

امتحان رقم (1) في الكيمياء

الاسم

	:4	الصحيحة لكل مما يلي	• اختر الإجابة			
	. مادة قادرة على منح البروتون هي:					
ب) قاعدة ارهنيوس			أ) حمض ار هنيوس			
د) حمض لویس		لوري	ج) حمض برونستد۔			
	 آحد الآتية تعد قاعدة برونستد-لوري وليست قاعدة ارهنيوس: 					
HE(7	кон (ह	N₂H₄ (ب	нсоон (
		لما يلي هي:	3. أقوى قاعدة مرافقة			
(7	Br⁻(ॡ	Cl⁻ (ب	F - ([†]			
			CIO ₄			
		lite • .im ä .	-ā ī solā Ni- Oll soi 4			
4.تعد NaOH قاعدة قوية تتأين كلياً بسبب:						
أ) قوى التجاذب بين $^+$ Na و $ar{O}$ أكبر من قوة التجاذب بين الـ $^+$ Na و الـ $^+$ H $_2$ O.						
ب) قوى التجاذب بين الـ $^+$ Na والـ $^+$ O أكبر من قوى التجاذب بين الـ $^+$ Na والـ $^+$ O .						
ج)لأن NaOH تنتج ŌH عند إذابتها في الماء.						
	.1	ساوي [NaOH] في تحاليلها	د) لأن [OH]يُس			
		سنيوس عن تفسير سلوكها:	5. أحد الآتية عجز اره			
HCI(7	CN⁻ (₹	LiOH(끚	CH₃COOH ([∫]			

NH ₄ ⁺ / CH₃COO⁻ (끚		CI	CH₃COOH / CH₃COO ([∫]		
NH⁴ \ CH³COOH (¬			NH₄ ⁺ / NH₃ (ᠸ		
		، فقط:	, أحد الآتية يعد حمض لويس	.7	
د) ⁺ NH ₄	Zn⁺ (ج	H₂O (끚	HBr (^j		
		طي: H₂O ھي:	ان نواتج تفاعل ${\sf N_2H_5}^{\dagger}$ مع	.8	
(H ₃ O ⁺ / N ₂ H ₄) (÷			(ŌH / H₂O) (^ĵ		
(ŌH / N₂H₄) (ᠸ			(N ₂ H ₄ / N ₂ H ₅ ⁺)(で		
9. تعد CH3NH ₂ قاعدة لويس لأنها:					
أ) قادرة على استقبال البروتون					
ب) قادرة على منح زوج من الإلكترونات غير الرابطة.					
ج) قادرة على استقبال زوج من الإلكترونات غير الرابطة.					
	د) قادرة على منح البروتون.				
		عدا واحدة:	 جميع ما يلي امفورتية ما 	LO	
HPO ₄ ⁻² (ج) َ HS َ	HCO ₂ ((ب H ₂ O(أ		
		: = [ŌH	 أي الماء المتعادل فإن، [الله الماء المتعادل الماء الماء	l1	
¹⁴⁻ 10 X	1 (³ 10 X1	(ē ⁷⁻ 10)	X1 (ب 7 (أ		

6. ان الزوج المترافق من تفاعل CH_3COOH مع NH_3 هو:

		لآتية أكثر حمضية:	12. احد الاوساط الآتية أكثر حمضية:			
		. 3 =	أ)محلول pH له = 3 .			
		H] فيه = 10 X2	ب) محلول [H₃⁺O] فيه = 10 X2 -4			
		¹²⁻ 10 X2 = [ج) محلول [ŌH] = 10 X2 =			
		H] يساوي [ŌH]	د) محلول [H ₃ +O] يساوي [ŌH]			
		ىرافق ئـ 4 ₋₄ H ₂ pO هو:	13. ان الحمض الد			
pO ⁻³ 4(2	H₃pO⁻₄ (₹	H₃pO₄ (ب	HPO4- ([†]			
		سرافقة لـ H ₂ SO ₃ هي:	14. ان القاعدة المرافقة لـ H_2SO_3 هي:			
(7	HSO⁻₃(₹	SO ⁻² ₃ (ب	HSO₃ ([†]			
			H3SO ⁺ ₃			
15. ان الـ pH لمحلول HClO ₄ تم تحضيره بإذابة 02.مول في وعاء حجمة 2 لتر.						
	•	·	-			
12 (2	ع) 1	ب) 2	آ) صف ر			
ف المحامل عاملًا النا		A Jaha a A KOU da ac	EG was a 16			
16. تم تحضير 56. غم من KOH في محلول حجمة 2 لتر فإن $[H_3O^+]$ في المحلول علماً ان الكتلة المولية لـ KOH في ممامول.						
¹¹⁻ 10 X2 (²	10- 10 X 2 (ج	⁴- 10 X5 (÷	¹¹⁻ 10 X1([†]			
17. يسلك الماء كحمض حسب مفهوم لويس عند تفاعله مع:						
NH ₄ ⁺ (2	NH₃(₹	Ag⁺ (÷	Cu ⁺² (¹			

18. كتلة NaOH اللازمة لتحضير محلول حجمة 200مل ، pH له =12.3 علماً ان الكتلة المولية لـ NaOH عماً ان الكتلة المولية لـ NaOH عم/مول و ان لــو 2 = 7.

أ) 16. غم/مول ب) 1.6 غم/مول ج)8. غم/مول د)08. غم/مول

19. جسيم مثناه في الصغر له كثافة كهربائية موجبة عالية هو:

أ) النيزون ب) البروتون ج) الالكترون د)الحمض

20. عدد مولات HCl اللازمة لتحضير محلول حجمة 2لتر، pH له= صفر هي:

أ) صفر ب) 2مول ج) 1مول د) 3مول

21. بعد الانتهاء من الامتحان احد الأشكال الآتية ينطبق عليك:

⊙ تمنياتي للجميع بالتفوق والنجاح
 المعلمة تغريد صوافطة