Market Response Modeling

The Concept of a Response Model

Idea:

Marketing Inputs:
- Selling effort
- Advertising spending
- Promotional spending

↓

Market

Marketing Outputs:
- Sales
- Share
- Profit
- Awareness, etc.
Input-Output Model

Response Models can be characterized by:

1. By the number of marketing variables
2. By whether they include competition or not
3. By the nature of the relationship between the input variables
 1. Linear vs. S–Shape
4. By whether the situation is static vs. dynamic
5. By whether the models reflect individual or aggregate response
6. By the level of demand analyzed
 - Sales vs. market share
Response Function

The response function relate dependent variables to independent variables.

Parameters
- Parameters are the constants in the mathematical representation of models.
- Calibration: is the process of determining appropriate values to the parameters.
A Simple Model

\[Y = a + bX \]

\(a \) (sales level when advertising = 0)

\(b \) (slope of the sales line)

\[X \] (Advertising)

Phenomena

P1: Through Origin

P2: Linear

P3: Decreasing Returns (concave)

P4: Saturation
Aggregate Response Models: Linear Model

\[Y = a + bX \]

- Linear/through origin
- Saturation and threshold (in ranges)

Advantages:
- One can use standard regression methods to estimate the parameters
- Easy to visualize and understand

Disadvantages:
- Assumes constant returns to scale everywhere (can not accommodate concave (P3), convex (P5), or S-Shape(P6))
Aggregate Response Models:
The Power Series Model

\[Y = a + bX + cX^2 + dX^3 + \ldots \]

- Fit well within the range of data,
- Behaves badly (becoming unbounded) outside the data range
- All but P4, P7 (Saturation, and Threshold)

Aggregate Response Models:
Fractional Root Model

\[Y = a + bX^c \]
where: \(c \) is pre-specified

- \(c \) can be interpreted as elasticity when \(a = 0 \).
- Linear, increasing or decreasing returns (depends on \(c \)).
 - When \(c = \frac{1}{2} \) the model is called square root model
 - When \(c = -1 \) the model is called the reciprocal model, \(Y \) approaches the value of \(a \) when \(X \) gets larger
Aggregate Response Models:
The Semilog Model

\[Y = a + b \ln X \]

- Handles situations in which constant percentage increase in marketing effort result in constant absolute increases in sales

Aggregate Response Models:
The Exponential Model

\[Y = ae^{bx}; \ x > 0 \]

Increasing or decreasing returns (depends on \(b \)).

Used as a price-response function for \(b < 0 \) (increasing returns to decreases in price) when \(Y \) approaches 0 as \(X \) becomes large

Handles:
- \(b > 0 \) \(\rightarrow \) P5. Convex
- \(b < 0 \) \(\rightarrow \) P4. Saturation (\(Y \) approaches 0, a lower bound here)
Aggregate Response Models: Modified Exponential Model

\[Y = a \left(1 - e^{-bx}\right) + c \]

Decreasing returns and saturation.

Widely used in marketing.

Has an upper bound or saturation level at \(a + c \) and a lower bound of \(c \), and it shows decreasing return to scale

Handles:
P3. Concave
P4. Saturation, used as a response function to selling effort
Can accommodate P1. (Through origin) when \(c = 0 \)

Aggregate Response Models: The Logistic model

\[Y = \frac{a}{1 + e^{-（b+cX)}} + d \]

- The most common
- Easy to estimate
- Widely used

Handles:
P4. Saturation
P6. S-Shape
Aggregate Response Models: Adbudg Function

\[Y = b + (a-b) \frac{X^c}{d + X^c} \]

S-shaped and concave; saturation effect.

Widely used.

Handles:
P1. Through Origin
P3. Concave
P4. Saturation
P6. S-Shape

Used to model response to advertising and selling effort

Calibration

- Calibration is assigning good values to the parameters of the model
 \[Y = a + bX \]

- Estimate the values of \(a \) and \(b \) such that the relation becomes a good approximation of how \(Y \) varies with values of \(X \)

- Objective Calibration vs. Subjective Calibration
 - actual experimental or market data
 - the data used for estimation is subjective judgment
Input-Output Model

Marketing Actions Inputs

Competitive Actions

Observed Market Outputs

- Product design
- Price
- Advertising
- Selling effort etc.

Market Response Model

Awareness level
Preference level
Sales Level

Environmental Conditions

Control Adaption

Evaluation

Objectives

Response–20

Objectives

- To evaluate marketing actions and to improve the performance of the firm in the marketplace, the manager must specify objectives.
- Short-run profit
- Long-run profit
- Uncertainty → Decision-tree analysis
- Multiple Goals
 - Multi-criteria decision making
 - Goal programming
 - Trade-off analysis
 - Analytic hierarchy process

Response–21
Multiple Marketing-Mix: Interactions

X_1 and X_2 are marketing mix variables with $f(X_1)$, and $g(X_2)$ individual response function

Interactions:
1. No interactions
 \[Y = af(X_1) + bg(X_2) \]
2. Multiplicative
 \[Y = af(X_1) \cdot bg(X_2) \]
3. Multiplicative and additive
 \[Y = af(X_1) + bg(X_2) + cf(X_1)g(X_2) \]

Dynamic Effects

- Many customers purchase more than they can consume of a product during a short-term price promotion
- This action leads to inventory buildup in customers’ homes and lower sales in subsequent periods.
- Furthermore, the effect of that sales promotion will depend on how much inventory buildup occurred in past periods (i.e., how much potential buildup is left).
Dynamic Effects

- If customers stocked up on brand A cola last week, a new promotion this week is likely to be less effective than one a long period after the last such promotion.

Carryover effects

- The general term used to describe the influence of a current marketing expenditure on sales in future periods.
Dynamic Effects

1. Marketing Effort
 eg, sales promotion

 ![Graph showing marketing effort over time with spending level and time axes.]

Dynamic Effects

2. Conventional
 “delayed response” and “customer holdout” effects

 ![Graph showing sales response over time with time and sales response axes.]

Response-29

Response-30
Dynamic Effects

3. “Hysteresis” effect

4. “New trier”
 “wear out” effect
Dynamic Effects

5. “Stocking” effect

Aggregate Response Models: Dynamics

- Dynamic response model

\[Y_t = a_0 + a_1 X_t + \lambda Y_{t-1} \]

This equation says that sales at time \(t \) (\(Y_t \)) are made up of:
- a constant minimum base (\(a_0 \)),
- an effect of the current activity \(a_1 X_t \),
- a proportion of last period’s sales (\(\lambda \)) that carries over to this period.

Managers can either guess (\(\lambda \)) directly as the proportion of sales that carries over from one period to the next or estimate it by using linear regression.
Market Share Model and Competitive Effects

- Brand sales Models (Y)
- Product class sales models (V)
- Market-share models (M)

\[Y = M \times V \]

Aggregate Response Models: Market Share

- Market share (attraction) models

\[M_i = \frac{A_i}{A_1 + A_2 + \ldots + A_n} \]

\(A_i = \) attractiveness of brand \(i \).

- Each firm’s market share must be between 0 and 100 percent (range restriction)
- Market shares, summed over brands, must equal 100 percent (sum restriction).
- Has “proportional draw” property.
Example

- Suppose $A_1 = 10$, $A_2 = 5$, and $A_3 = 5$.
- In a market with A_1 and A_2 only:
 - $m_1 = m_2 =$
- Suppose A_3 enters. Then after entry,
 - $m_1 = m_2 = m_3 =$

Individual-Level Response Models: Requirements

- So far we have looked at market response at the level of the entire marketplace.
- However, markets are composed of individuals, and we can analyze the response behavior of those individuals and either use them directly (at the segment or segment-of-one level) or aggregate them to form total market response.
Individual-Level Response Models: Requirements

- Aggregate response model focus on either brand sales, or market share.
- Models at the individual level focus on purchase probability.
- Purchase probability is equivalent to market share.

Multinomial logit model to represent “probability of choice.”

\[P_{il} = \frac{e^{A_{il}}}{\sum_{j} e^{A_{ij}}} \]

Where:

- \(A_{ij} = \text{attractiveness of product } j \text{ for individual } i \)
- \(A_{ij} = \sum_{k} w_k b_{yk} \)
- \(b_{yk} = \text{individual } i\text{'s evaluation of product } j \text{ on product attribute } k, \text{ where the summation is over all the products that individual } i \text{ is considering purchasing} \)
- \(w_k = \text{importance weight associated with attribute } k \text{ in forming product preferences} \)
Individual-Level Response Models: Requirements

- Satisfies sum and range constraints.
- Has the “proportional draw” property.
- Widely used in marketing.

Example

Suppose that someone performed a survey of shoppers in an area to understand their shopping habits and to determine the share of shoppers that a new store might attract. The respondents rated three existing stores and one proposed store (described by a written concept statement) on a number of dimensions:

(1) variety, (2) quality, (3) parking, & (4) value for the money
Attribute Ratings per Store

<table>
<thead>
<tr>
<th>Store</th>
<th>Variety</th>
<th>Quality</th>
<th>Parking</th>
<th>Value for Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.8</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>4 (new)</td>
<td>0.6</td>
<td>0.4</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

| Importance Weight | 2.0 | 1.7 | 1.3 | 2.2 |

Shares per Store

<table>
<thead>
<tr>
<th>Store</th>
<th>$A_j = w_k b_{jk}$</th>
<th>e_j^A</th>
<th>Share estimate without new store</th>
<th>Share estimate with new store</th>
<th>Draw (c)–(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.70</td>
<td>109.9</td>
<td>0.512</td>
<td>0.407</td>
<td>0.105</td>
</tr>
<tr>
<td>2</td>
<td>3.30</td>
<td>27.1</td>
<td>0.126</td>
<td>0.100</td>
<td>0.026</td>
</tr>
<tr>
<td>3</td>
<td>4.35</td>
<td>77.5</td>
<td>0.362</td>
<td>0.287</td>
<td>0.075</td>
</tr>
<tr>
<td>4</td>
<td>4.02</td>
<td>55.7</td>
<td>0.206</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>