + 1)
4 + 4(k + 1)

.

(b) The overhead fraction is
4k

16 + 4k
.

(c) The overhead fraction is

4(k + 2)
16 + 4(k + 2)

.

(d) The overhead fraction is
2k

2k + 4
.

6.13 Base Case: The number of leaves in a non-empty tree of 0 internal nodes is
(K − 1)0 + 1 = 1. Thus, the theorem is correct in the base case.
Induction Hypothesis: Assume that the theorem is correct for any full K-
ary tree containing n internal nodes.
Induction Step: Add K children to an arbitrary leaf node of the tree with
n internal nodes. This new tree now has 1 more internal node, and K − 1
more leaf nodes, so theorem still holds. Thus, the theorem is correct, by the
principle of Mathematical Induction.

6.14 (a) CA/BG///FEDD///H/I//
(b) C ′A′/B′G/F ′E′D/H ′/I

6.15 X
|
P

| | |
C Q R

| |
V M

44 Chap. 6 General Trees

6.16 (a) // Use a helper function with a pass-by-reference
// variable to indicate current position in the
// node list.
template <class Elem>
BinNode<Elem>* convert(char* inlist) {

int curr = 0;
return converthelp(inlist, curr);

}

// As converthelp processes the node list, curr is
// incremented appropriately.
template <class Elem>
BinNode<Elem>* converthelp(char* inlist,

int& curr) {
if (inlist[curr] == ’/’) {

curr++;
return NULL;

}
BinNode<Elem>* temp = new BinNode(inlist[curr++],

NULL, NULL);
temp->left = converthelp(inlist, curr);
temp->right = converthelp(inlist, curr);
return temp;

}
(b) // Use a helper function with a pass-by-reference

// variable to indicate current position in the
// node list.
template <class Elem>
BinNode<Elem>* convert(char* inlist) {

int curr = 0;
return converthelp(inlist, curr);

}

// As converthelp processes the node list, curr is
// incremented appropriately.
template <class Elem>
BinNode<Elem>* converthelp(char* inlist,

int& curr) {
if (inlist[curr] == ’/’) {

curr++;
return NULL;

}
BinNode<Elem>* temp =

new BinNode<Elem>(inlist[curr++], NULL, NULL);
if (inlist[curr] == ’\’’) return temp;

45

curr++ // Eat the internal node mark.
temp->left = converthelp(inlist, curr);
temp->right = converthelp(inlist, curr);
return temp;

}

(c) // Use a helper function with a pass-by-reference
// variable to indicate current position in the
// node list.
template <class Elem>
GTNode<Elem>* convert(char* inlist) {

int curr = 0;
return converthelp(inlist, curr);

}

// As converthelp processes the node list, curr is
// incremented appropriately.
template <class Elem>
GTNode<Elem>* converthelp(char* inlist,

int& curr) {
if (inlist[curr] == ’)’) {

curr++;
return NULL;

}
GTNode<Elem>* temp =

new GTNode<Elem>(inlist[curr++]);
if (curr == ’)’) {

temp->insert_first(NULL);
return temp;

}
temp->insert_first(converthelp(inlist, curr));
while (curr != ’)’)

temp->insert_next(converthelp(inlist, curr));
curr++;
return temp;

}

6.17 The Huffman tree is a full binary tree. To decode, we do not need to know
the weights of nodes, only the letter values stored in the leaf nodes. Thus, we
can use a coding much like that of Equation 6.2, storing only a bit mark for
internal nodes, and a bit mark and letter value for leaf nodes.

7

Internal Sorting

7.1 Base Case: For the list of one element, the double loop is not executed and
the list is not processed. Thus, the list of one element remains unaltered and
is sorted.

Induction Hypothesis: Assume that the list of n elements is sorted correctly
by Insertion Sort.

Induction Step: The list of n + 1 elements is processed by first sorting the
top n elements. By the induction hypothesis, this is done correctly. The final
pass of the outer for loop will process the last element (call it X). This is
done by the inner for loop, which moves X up the list until a value smaller
than that of X is encountered. At this point, X has been properly inserted
into the sorted list, leaving the entire collection of n + 1 elements correctly
sorted. Thus, by the principle of Mathematical Induction, the theorem is
correct.

7.2 void StackSort(AStack<int>& IN) {
AStack<int> Temp1, Temp2;

while (!IN.isEmpty()) // Transfer to another stack
Temp1.push(IN.pop());

IN.push(Temp1.pop()); // Put back one element
while (!Temp1.isEmpty()) { // Process rest of elems

while (IN.top() > Temp1.top()) // Find elem’s place
Temp2.push(IN.pop());

IN.push(Temp1.pop()); // Put the element in
while (!Temp2.isEmpty()) // Put the rest back

IN.push(Temp2.pop());
}

}

46

47

7.3 The revised algorithm will work correctly, and its asymptotic complexity will
remain Θ(n2). However, it will do about twice as many comparisons, since it
will compare adjacent elements within the portion of the list already known
to be sorted. These additional comparisons are unproductive.

7.4 While binary search will find the proper place to locate the next element, it
will still be necessary to move the intervening elements down one position in
the array. This requires the same number of operations as a sequential search.
However, it does reduce the number of element/element comparisons, and
may be somewhat faster by a constant factor since shifting several elements
may be more efficient than an equal number of swap operations.

7.5 (a) template <class Elem, class Comp>
void selsort(Elem A[], int n) { // Selection Sort

for (int i=0; i<n-1; i++) { // Select i’th record
int lowindex = i; // Remember its index
for (int j=n-1; j>i; j--) // Find least value

if (Comp::lt(A[j], A[lowindex]))
lowindex = j; // Put it in place

if (i != lowindex) // Add check for exercise
swap(A, i, lowindex);

}
}

(b) There is unlikely to be much improvement; more likely the algorithm
will slow down. This is because the time spent checking (n times) is
unlikely to save enough swaps to make up.

(c) Try it and see!
7.6 • Insertion Sort is stable. A swap is done only if the lower element’s

value is LESS.
• Bubble Sort is stable. A swap is done only if the lower element’s value

is LESS.
• Selection Sort is NOT stable. The new low value is set only if it is

actually less than the previous one, but the direction of the search is
from the bottom of the array. The algorithm will be stable if “less than”
in the check becomes “less than or equal to” for selecting the low key
position.

• Shell Sort is NOT stable. The sublist sorts are done independently, and
it is quite possible to swap an element in one sublist ahead of its equal
value in another sublist. Once they are in the same sublist, they will
retain this (incorrect) relationship.

• Quick-sort is NOT stable. After selecting the pivot, it is swapped with
the last element. This action can easily put equal records out of place.

48 Chap. 7 Internal Sorting

• Conceptually (in particular, the linked list version) Mergesort is stable.
The array implementations are NOT stable, since, given that the sublists
are stable, the merge operation will pick the element from the lower list
before the upper list if they are equal. This is easily modified to replace
“less than” with “less than or equal to.”

• Heapsort is NOT stable. Elements in separate sides of the heap are
processed independently, and could easily become out of relative order.

• Binsort is stable. Equal values that come later are appended to the list.
• Radix Sort is stable. While the processing is from bottom to top, the

bins are also filled from bottom to top, preserving relative order.

7.7 In the worst case, the stack can store n records. This can be cut to log n in the
worst case by putting the larger partition on FIRST, followed by the smaller.
Thus, the smaller will be processed first, cutting the size of the next stacked
partition by at least half.

7.8 Here is how I derived a permutation that will give the desired (worst-case)
behavior:

a b c 0 d e f g First, put 0 in pivot index (0+7/2),
assign labels to the other positions

a b c g d e f 0 First swap
0 b c g d e f a End of first partition pass
0 b c g 1 e f a Set d = 1, it is in pivot index (1+7/2)
0 b c g a e f 1 First swap
0 1 c g a e f b End of partition pass
0 1 c g 2 e f b Set a = 2, it is in pivot index (2+7/2)
0 1 c g b e f 2 First swap
0 1 2 g b e f c End of partition pass
0 1 2 g b 3 f c Set e = 3, it is in pivot index (3+7/2)
0 1 2 g b c f 3 First swap
0 1 2 3 b c f g End of partition pass
0 1 2 3 b 4 f g Set c = 4, it is in pivot index (4+7/2)
0 1 2 3 b g f 4 First swap
0 1 2 3 4 g f b End of partition pass
0 1 2 3 4 g 5 b Set f = 5, it is in pivot index (5+7/2)
0 1 2 3 4 g b 5 First swap
0 1 2 3 4 5 b g End of partition pass
0 1 2 3 4 5 6 g Set b = 6, it is in pivot index (6+7/2)
0 1 2 3 4 5 g 6 First swap
0 1 2 3 4 5 6 g End of parition pass
0 1 2 3 4 5 6 7 Set g = 7.

Plugging the variable assignments into the original permutation yields:

49

2 6 4 0 1 3 5 7

7.9 (a) Each call to qsort costs Θ(i log i). Thus, the total cost is

n∑
i=1

i log i = Θ(n2 log n).

(b) Each call to qsort costs Θ(n log n) for length(L) = n, so the total
cost is Θ(n2 log n).

7.10 All that we need to do is redefine the comparison test to use strcmp. The
quicksort algorithm itself need not change. This is the advantage of paramer-
izing the comparator.

7.11 For n = 1000, n2 = 1, 000, 000, n1.5 = 1000 ∗
√

1000 ≈ 32, 000, and
n log n ≈ 10, 000. So, the constant factor for Shellsort can be anything less
than about 32 times that of Insertion Sort for Shellsort to be faster. The
constant factor for Shellsort can be anything less than about 100 times that
of Insertion Sort for Quicksort to be faster.

7.12 (a) The worst case occurs when all of the sublists are of size 1, except for
one list of size i− k + 1. If this happens on each call to SPLITk, then
the total cost of the algorithm will be Θ(n2).

(b) In the average case, the lists are split into k sublists of roughly equal
length. Thus, the total cost is Θ(n logk n).

7.13 (This question comes from Rawlins.) Assume that all nuts and all bolts have
a partner. We use two arrays N[1..n] and B[1..n] to represent nuts and bolts.

Algorithm 1
Using merge-sort to solve this problem.
First, split the input into n/2 sub-lists such that each sub-list contains two
nuts and two bolts. Then sort each sub-lists. We could well come up with a
pair of nuts that are both smaller than either of a pair of bolts. In that case,
all you can know is something like:
N1, N2
B1, B2
At each line, there is no information available about the relationships of those
objects.As merge-sort goes on, at any given instant, we have a partially sorted
list of object. That might look something like:
B1
N2 N3
B4 B5 B6

50 Chap. 7 Internal Sorting

N7 N8 N9
B10
B11
Again, at each line, there is no information available about the relationships
of those objects.
To merge two such lists, we can do a normal merge, until we reach the point
were we either compare an element (say a nut) against a list of undifferen-
tiated bolts (which requires a simple pass through the list), or else a set of
undifferentiated nuts and another set of undifferentiated bolts. This would
require a recursive call to the sorting program.
Unfortunately, in the worst case, one sublist will contain nuts all smaller than
bolts, and the other will contain bolts all smaller than nuts. Thus, merging the
two sublists will require solving two more subproblems of size n/2. In that
case, the of this algorithm (and any similar divide-and-conquer algorithm) is:

T (n) = 4T (n/2) + O(n) = O(n2).

7.14 (a) For 3 values, use the following series of if statements (based on the
decision tree concept of Figure 8.16, and optimized for swaps).

void Sort3(ELEM A) { // Assume A has 3 elements
if (A[1] < A[0])

if (A[2] < A[0])
if (A[2] < A[1]) // ZYX

swap(A[0], A[2]);
else { // YZX

swap(A[0], A[1]);
swap(A[1], A[2]);

}
else // YXZ

swap(A[0], A[1]);
else

if (A[2] < A[1])
if (A[2] < A[1]) { // ZXY

swap(A[0], A[2]);
swap(A[1], A[2]);

}
else // XZY

swap(A[1], A[2]);
else // XYZ -- Do nothing

}

Cost:

51

Best case: 2 compares.
Avg case: 16/6 = 2 2/3 compares.
Worst case: 3 compares.

(b) Doing a similar approach of building a decision tree for 5 numbers
is somewhat overwhelming since there are 120 permutations. A pretty
good algorithm can be had be building on Sort3 from part (a). Use Sort3
to sort the first 3 numbers. Then, add the 4th number in 2 comparisons
by checking the middle of the first 3, and then checking the 1st or 3rd as
appropriate. The last number can be added using at most 3 comparisons
by checking the 2nd of the first 4 numbers, then (at worst) the 3rd and
4th. Thus, the total number of comparisons is at most 8. The best case
is 6, the average case is 7 4/15 (2 2/3 for the first 3 numbers, exactly 2
for the 4th number and 2 3/5 for the 5th number).
It is possible to do this in 7 comparisons, worst case. Seek Knuth,
Volume 3.

(c) Call the algorithm from part (b) Sort5. Use it to sort the first 5 num-
bers in at most 8 comparisons. Now, add in the sixth number by first
checking the 3rd position, and then 2 more comparisons as necessary.
Likewise, number 7 can be added with at most 3 comparisons and num-
ber 8 needs at most 3 comparisons. So, the worst case is 17. The best
case is 13.
There is an algorithm that can do this in 16 comparisons for the worst
case. See Knuth, Volume 3.

7.15 For this problem, a Binsort is ideal. In fact, we can keep the memory down
to only 30,000 bits by storing a single bit for each value in the range. Read
the numbers in sequential order and mark the ith bit for a number i. At the
end, merely write out the numbers, in order, whose bits are marked.

7.16 (a) This can be done directly in Θ(n) worst case time without sorting.
(b) This can be done directly in Θ(n) worst case time without sorting.
(c) This can be done directly in Θ(n) worst case time without sorting.
(d) Sorting allows this to be done in Θ(n log n) time by first sorting and

then selecting the value in the middle position. However, it is possible
to use a variation on Quicksort to do this in Θ(n) time in the average
case. (Most students at this level will not be familiar with that median
selection algorithm, however).

(e) This is best done by sorting, then making a pass through the array keep-
ing track of the item seen the most times.

7.17 Consider Mergesort in terms of a full binary tree. Each call to Mergesort
either results in two new calls to Mergesort, or else a single call to Insertion

52 Chap. 7 Internal Sorting

Sort. Thus, the calls to Insertion Sort are equivalent to the leaf nodes of a full
binary tree. We know from the Full Binary Tree Theorem that the number of
leaf nodes in a full binary tree of n nodes is �n/2�. Thus, if there are n calls
to Mergesort, there will be �n/2� calls to Insertion Sort.

7.18 LList<int> mergesort(LList<int> inlist) {
LList<int> templist[2];
if (inlist.length() <= 1) return inlist;
inlist.setStart();
int curr = 0;
// Split the elements among two sublists lists
while (!inlist.isEmpty()) {

int item;
inlist.remove(item);
templist[curr].append(item);
curr = (curr + 1) % 2;

}
mergesort(templist[0]);
mergesort(templist[1]);
// Now, merge the lists together
templist[0].setFirst();
templist[1].setFirst();
while (!templist[0].isEmpty() ||

!templist[1].isEmpty()) {
if (templist[0].isEmpty()) {

templist[1].remove(item);
inlist.append(item);

}
else if (templist[1].isEmpty()) {

templist[0].remove(item);
inlist.append(item);

}
else if (templist[0].currValue() <

templist[1].currValue()) {
item = templist[0].remove();
inlist.append(item);

}
else {

item = templist[1].remove();
inlist.append(item);

}
}
return inlist;

}

53

7.19 There are n possible choices for the position of a given element in the array.
Any search algorithm based on comparisons can be modeled using a decision
tree. The tree must have at least n leaf nodes, one for each of the possible
choices for solution. A tree with n leaves must have depth at least log n.
Thus, any search algorithm based on comparisons requires at least log n work
in the worst case.

8

File Processing and External
Sorting

8.1 Clearly the prices continue to change. But, the principles remain the same.
8.2 The first question is How many tracks are required by the file? A track holds

144 ∗ .5K = 72K. Thus, the file requires 5 tracks. The time to read a track
is seek time to the track + latency time + (interleaf factor × rotation time).
Average seek time is defined to be 80 ms. Latency time is 0.5 ∗ 16.7 ms, and
track rotation time is 16.7 ms for a total time to read the first track of

80 + 4.5 ∗ 16.7 ≈ 155 ms.

Seek time for the remaining four tracks is defined to be 20 ms (since they are
adjacent), with identical latency and read times. Thus, the total file read time
is

155 + 4(20 + 4.5 ∗ 16.7) ≈ 536 ms

which is pretty slow by today’s standards.
8.3 The expected time to read one track at random was given in the previous

exercise as 80 + 4.5 ∗ 16.7 = 155 ms.
The expected time to read one sector at random is seek time plus latency plus
the time to read one sector (which takes up 1/144 of a track). Thus, the time
required is 80 + .5 ∗ 16.7 + 1/144 ∗ 16.7 ≈ 88.5 ms.
To read one byte, we save the sector read time of 1/144∗16.7 which is about
.1 ms., which is insignificant.

8.4 This is quite similar to Exercise 8.2, but with more modern equipment. One
track holds 31.5K bytes, so the file requires 4 tracks plus 4 sectors of a fifth
track. Seek time to the first track is 3 ms + 2100/3 ∗ 0.08 ms ≈ 59ms.

54

55

Latency and read time together require 3.5 ∗ 8.33 ms. Thus, the time to
read the first track is about 88 ms. The time to read the next three tracks is
3 + 2100/3 ∗ 0.08 + 3.5 ∗ 8.33 ≈ 32.2 ms. The last track takes just as long
to read since it requires three rotations to read the 4 blocks. Thus, the total
time required is 88 + 32.2 ∗ 4 = 216.8 ms.

8.5 (a) Since a track holds 128Kb, the file requires 80 contiguous tracks. The
interleave factor is three; rotational delay is one-half rotation; and the
time to do one rotation at 5400 rpm is 11.11 ms. Thus, the time to read
a track (once we have done the seek) is 3.5 ∗ 11.11 ≈ 33.9 ms. Since
the random seek time is defined to be 9.5 ms., the track-to-track seek
time is defined to be 2.2 ms., and the tracks are all adjacent, the total
time required is

9.5 + 33.9 + 79(2.2 + 33.9) ≈ 2895.3 ms.

(b) The file now requires 2560 clusters, and each cluster requires a random
seek. Since the interleave factor is 3, the angular spread for a cluster is
22 sectors. Since a track holds 256 sectors, the time to read a cluster
(once the seek has been performed is the rotational delay (one half of a
rotation) plus 22/256 of a rotation. Thus, the total cost is

2560(9.5 + 11.11(0.5 + 22/256)) ≈ 40, 985 ms.

This is far more expensive than storing the file in adjacent tracks.
8.6 Considering all of the possible cases for a disk with n tracks, the first track

could be at any position from 1 to n, and the second track could be at any
position from 1 to n. If the first track is i and the second is j, then the distance
is |j − i|. Alternatively, in n of the n2 possible cases the distance is 0, and
otherwise we can count only the cases where i < j and multiply the sum by
two to account for the cases where j < i. Thus, we get the average cost as

2
∑n

i=1

∑n
j=i+1(j − i)
n2

=

2
∑n−1

i=1

∑i
j=1(j)

n2
=

2
∑n−1

i=1 (i2 + i)/2
n2

=

1
n2

(
n−1∑
i=1

i2 + i) =

56 Chap. 8 File Processing and External Sorting

1
n2

(
2n3 + 3n2 + n

6
+

3n2 + 3n
6

) =

2n3 + 6n2 + 4n
6n2

≈ n/3.

8.7 The batch method is more efficient when enough sectors are visited to make
processing the whole file in sequential order more efficient. Since the file
consists of 10,000 sectors, it requires 50,000 ms to process sequentially. This
is equivalent to random access to 1000 sectors. Thus, if the set of queries
requires processing more than 1000 sectors, it would be more efficient to
process the entire file in batch mode.

8.8 (a) 10 4 6 8 5
(b) 5 (6 times) 3 (3 times) 4 (1 time) 6 (1 time) 8 (1 time)
(c) 5 (6 times) 3 (3 times) 9 (3 times) 2 (3 times) 8 (2 times)
(d) 5 8 6 4 10

8.9 Since working memory is 1MB and the block size is 1KB, the number of
blocks in working memory is 1024. The expected runlength is 2MB, since
replacement selection will, on average, produce runs that are twice the mem-
ory size. 1024 runs can be merged in a single multiway merge operation.
Thus, the largest expected file size for a single pass of multiway merge is 2
Gigabytes.

8.10 Since working memory is 256KB and the blocksize is 8KB, the working
memory holds 32 blocks. The expected runlength is 512KB, so a single pass
of multiway merge forms runs of length 16MB. The second pass then forms
a run as large as 512MB.

8.11 This proposition is TRUE. If a record X is preceded by less than M keys
larger than it, then X will gain entry into the heap prior to any of the keys
larger than it being output. Thus, X will be output. Since this condition holds
for all records, all records are output in sorted order.

8.12 As illustrated by Exercise 8.9, reasonable use of memory should allow this
file to be sorted after a single execution of replacement selection followed
by a single execution of multi-way merge. In practice, this means reading
and writing every record twice, with random block access. If average block
access time is estimated to be 10 ms, and the file consists of 4K blocks,
the file has around 25,000 blocks. Thus, the entire operation takes about
4 ∗ 25000 ∗ .01 = 1000 sec which is a bit over 15 minutes. This is not
unreasonable in comparison with the third line of Table 9.12, considering
that disks are now faster than that used for the table.

8.13 (a) Speeding up the CPU will have little effect on an external sorting oper-
ation.

57

(b) Cutting the disk I/O time will substantially improve the external sorting
time. A reasonable estimate is that cutting disk I/O time in half will cut
the sorting time by around 1/3.

(c) Main memory access time will not help a great deal, since disk I/O
is the probable bottleneck. However, for the sorting operation, main
memory access time is in fact more of a bottleneck than CPU speed, so
it should help more to speed the memory than to speed the CPU.

(d) Increasing the memory size by a factor of two will increase the file size
that can be processed by a single pass of multi-way merge by a factor
of four, in two passes by a factor of eight, and so no. If this leads
to a reduction in the number of passes need to process the file, then
a substantial time savings will be realized. This could easily cut the
processing time by 1/3 or 1/4 since 2 or 3 passes of multiway merge
under the initial conditions are reasonable to expect.

8.14 How to approach this depends on the form of the records. If they have rela-
tively small, fixed-length keys, the best solution would be to make a simple
linear index file, as discussed in Chapter 11. Simply make a pass through the
original record file and store in the index file for each record the key and a
pointer to the original record. Then, sort the index file.
If the records to be sorted have a large, variable length key, the index file
approach will not work. In this case, it is possible to sort the file directly. We
must modify both replacement selection and multiway merge. For replace-
ment selection, we should still use the concept of an index in the heap. The
heap stores fixed length pointers to a pool of variable length records read into
memory. To compare two elements in the heap, go back to the records in the
pool. In this way the heap can be manipulated without disturbing the pool.
As records are processed, read them out of the pool. Compacting the pool or
some similar memory management concept (Chapter 12) will be necessary.
For multiway merge, simply read in as many records as will fit into each
run’s memory space, and refill as necessary. The merge process itself remains
unchanged, except that a suitable compare function will be required.

9

Searching

9.1 The graph shows a straight line from (n+1)/2 when p0 = 0 to n when p0 =
1. Thus, the growth rate in the cost for a search is linear as the probability of
an unsuccessful search increases.

9.2 int dictsrch(int array[], int K, int left, int right,
int low, int high) {

// left and right are array bounds. low and high are
// key range bounds. Return position of the element
// in array (if any) with value K
int i;
double fract;
int l = left-1;
int r = right+1; // l and r beyond bounds of array
if (K == high) // Special case

if (K == array[right}) return right;
else return UNSUCCESSFUL;

while (r != l+1) { // Stop when l and r meet
// Compute where in the current range K will be
fract = (double)(K - low)/(double)(high - low);
// Set pos to check at that fraction of bounds
i = l+1 + (int)(fract * (double)(r - l - 1));
// i will be between l and r, non-inclusive,
// so progress must be made
// Now, check that position and update ranges
if (K < array[i])

{ r = i; high = array[i]; }
if (K == array[i]) return i;
if (K > array[i])

{ l = i; low = array[i]; }
}
return UNSUCCESSFUL; // key value not found

58

59

}

9.3 At each step, the exponent, call it x, is cut in half. This can only happen log x
times. Of course, x = log n. Thus, the total cost is O(log log n).

9.4 The partition and findpivot functions remain the same.

template <class Elem, class Comp>
int findK(Elem A[], int i, int j, Elem K) {

if (j <= i) return i; // Don’t sort 0 or 1 Elem
int pivotindex = findpivot(A, i, j);
swap(A, pivotindex, j); // Put pivot at end
// k will be the first position in the right subarray
int k = partition<Elem,Comp>(A, i-1, j, A[j]);
swap(A, k, j); // Put pivot in place
if (Comp.eq(A[k], K)) return k;
if (Comp.gt(A[k], K))

return findK<Elem,Comp>(A, i, k-1, K);
else return findK<Elem,Comp>(A, k+1, j, K);

}

9.5 Binary search is faster since the self-organizing search cost grows faster.
Note, however, that self-organizing search may be faster when the time to
sort prior to binary search is an important factor.

9.6 Count: H G E D C A B F; the number of searches is 53.
Move-to-front: G H E C D A B F; the number of searches is 59.
Transpose: A B D E H G C F; the number of searches is 95.

9.7 For count, visit each record in turn in the order that will visit the last element
each time. For example, if for the values 0 to 7 stored in ascending order
initially, visit them in reverse order (from 7 down to 0).
For Move-to-Front, again visit in reverse order.
For Transpose, alternately visit the last two elements, as described in the
book.

9.8 template <class Elem>
void FreqCount(Elem A[], int count[]) {

// Assume that array is empty to begin with
int n = 0;
while ((int val = GETNEXT()) != DONE) {

for (i=0; i<n; i++)
if (A[i] == val) break;

if (i == n) {
A[n] = val;
count[n++] = 1;

}

60 Chap. 9 Searching

else {
count[i]++;
while ((i > 0) && (count[i] > count[i-1])) {

swap(A[i], A[i-1]);
swap(count[i], count[i-1]);

}
}

}
}

9.9 template <class Elem>
void MoveToFront(Elem A[]) {

// Assume that array is empty to begin with
int n = 0;
while ((int val = GETNEXT()) != DONE) {

for (i=0; i<n; i++)
if (A[i] == val) break;

if (i == n) A[n] = val;
while (i > 0)

swap(A[i], A[i-1]);
}

}
9.10 template <class Elem>

void tanspose(Elem A[]) {
// Assume that array is empty to begin with
int n = 0;
while ((int val = GETNEXT()) != DONE) {

for (i=0; i<n; i++)
if (A[i] == val) break;

if (i == n) A[n] = val;
if (i != 0)

swap(A[i], A[i-1]);
}

}
9.11 // in1 and in2 are input bit vectors, out is output bit

// vector; n is length of bit vector in ints. Assume
// the length of the bit vectors are always a number
// of ints.
void union(int* in1, int* in2, int* out, int n) {

for (int i=0; i<n; i++)
out[i] = in1[i] | in2[i];

}

// in1 and in2 are input bit vectors, out is output bit
// vector; n is length of bit vector in ints. Assume

61

// the length of the bit vectors are alwasy a number
// of ints.
void inter(int* in1, int* in2, int* out, int n) {

for (int i=0; i<n; i++)
out[i] = in1[i] & in2[i];

}

// in1 and in2 are input bit vectors, out is output bit
// vector; n is length of bit vector in ints. Assume
// the length of the bit vectors are alwasy a number
// of ints.
void diff(int* in1, int* in2, int* out, int n) {

for (int i=0; i<n; i++)
out[i] = in1[i] & ˜in2[i];

}

9.12 (a) The probability p can be computed as follows:

p = 1 − p = 1 − 364 ∗ 363 ∗ · · · ∗ 343
365 ∗ 365 ∗ · · · ∗ 365

≈ 50.7%.

My simulation program give 50.5%.
(b) My simulation program gives 64.4%
(c) Simplify this problem by assuming that each month has equal prob-

ability for having an individual’s birthday. Five students is sufficient
– in fact, for five students the probability of a match is over 60% My
simulation program gives 42.9% for 4 people, and 62.2% for 5 people.

9.13 (a) No – if K ≥ n2 then the result will be out of the range of the hash table.
(b) Yes –but is the worst possible hash function since all values hash to the

same location.
(c) No – it is not possible to recover the location of the element once it is

stored using a random number.
(d) Yes – this may be a reasonable hash function, if K tends to be much

larger than n.
9.14 The table will store values in order:

Slot: 0 1 2 3 4 5 6
Value: 9 3 2 12

Slot 0 and 1 will be filled next with probability 1/7. Slot 6 will be filled next
with probability 5/7.

9.15 Using a hash table of size 101, here are the results.
(a) 20
(b) 71

62 Chap. 9 Searching

(c) 37

9.16 Key: 2 8 31 20 19 18 53 27
H1: 2 8 5 7 6 5 1 1
H2: 3 9 1 1 2 3 1 5

Result of inserting:

2 → 2 OK
8 → 8 OK
31 → 5 OK
20 → 7 OK
19 → 6 OK
18 → 5 Collision. So, try 5+3 = 8. Collision.

Then 5+6 = 11. OK
53 → 1 OK
27 → 1 Collision. So, try 1+5 = 6. Collision.

Then 1+5+5 = 11. Collision.
Then 1+5+5+5 % 13 = 3. OK

Final table:

Position: 0 1 2 3 4 5 6 7 8 9 10 11 12
Value: 53 2 27 31 19 20 8 18

9.17 // Search for and delete the record with Key K
template <class Key, class Elem, class KEComp,

class EEComp>
bool hashdict<Key, Elem, KEComp, EEComp>::
hashDelete(const Key& K, Elem& e) const {

int home; // Home position for K
// Initial posit on probe sequence
int pos = home = h(K);
for (int i = 1; !KEComp::eq(K, HT[pos]) &&

!EEComp::eq(EMPTY, HT[pos]); i++)
// Next on probe sequence
pos = (home + p(K, i)) % M;

if (KEComp::eq(K, HT[pos])) { // Found it
e = HT[pos];
HT[pos] = TOMBSTONE; // Delete it
return true;

}
else return false; // K not in hash table

}

63

// Insert e into hash table HT
template <class Key, class Elem, class KEComp,

class EEComp>
bool hashdict<Key, Elem, KEComp, EEComp>::
hashInsert(const Elem& e) {

int home; // Home position for e
int pos = home = h(getkey(e)); // Init probe sequence
for (int i=1; (!(EEComp::eq(EMPTY, HT[pos])) &&

!(EEComp::eq(TOMBSTONE, HT[pos]))); i++) {
pos = (home + p(getkey(e),i)) % M; // Follow probes
if (EEComp::eq(e, HT[pos])) return false; // Dup

}
HT[pos] = e; // Insert e
return true;

}

The search function need not be changed at all, since tombstone slots should
be treated as though they are full.

9.18 This “random” probe sequence yields identical results to using linear probing
with a constant skip factor of 2. In other words, if an element has its home
slot at position 2, it will follow the same probe sequence as an element whose
home slot is at position 0 and probed one time to slot 2. Thus, we must
be careful that the random permutation does not have properties of regular
behavior as shown by this series.

10

Indexing

10.1 (a) A record in the linear index refers to a block of sorted data records.
Assuming that the linear index stores a key and a 4 byte block number,
the index can hold information for 32K blocks, for a total file size of
32MB, or 4M records.

(b) This second level index allows the first level index to be 128 blocks,
or 16K records long. Thus, the record file can contain 16K blocks, or
16MB, which is 2M records. While this is smaller than the situation in
(a), there is only a very small amount of main memory in use.

10.2 (a) Assuming that the linear index stores a key and a 4 byte block num-
ber, the index can hold information for 256K blocks. Assume that a
block hold �4096/68� = 60 records. Thus, the data file can hold up to
15,728,640 records.

(b) This second level index allows the first level index to be 1024 blocks, or
.5M records long. Thus, the record file can contain .5M blocks, which
is 30M records.

10.3 No change needs to be made, since the data value itself is not used by the
binary search function, only the key which is stored in the index.

10.4 The linear index will store the key values in sorted order, with each key
having a pointer to its string.

10.5 (a) sec primary
key index index key

DEER 0 0 2398
DUCK 4 1 3456
FROG 7 2 8133
GOAT 9 3 9737

64

65

4 2936
5 7183
6 9279

7 1111
8 7186

9 7739
(b) sec primary Next

key index index key

DEER 0 0 2398 1
DUCK 4 1 3456 2
FROG 7 2 8133 3
GOAT 9 3 9737 -1

4 2936 5
5 7183 6
6 9279 -1
7 1111 8
8 7186 -1
9 7739 -1

10.6 ISAM is space efficient, more so than the B-tree. If few records are inserted,
the ISAM system will work well. ISAM will continue to work well even if a
number of records are deleted.

10.7 The 2-3 tree of k levels will have the fewest nodes if no parent has three
children. We know from Chapter 5 that the complete binary tree with k
levels has at least 2k−1 leaves.
The 2-3 tree of k levels will have the most nodes if every parent has three
children. A 3-ary tree with k levels can have as many as 3k−1 nodes.

66 Chap. 10 Indexing

10.8 33
/\

------------- --------------
| |
18 48
/\ /\

---- -------- ---- ----
| | | |
12 23/30 46 52
/\ / | \ /\ /\

-- -- ---- | --- --- --- -- --
| | | | | | | | |
10 15 20/21 24 31 45 47 50 55

10.9 M
------------/ \-------------
| |
D/I S
/|\ / \

-------- | -------- ----- -----
| | | | |
B G K P U
/ \ / \ / \ / \ / \

-- -- -- -- -- -- -- -- -- --
| | | | | | | | | |
A C E H J L N/O R T W

10.10 I/P
/|\

---------------------- | -------------------
| | |
D M U
/ \ / \ / \

--- --- ----- --- ----- ---
| | | | | |
C G K/L O S W
/ \ / \ /|\ / \ / \ / \
- - -- -- --- | --- - - -- -- - -
| | | | | | | | | | | | |
A/B C D/E G/H I/J K L M/N O P/R S/T U W

67

10.11 24/48
/ | \

------- | ------------
| | |

same 33/45 55
/ | \ /\

--- | --- -- --
| | | | |

30/31 38 47 50/52 60

10.12 18/33
/ | \

--------------------------- | -----------
| | |
4/10 23 same
/ | \ /\

----- | ------ ------- ---
| | | | |

1/2/3 4/5/6 10/12/15 18/19/20/21/22 23/30/31

10.13 23/33
/ | \

---------- | ----------
| | |

10/12/15/21/22 23/30/31 45/47/48/50/52

10.14 ---------------------- IMS -------------------
	------		------	

---- DG ---- -- K -- --- P --- ---- U ----
| | | | | | | | |
| | | | | | | | |
ABC DE GH IJ KL MNO PR ST UW

10.15

min max
1 0 15
2 16 1500
3 800 150,000
4 40,000 15,000,000
5 2,000,000 1,500,000,000

68 Chap. 10 Indexing

10.16

min max
1 0 50
2 50 2500
3 1250 125,000
4 31,250 6,250,000
5 781,250 312,500,000

11

Graphs

11.1 Base Case: A graph with 1 vertex has 1(1 − 1)/2 = 0 edges. Thus, the
theorem holds in the base case.
Induction Hypothesis: A graph with n vertices has at most n(n − 1)/2
edges.
Induction Step: Add a new vertex to a graph of n vertices. The most edges
that can be added is n, by connecting the new vertex to each of the old ver-
tices, with the maximum number of edges occurring in the complete graph.
Thus,

E(n + 1) ≥ E(n) + n ≥ n(n− 1)/2 + n = (n2 + n)/2 = n(n + 1)/2.

By the principle of Mathematical Induction, the theorem is correct.
11.2 (a) For a graph of n vertices to be connected, clearly at least |V| − 1 edges

are required since each edge serves to add one more vertex to the con-
nected component. No cycles means that no additional edges are given,
yielding exactly |V| − 1 edges.

(b) Proof by contradiction. If the graph is not connected, then by definition
there are at least two components. At least one of these components has
i vertices with i or more edges (by the pigeonhole principle). Given i−1
edges to connect the component, the ith edge must then directly connect
two of the vertices already connected through the other edges. The
result is a cycle. Thus, to avoid a cycle, the graph must be connected.

69

70 Chap. 11 Graphs

11.3 (a) 1 2 3 4 5 6

1 | 10 20 2 |
2 | 10 3 5 |
3 | 3 15 |
4 | 20 5 11 10 |
5 | 15 11 3 |
6 | 2 10 3 |

(b) 1 -> 2(10) -> 4(20) -> 6(2) -> \
2 -> 1(10) -> 3(3) -> 4(5) -> \
3 -> 2(3) -> 5(15) -> \
4 -> 1(20) -> 2(5) -> 5(11) -> 6(10) -> \
5 -> 3(15) -> 4(11) -> 6(3) -> \
6 -> 1(2) -> 4(10) -> 5(3) -> \

(c) The adjacency matrix requires 36 × 2 = 72 bytes. The adjacency list
requires 24 × 4 + 18 × (2 + 2) = 168 bytes. Thus, the matrix is
considerably more efficient in this case.

11.4 1 -> 2 6 <-- 4
| ˆ
V |
3 -----> 5

11.5
1 -> 2 -> 3
|\
V \
6 V

4 -> 5

11.6 Add the following at the end of algorithm on Page 206:

// Check for cycles
for (v=0; v<G.n(); v++)

if (Count[v] != 0)
cout << "This vertex is part of a cycle: "

<< v << "\n";

11.7 In the worst case, and algorithm for finding the shortest path between a given
pair of vertices i and j will have to visit every node in the graph. In the
process of visiting every node in the graph, we can determine the shortest
paths from the start vertex to all the nodes. Thus, in the worst case, the

71

cost for finding all of the shortest paths is no worse than the cost to find the
shortest path between a specified pair of vertices.

11.8

1 2 3 4 5 6
Initial ∞ ∞ ∞ 0 ∞ ∞
Process 4 20 5 ∞ 0 11 10
Process 2 15 5 8 0 11 10
Process 3 15 5 8 0 11 10
Process 6 12 5 8 0 11 10
Process 5 12 5 8 0 11 10
Process 1 12 5 8 0 11 10

11.9 Store at each position of array D both the distance, and the neighbor through
which the vertex is reached (the vertex’s parent in the DFS tree). At the end,
print out the path, in reverse order back to the source.

// Compute shortest path distances
void Dijkstra(Graph* G, Rec D[], int s) {

int i, v, w;
for (int i=0; i<G->n(); i++) // Initialize

D[i].dist = INFINITY;
D[s].dist = 0; D[s].par = -1; // This is the root
for (i=0; i<G->n(); i++) { // Process vertices

v = minVertex(G, D);
if (D[v].dist == INFINITY) return; // Unreachable
G->setMark(v, VISITED);
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w].dist > (D[v].dist + G->weight(v, w))) {
D[w].dist = D[v].dist + G->weight(v, w);
D[w].par = v; // w’s parent in the DFS is v

}
}
// Print out the paths (in reverse order)
for (i=0; i<G->n(); i++) {

cout << "Path for " << i << ": ";
for (t=i; D[t].par != -1; t = D[t].par)

cout << t << " ";
cout << s << "\n";

}
}

11.10 Here is a pseudo-code sketch of the algorithm. Converting to C++is quite
easy since the code is given in the book as described here.

72 Chap. 11 Graphs

INITIALIZE array Count to 0’s;
FOR every edge (v, w) // Similar to BFS topo sort

Count[w]++;
IF the number of vertices with zero Count is not 1

THEN return "No Root";
ELSE {

do DFS search from the vertex with zero Count;
Verify that every vertex has been marked;

}

11.11 The following algorithm is O(|V|+ |E|). It is a minor modification on DFS.
Unfortunately, it will not detect a cycle if the input is not a DAG.

// V is the root of the DAG.
int DAGdepth(Graph& G, int v, int depth) {// DFS

int currmax = depth;
for (Edge w = G.first(v); G.isEdge(w); w = G.next(w))

currmax = MAX(DAGdepth(G, G.v2(w), depth+1),
currmax);

return currmax;
}

11.12 To solve this problem, simply run the BFS topological sort algorithm. If
there are any cycles, then some vertices will remain in the queue.

11.13 To solve this problem, simply run the standard DFS algorithm, returning the
fact that there is a cycle if any already visited vertex is encountered (ignoring
the edge returning to the vertex that you just came from). This algorithm has
has time Θ(|V |) because the graph can only have Θ(|V |− 1) edges if it does
not contain a cycle, and any existing cycle will be detected in at most |V |
edge visits.

11.14 Simply reverse the direction of all the edges, then run the standard algorithm
for Single-Source Shortest Paths.

11.15 O-paths:

2 3 4 5 6
1 10 x 20 x 2
2 3 5 x x
3 x 15 x
4 11 10
5 3

1-paths:

73

2 3 4 5 6
1 10 x 20 x 2
2 3 5 x 12
3 x 15 x
4 11 10
5 3

2-paths:

2 3 4 5 6
1 10 13 15 x 2
2 3 5 x 12
3 8 15 15
4 11 10
5 3

3-paths:

2 3 4 5 6
1 10 13 15 x 2
2 3 5 18 12
3 8 15 x
4 11 10
5 3

4-paths:

2 3 4 5 6
1 10 13 15 31 2
2 3 5 16 12
3 8 15 15
4 11 10
5 3

5-paths:

2 3 4 5 6
1 10 13 15 31 2
2 3 5 16 12
3 8 15 15
4 11 10
5 3

6-paths:

74 Chap. 11 Graphs

2 3 4 5 6
1 10 13 12 6 2
2 3 5 16 12
3 8 15 15
4 11 10
5 3

11.16 The problem is that each entry of the array is set independently, forcing pro-
cessing of the adjacency list repeatedly from the beginning. This illustrates
the dangers involved in thoughtlessly using an inefficient access member to a
data structure implementation. A better solution is to process the actual edges
within the graph. In other words, for each vertex, visit its adjacency list. Set
the shortest-paths array by setting the values associated with that edge. If the
array is initialized with values of ∞, then any vertices not connected by an
edge will retain that value.

11.17 Clearly the algorithm requires at least Ω(n2) time since this much informa-
tion must be produced in the end. A stronger lower bound is difficult to
obtain, and certainly beyond the ability of students at this level. The primary
goal of this exercise is for the students to demonstrate understanding of the
concept of a lower bound on a problem, in a context where they will not be
able to make the lower bound and the algorithm’s upper bound meet.

11.18 (3, 2) (2, 4) (2, 1) (1, 6) (6, 5).
Alternatively, (3, 2) (2, 4) (4, 6) (6, 1) (6, 5).

11.19 1 2 3 4 5 6
Initial -1 -1 -1 -1 -1 -1
(1, 6) -1 -1 -1 -1 -1 1
(2, 3) -1 -1 2 -1 -1 1 (Alt: (6, 5))
(6, 5) -1 -1 2 -1 1 1
(1, 2) -1 1 2 -1 1 1 (Alt: (6, 4))
(6, 4) -1 1 2 1 1 1

11.20 Simply use any Minimal Cost Spanning Tree algorithm, but alway pick the
greatest edge among the available choices instead of the least edge.

11.21 The two algorithms can yield different spanning trees only if they make dif-
ferent choices regarding equal-valued edges. For example, the answers to
Exercises 7.17 and 7.18 indicate that choices can be made, leading to differ-
ent spanning trees with the same total value.

11.22 The proof that Prim’s algorithm is correct serves as a proof for this theorem,
since, when the edge values are distinct, Prim’s algorithm has only one series
of alternatives, leading to one unique tree.

75

11.23 If all of the edges are negative, then a smaller number is obtained by picking
more edges than necessary to span the graph. It is not clear what the desired
answer should be – (1) the smallest value that spans the graph, even if it is not
a tree, or (2)the smallest value with the minimum number of edges required
to span the tree. If (1), then neither algorithm works since both will give
spanning trees, not the graph that spans but with least value. If (2), then the
algorithms work.

11.24 Dijkstra’s algorithm does yield a spanning tree. However, this spanning tree
is not necessarily of least cost. Consider the example:

A
4 / \ 3
/ \
B-----C

2

The MST is (A, C) (B, C) for cost 5. But, if starting at A, Dijkstra’s algorithm
will pick (A, C) (A, B) since by that way B is closer.

12

Lists and Arrays Revisited

12.1 Here is the final Skip List.

head 2 5 20 25 26 30 31

+------> +--> +--> +--> +--> +--> +--> /

+-----------> +-------> +--> /

+-----------> +------------> /

+--------------------------> /

12.2 For each even numbered node i, i can be written as j2k for the largest possi-
ble integer k. For example, 8 is 1 ∗ 23 and 12 is 3 ∗ 22. Each even numbered
node j2k stores a pointer to (j +1)2k. This makes access time 2 log n+1 in
the worst case. Odd numbered nodes i can point to node i + 2 to speed the
search somewhat.

12.3 The average number of pointers for a Skip List with n nodes is 2n (not count-
ing the header).

12.4 template <class Key, class Elem, class KEComp,
class EEComp>

Elem SkipList::remove(Key K) { // Remove from Skip List
SkipNode<Elem>* x = head; // Start at header node
SkipNode<Elem>* update[level]; // Tracks level ends
// Search for element prior to Value
for(int i=level; i>=0; i--) {

while((x->forward[i] != NULL) &&
(KEComp.gt(K, x->forward[i]->value)))

x = x->forward[i];

76

77

update[i] = x; // Keep track of end at level i
}
if (!KEcomp.eq(K, x->forward[0]->value))

return; // Value not in list
x = forward[0]; // Pointing at node to delete
for (i=0; i<=x->level; i++) // Fix up the pointers

update[i]->forward[i] = x->forward[i];
Elem temp = x->value;
delete x;
return temp;

}

12.5 This is something of a trick question. There is no good access method for
finding the ith node, other than to count over i pointers at level 0.

template <class Key, class Elem, class KEComp,
class EEComp>

SkipNode<Elem>* SkipList::ithnode(int i) {
SkipNode<Elem>* curr = head;
for(int j=0; j<i; j++) {

if (curr->forward[0] == NULL)
return NULL; // No ith node in list

curr = curr->forward[0];
}
return curr;

}

12.6 A regular array cell requires 8 bytes (a value. A sparse matrix cell requires
4 pointers, two indices and a value for a total of 28 bytes. If the array con-
tains more than 8/28 or 29% non-zero-valued elements, then the regular array
representation will be more space efficient. Note that this ignores the space
required for the row and column headers, which will be 10(M + N) for and
M ×N matrix.

12.7 \\ Written so that tail returns the tail of the list
MLnode* reverse(MLnode* rt) {

if (rt == NULL) return NULL;
rt->child = reverse(rt->child);
if (rt->next == NULL) return rt; // Only elem on list
MLnode* newrt = reverse(rt->next);
rt->next->next = rt; // rt->next still points at

// original next node
// (which is now tail of
// reversed list)

rt->next = NULL;
return newrt;

78 Chap. 12 Lists and Arrays Revisited

}
12.8 void SparseMatrix insert(int r, int c, int val) {

for (SMhead* crow = row;
(crow->index <= r) && (crow->next != NULL);
crow = crow->next); // First, find the row

if (crow->index != r) // Make a new row
crow->next = new SMhead(r, crow->next, NULL);

for (SMhead* ccol = col;
(ccol->index <= c) && (ccol->next != NULL);
ccol = ccol->next); // Now, find the column

if (ccol->index != c) // Make a new row
ccol->next = new SMhead(c, ccol->next, NULL);

// Now, put in its row;
if ((crow->first == NULL) || (crow->first->col > c))

SMElem* temp = crow->first =
new SMElem(val, crow->first, NULL, NULL, NULL);

else {
for (SMElem* temp = crow->first;

(temp->col <= col) && (temp->nextcol != NULL);
temp = temp->nextcol);

if (temp->col == c) { // Replace entry value
temp->value = val;
return;

}
temp->nextcol =

new SMElem(val, temp->nextcol, temp, NULL, NULL);
temp = temp->nextcol;
temp->nextcol->prevcol = temp;

}
// Finally, put in its column;
if ((ccol->first == NULL) ||

(ccol->first->row > c)) {
temp->nextrow = ccol->first;
temp->prevcol = NULL;
ccol->first = temp;

}
else {

for (SMElem* tempc = ccol->first;
(tempc->row <= row) &&
(tempc->nextrow != NULL);
tempc = tempc->nextrow);

temp->prevrow = tempc;
temp->nextrow = tempc->nextrow;
tempc->nextrow->prevrow = temp;

79

tempc->nextrow = temp;
}

}

12.9 void SparseMatrix remove(int r, int c) {
// First, find the row
for (SMhead* crow = row;

(crow->index <= r) && (crow->next != NULL);
crow = crow->next);

if (crow->index != r) ERROR; // Not in array
// Now, find the column
for (SMhead* ccol = c;

(ccol->index <= c) && (ccol->next != NULL);
ccol = ccol >next);

if (ccol->index != c) ERROR; // Not in array
// Now, find the element
for (SMElem* temp = crow->first;

(temp != NULL) && (temp->col != c);
temp = temp->nextcol);

if (temp->col != c) ERROR; // Not in array
// Now, detatch the element
if (temp->prevrow == NULL) {

ccol->first = temp->nextrow;
if (temp->nextrow != NULL)

temp->nextrow->prevrow = NULL;
}
else {

temp->prevrow->nextrow = temp->nextrow;
if (temp->nextrow != NULL)

temp->nextrow->prevrow = temp->prevrow;
}
if (temp->prevcol == NULL) {

crow->first = temp->nextcol;
if (temp->nextcol != NULL)

temp->nextcol->prevcol = NULL;
}
else {

temp->prevcol->nextcol = temp->nextcol;
if (temp->nextcol != NULL)

temp->nextcol->prevcol = temp->prevcol;
}

}

12.10 Transposing a sparse matrix is fairly straightforward. Here is pseudocode:

void SparseMatrix::transpose() {

80 Chap. 12 Lists and Arrays Revisited

// For each element, switch row and column pointers,
// and its row/column indices.
for (each row)

for (each element in the row) {
swap(nextrow, nextcol);
swap(prevrow, prevcol);
swap(row, col);

}
swap(row, col); // Swap row and column list headers

}

12.11 Here is pseudocode to add two sparse matrices.

void SparseMatrix::add(SparseMatrix& In1,
SparseMatrix& In2) {

// The current object will be the result of adding
// its two inputs.
SMhead *temp1 = In1->row;
SMhead *temp2 = In2->row;

while ((temp1 != NULL) || (temp2 != NULL))
if ((temp2 == NULL) ||

(temp1->index < temp2->index)) {
// Insert row from first matrix
for (each elem in temp1’s row)

this.insert(elem->value, elem->row, elem->col);
}
else if ((temp1==NULL) ||

(temp2->index < temp1->index)) {
// Insert row from second matrix
for (each elem in temp2’s row)

this.insert(elem->value, elem->row, elem->col);
}
else { // Both matrices have this row

SMElem* curr1 = temp1->first;
SMElem* curr2 = temp2->first;
if ((curr2 == NULL) ||

(curr1->col < curr2->col)) {
// Insert element from first matrix
this.insert(curr1->value, curr1->row,

curr1->col);
curr1 = curr1->nextcol;

}
else if ((curr1 == NULL) ||

(curr2->col < curr1->col)) {

81

// Insert element from second matrix
this.insert(curr2->value, curr2->row,

curr2->col);
curr2 = curr2->nextcol;

}
else { // This element in both matrices

this.insert(curr1->value + curr2->value,
curr2->row, curr2->col);

curr1 = curr1->nextcol;
curr2 = curr2->nextcol;

}
}

}

12.12 This is quite simple. The memory pool is simply viewed as a stack. Re-
quests pop off the requested amount of storage (move the top pointer down).
Returns push the storage back on the stack (move the top pointer up). Just
re-implement the stack functions for variable length records.

12.13 Simply manage the memory pool as an array-based queue, with variable
length records. Memory requests move the rear pointer by the appropriate
amount; memory returns move the front pointer by the appropriate amount.

12.14 (a) 1300, 2000, 1000
(b) 1000, 2000, 1300
(c) 900, 1300, 1100, 1000

13

Advanced Tree Structures

13.1 0 /\ 1
----- -----

0 / \ 1 \ 1
------ \ \
| | |

0/ \ 1 0 / \ 1 /
/ \ / \ 0/
| 31 42 50 |

0/ \1 /
/ \ 0/
7 | |

0/ \1 0/ \1
/ \ / \
| 12 99 100

0/ \1
/ \
10 11

13.2 0
/ \

--- ---
/ \
1 4
/ \ / \

----- \ / \
2 2 99 100
/ \ / \
/ \ / \

82

83

3 31 49 50
/ \
/ \
7 4

/ \
/ \
5 12
/ \
/ \
10 11

13.3 Binary Trie insertion routine. Assume that the Trie class has a root pointer
named “root” and a member named “level” to tell how many bits are in the
key.

void Trie::insert(int value) {
TrieNode* temp = root;
int currlev = level;
if (root == NULL)

root = new TrieNode(value);
else

while (TRUE) {
if (temp->isLeaf()) { // Push down existing value

int tempval = temp->value;
if (bit(tempval, level) == 1)

temp->right = new TrieNode(tempvalue);
else

temp->left = new TrieNode(tempvalue);
}
if (bit(value, currlev) == 1)

if (temp->right == NULL) {
temp->right = new TrieNode(value);
return;

}
else {

temp = temp->right;
currlev--;

}
else

if (temp->left == NULL) {
temp->left = new TrieNode(value);
return;

}
else {

84 Chap. 13 Advanced Tree Structures

temp = temp->left;
currlev--;

}
}

}

13.4 void Trie::removehelp(TrieNode*& rt, int val,
int level) {

if (rt == NULL) cout << val
<< " is not in the tree.\n";

else if (rt->value == val) {
TrieNode* temp = rt;
rt == NULL
delete temp;

}
else if (bit(val, level) == 0) // Check left

removehelp(rt->left, val, level);
else // Check right

removehelp(rt->right, val);
// Now, collapse a node with a single leaf child
if ((rt->left == NULL) &&

(rt->right->value != EMPTY)) {
rt->value = rt->right->value;
delete rt->right;
rt->right = NULL;

}
if ((rt->right == NULL) &&

(rt->left->value != EMPTY)) {
rt->value = rt->left->value;
delete rt->left
rt->left = NULL;

}
}

13.5 75
/ \
17 89
\ \
72 90
/ \
25 99
/ \
18 42

85

13.6 18
/ \

17 89
/ \

25 90
\ \
72 99
/ \
42 75

13.7 A(20, 90)
\
\
B(95, 85)
/
/
C(98, 35)
\
\
D(117, 52)
/
/
E(110, 25)

13.8 0 127

0| | C | |
A	----+----	
	D	
---------+---------		
B	E	
----+----	F	

86 Chap. 13 Advanced Tree Structures

13.9 // Return TRUE iff rectangle R intersects circle with
// centerpoint C and radius Rad.
boolean CheckIntersect(Rectangle* R, Point* C,

double Rad)
{
double Rad2;

Rad2 = Rad * Rad;
// Translate coordinates, placing C at the origin
R->max.x -= C->x; R->max.y -= C->y;
R->min.x -= C->x; R->min.y -= C->y;

if (R->max.x < 0) // R to left of circle center
if (R->max.y < 0) // R in lower left corner

return (R->max.x * R->max.x +
R->max.y * R->max.y) < Rad2;

else if (R->min.y > 0) // R in upper left corner
return (R->max.x * R->max.x +

R->min.y * R->min.y) < Rad2;
else // R due West of circle

return ABS(R->max.x) < Rad;
else if (R->min.x > 0) // R to right of circle center

if (R->max.y < 0) // R in lower right corner
return (R->min.x * R->min.x) < Rad2;

else if (R->min.y > 0) // R in upper right corner
return (R->min.x * R->min.x +

R->min.y + R->min.y) < Rad2;
else // R due East of circle

return R->min.x < Rad;
else // R on circle vertical centerline

if (R->max.y < 0) // R due South of circle
return ABS(R->max.y) < Rad;

else if (R->min.y > 0) // R due North of circle
return R->min.y < Rad;

else // R contains circle centerpoint
return TRUE;

}

87

13.10 /\
/ \
A /\

/ \
/\ B
/ \

/\
/ \
E /\

/ \
C D

13.11 A

| | | |

C B D

| | | |

E F

14

Analysis Techniques

14.1 Guess that the solution is of the form

an3 + bn2 + cn + d.

Since when n = 0 the summation is 0, we know that d = 0. We have the
following simultaneous equations available:

a + b + c = 1
8a + 4b + 2c = 5

27a + 9b + 3c = 14

Solving this set, we get a = 1/3, b = 1/2 and c = 1/6, yielding Equa-
tion 2.2.

14.2 Guess that the solution is of the form

an4 + bn3 + cn2 + dn + e.

Since when n = 0 the summation is 0, we know that e = 0. We have the
following simultaneous equations available:

a + b + c + d = 1
16a + 8b + 4c + 2d = 9

81a + 27b + 9c + 3d = 36
256a + 64b + 16c + 4d = 100

Solving this set, we get a = 1/4, b = 1/2, c = 1/4, and d = 0. Thus, the
closed form formula is

n4 + 2n3 + n2

4
.

The student should verify by induction.

88

89

14.3 From Equation 2.2 we know that

n∑
i=1

i2 =
2n3 + 3n2 + n

6
.

Thus, when summing the range a ≤ i ≤ b, we get

b∑
i=a

i2 =
2b3 + 3b2 + b

6
− 2a3 + 3a2 + a

6

=
2(b3 − a3) + 3(b2 − a2) + (b− a)

6
.

14.4 We need to do some rearranging of the summation to get something to work
with. Start with

n∑
i=1

i2 =
n∑

i=1

(i + 1 − 1)2.

Substituting i for i− 1, we get

n∑
i=1

i2 =
n−1∑
i=0

(i + 1)2

=
n−1∑
i=0

(i2 + 2i + 1).

The i2 terms mostly cancel, leaving

n2 =
n−1∑
i=0

(2i + 1)

= 2
n−1∑
i=0

i + n.

n2 − n

2
=

n−1∑
i=0

i

Substituting back i− 1 for i, we get

n∑
i=1

=
n2 + n

2
.

90 Chap. 14 Analysis Techniques

14.5

F (n) = 2 + 4 + · · · + 2n

2F (n) = 4 + 8 + · · · + 2n+1

When we subtract, we get 2F (n) − F (n) = F (n) = 2n+1 − 2. Thus,

n∑
i=1

2i = 2n+1 − 2.

14.6 Call our summation G(n), then

G(n) =
n∑

i=1

i2n−i = 2n−1 + 2 ∗ 2n−2 + 3 ∗ 2n−3 + · · · + n ∗ 20.

2G(n) = 2
n∑

i=1

i2n−i = 2n + 2 ∗ 2n−1 + 3 ∗ 2n−2 + · · · + n ∗ 21.

Subtracting, we get

2G(n) −G(n) = G(n) = 2n + 2n−1 + 2n−2 + · · · + 21 − n ∗ 20.

This is simply 2n+1 − 2 − n.
14.7 TOH has recurrence relation F (n) = 2F (n − 1) + 1, F (1) = 1. Since

the problem gives us the closed form solution, we can easily prove it by
induction.

14.8 The closed form solution is F (n) = nc, which can easily be proved using
induction.

14.9 Pick the constants c = 1, n0 = 4, prove for powers of 2.
Base Case: For n = 4, F (n) = n + 2 > 2 log 2. Thus, the theorem holds.
Induction Hypothesis: For n ≤ k, F (n) > k log k.
Induction Step: F (2k) = 2F (k) + 2k. By the induction hypothesis, we get
F (2k) = 2F (k) + n > 2(k log k) + 2k = 2k log k + 2k. Now, 2k log 2k =
2k(log k+1) = 2k log k+2, which is clearly less than 2k log k+2k. Thus,
the theorem holds by the principle of Mathematical Induction.

14.10 Expanding the recurrence, we get

√
n +

√
n/2 +

√
n/4 + · · · + 1.

91

Clearly this is smaller than
√
n log n, so we will guess that

T(n) = Θ(
√
n log n.

To complete the proof we must show that T(n) is in Ω(
√
n log n), but this

turns out to be impossible.
On the other hand, the recurrence is clearly Ω

√
n. So, let’s guess that T(n)

is in O(
√
n) for c = 4, n0 = 2. We prove this by induction.

Base case: T(2) = 1 +
√

2 < 4
√

2, so the hypothesis is correct.
Induction Hypothesis: For any value less than or equal to k, T(k) < 4

√
k.

Induction Step: For 2k,

T(2k) = T(k) +
√

2k.

By the induction hypothesis,

T(k) +
√

2k < 4
√
k +

√
2k.

For the theorem to be correct,

T(k) +
√

2k < 4
√
k +

√
2k < 4

√
2k

which is true. Thus, by the principle of Mathematical Induction, the theorem
is correct.

14.11 Expanding the recurrence, we get

T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n

= 2(2(2T(n/8) + n/4) + n/2) + n

= 2(2(· · · 2(2 + 4) + 8) + · · ·) + n

=
log n∑
i=1

2i2log n−i

= n log n.

14.12 For binary search, T(n) = T(n/2) + 1. By Theorem 14.1, 1 = 20, so the
recurrence is Θ(n0 log n) = Θ(logn).

14.13 Assume that the hash table is originally of size 2B. Once insert B elements,
we must reinsert them again. Once we have inserted another B elements,
2B elements are reinserted, then after another 2B get inserted, 4B get rein-
serted. Thus, the first B elements inserted are repeatedly reinserted, the next

92 Chap. 14 Analysis Techniques

B elements are repeatedly reinserted one fewer times, the next 2B elements
2 fewer times, etc. Thus, once we insert 2iB elements, we have done a total
number of insertions costing 2iB + 2i−1B + 2i−22B + · · · + 2i−1B. This
works out to requiring about two inserts per element.

14.14 (a) By adding the components in each quadrant of the matrix, you will find
that

s1 + s2 − s4 + s6 = A11B11 + A12B21

s4 + s5 = A11B12 + A12B22

s6 + s7 = A21B11 + A22B21

s2 − s3 + s5 − s7 = A21B12 + A22B22

(b) Strassen’s algorithm requires 7 matrix multiplies and 18 matrix addi-
tions, while the regular algorithm requires 8 matrix multiplies and 4
matrix additions. The recurrence relation for Strassen’s algorithm is

T (n) = 7T (n/2) + 18(n/2)2

while the recurrence relation for the regular algorithm is

T (n) = 8T (n/2) + 4(n/2)2

(c) Plugging the constants from the recurrence relation into Theorem 14.1,
we find that Strassen’s algorithm is Θ(nlog2 7) ≈ Θ(n2.81). The regular
algorithm is Θ(n3).

(d) While Strassen’s algorithm gives a theoretical speedup, the constant
is very large. Thus, it requires impractical sizes of n for Strassen’s
algorithm to be faster than the regular algorithm.

14.15 First, note that we are clearly discussing an upper bound here. In the case of
large N and small M , there might be no node splits at all. The bound is also
achievable, since a packed tree with each leaf node receiving an insert would
cause every node to split. The question is, how bad can things get?
Given a tree of N nodes, with every node full, there is a potential for N node
splits with no nodes being inserted “for free.” Each node split creates two
nodes each with an open space, thus lowering the potential of the tree by one
for each node split. Each insertion of an element into a node that is not-yet-
full raises the potential by one. Thus, the amortized cost for M inserts is at
most M + N node splits.

14.16 (a) The amortized cost is 2 inserts/element since we can get growth by n
positions only after inserting n elements.

93

(b) Fill an array with 2n + 1 elements, which forces a final growth to an
array of size 2n+1. Now, do an arbitrarily long series of alternating
inserts and deletes. This will cause the array to repeatedly shrink and
grow, for bad (Θ(n2)) performance.

(c) If we shrink the array whenever the space use goes below 25%, we will
have the desired performance.

14.17 Each node can be visited only once. Thus, there is initially potential for |V |
node visits. We can look at each edge only once (the edges out of a node are
visited when the node is visited). Thus, there is potential for |E| edge visits.
The initial call to DFS can expend a small part of that potential, or a large
part. But, the sum of all the calls to DFS must cost Θ(|V | + |E|).

14.18 As with Move-to-Front, the contribution of unsuccessful searches requiring
comparisons between keys A and B is independent of other keys. We have
an unsuccessful search for A if and only if we have had more requests for
B so far. Assuming that B is requested RB times and A is requested RA

times with RB > RA, we can only have unsuccessful searches twice the
number of times that A is requested. This happens at most for RA requests
to B occurring before RA requests to A. The remaining requests to B are
successful without encountering A. Thus, the Count heuristic can have cost
at most twice that of the optimal static ordering.

15

Limits to Computation

15.1 This reduction provides an upper bound of O(n log n) for the problem of
maximum finding (that is the time for the entire process), and a lower bound
of constant time for SORTING (since that is the time spent by Maximum
Finding in this process). Neither bound is particularly enlightening. There is
no true reduction from SORTING to Maximum Finding (in the sense that the
transformations do not dominate the cost) since SORTING is an intrinsicly
more difficult problem than Maximum Finding.

15.2 Consider the following fact:

[
A B
0 0

]2

=

[
A2 AB
0 0

]
.

Thus, if we had an algorithm that could square an n × n matrix in less time
than needed to multiply two matrices, we could use a transformation based
on this fact to speed up matrix multiplication.

15.3 Consider the following fact:
 0 A 0

0 0 0
0 0 0





 0 0 0

0 0 B
0 0 0


 =


 0 0 AB

0 0 0
0 0 0


 .

Thus, if we had an algorithm that could multiply two n× n upper triangular
matrices in less time than needed to multiply two matrices, we could use a
transformation based on this fact to speed up matrix multiplication.

15.4 (a) The input (the number n) requires log n bits to represent it. However,
n multiplication operations are required. Thus, the work is exponential
on the input size.

94

95

(b) It is possible to compute xn in log n time, and the rest of the formula
requires a constant number of multiplications. Thus, the number of
multiplications required is polynomial on the input size.

15.5 First, we should note that, for both problems, the decision problem is being
considered.
TRAVELING SALESMAN is NP-complete if (1) it is in NP , and (2) it is
NP-hard. Proving (1) is easy, just provide a non-deterministic polynomial
time algorithm. To prove (2), we will reduce to TRAVELING SALESMAN
from the known NP-complete problem HAMILTONIAN CYCLE. First, we
transform an input to HAMILTONIAN CYCLE into an input to TRAVEL-
ING SALESMAN by giving each edge of the input graph an arbitrary dis-
tance of 1, and then picking any arbitrary (large) number for the total dis-
tance to beat. Then if TRAVELING SALESMAN returns “YES”, we know
that there exists a Hamiltonian cycle in the graph since a salesman’s circuit
is a Hamiltonian cycle. If TRAVELING SALESMAN returns “NO” then no
such cycle exists.

15.6 To prove that K-CLIQUE is NP-complete, prove that it is in NPand that it
is NP-hard. Clearly it is in NPsince a nondeterministic algorithm is simply
to guess a set of vertices of size K to form the clique, and check in polynomial
time that the guess is correct.
To prove that K-CLIQUE is NP-hard, use a reduction from the known NP-
complete problem, VERTEX COVER. The necessary insight is that, given a
graph of n vertices with a K-clique, the inverse graph has a Vertex Cover of
size n−K. (The inverse graph G’ of G has an edge between two vertices if
and only if G does not.) Clearly this transformation is correct, because the
nodes making up the K-Clique in G must have no connecting edges in G’, so
selecting the other n−K edges for the cover is satisfactory.
Thus, given as input to VERTEX COVER a graph and a size I to beat, the
input to K-CLIQUE is the inverse graph and n− I as the size of the Clique.

15.7 INDEPENDENT SET is clearly in NP since we can guess a set of vertices
and test whether it is an independent set of size k or greater.
We can prove that INDEPENDENT SET is NP-hard by a reduction from
CLIQUE. The reduction is quite simple, since we observe that a clique of
size k in graph G is an independent set of size k in inverse graph G′. Thus,
we can solve the CLIQUE problem for inputs G and k simply by converting
G to G′, and thensolving INDEPENDENT SET on G′ for size k. The answer
obtained from running INDEPENDENT SET on G′ and size k is the answer
for CLIQUE on G and size k. Therefore, if CLIQUE is NP-complete, then
INDEPENDENT SET must also be NP-complete.

96 Chap. 15 Limits to Computation

15.8 Represent a real number in a bin as an infinite column of binary digits, simi-
lar to the representation of functions in Figure 15.4. Now we can use a simple
diagonalization proof. Assume that some assignment of real numbers to in-
tegers is proposed. We can construct a new real number that has not been
assigned by taking the first bit of the number assigned to “1” and flipping it;
take the second bit of the number assigned to “2” and flip it; and so on.

15.9 Clearly, KNAPSACK is in NP , since we can just guess a set of items and
test in polynomial time if its size is less than k and its value greater than v.
To prove that KNAPSACK is NP-hard, we reduce from the known NP-
complete problem EXACT KNAPSACK. EXACT KNAPSACK takes as in-
put some items with sizes and a value k. To convert this input to an input for
KNAPSACK, we give each item a value equal to its size. We set v = k. We
now give this input to KNAPSACK.
If KNAPSACK returns “NO” then there is no solution for EXACT KNAP-
SACK. If KNAPSACK returns “YES” then the items whose values sum to v
must also have size exactly k. Thus, if KNAPSACK returns “YES” then the
answer for EXACT KNAPSACK is “YES.”

15.10 Take an arbitrary program, and modify it to remove all print statements.
Then, at all places where the program might terminate, insert a print state-
ment. This revised program prints if and only if the original program halts.
Thus, if we had a program that determined if an arbitrary program prints
something, we could use it to solve the HALTING problem.

15.11 Take an arbitrary program, and modify it so that at all places where it might
terminate, it makes a call to a new subroutine that contains one empty state-
ment S, then returns. Thus, the original program halts if and only if the new
program executes statement S. Thus, if we had a program that determined if
an arbitrary program executes a specified statement, we could use it to solve
the HALTING problem.

15.12 Fix one input program to be the program that halts if and only if its input is
the empty string. Call this program E. Now, take an arbitrary program P
and modify it so that it goes into an infinite loop if its input is not empty. call
this modified program P ′. Now, this modified program halts on empty input
if and only if the original program halts on empty input. We can now feed E
and P ′ to our proposed program that determines if two programs halt on the
same set of inputs. We now have a solution to the problem of determining
if a program halts on the empty input, which we know from the text to be
unsolvable.

15.13 See the answer to Exercise 5.12. The modified program halts, if it halts, only
for the empty input, so it serves as a solution to this problem as well.

