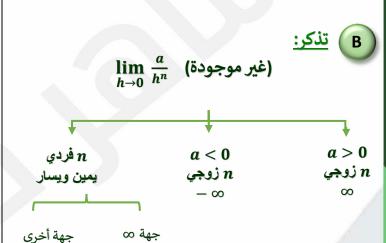
بحث قابلية الاشتقاق

A يتم بحث قابلية الاشتقاق بالتعريف.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to x} \frac{f(h) - f(x)}{h - x}$$

ويكون f قابل للاشتقاق عند نقطة إذا كانت النهاية موجودة.



1)
$$\lim_{h\to 0}\frac{2}{h^2}=\infty$$

2)
$$\lim_{h\to 0} \frac{-3}{h^{\frac{2}{5}}} = -\infty$$

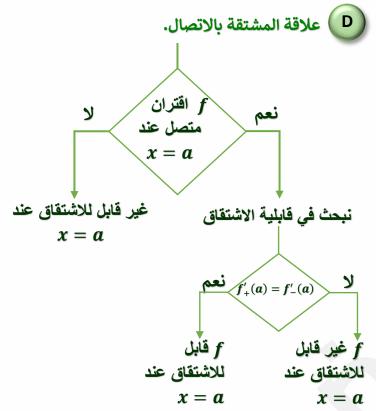
3)
$$\lim_{h\to 0} \frac{5}{h^3} = -\frac{1}{2} \quad \infty$$

4)
$$\lim_{h\to 0} \frac{-5}{h^{\frac{3}{7}}} = -\frac{1}{5} - \infty$$

5)
$$\lim_{h\to 0} \frac{h^2-2}{h} = \lim_{h\to 0} \frac{h^2}{h} - \frac{2}{h}$$

$$=\lim_{h\to 0}h-\frac{2}{h}-\frac{+-\infty}{-\infty}$$

في أسئلة الدوائر نستخدم القواعد للسرعة بعد التأكد من الاتصال.



من رسم f يكون الاقتران غير قابل للاشتقاق.

(3) المماس الرأسي على الشكل (S)4) أطراف الفترات

ابحث في قابلية اشتقاق f(x) عند f(x)

$$f(x) = \begin{cases} x^2 + 1, & x \ge -1 \\ x + 3, & x < -1 \end{cases} \quad x = -1$$

$$x = -1$$
 متصل عند $f(x)$

$$f'_{+}(-1) = \lim_{h \to 0^{+}} \frac{f(-1+h) - f(-1)}{h}$$

$$= \lim_{h \to 0^+} \frac{(-1+h)^2 + 1 - 2}{h}$$

$$= \lim_{h \to 0^+} \frac{1 - 2h + h^2 - 1}{h}$$

$$= \lim_{h \to 0^+} \frac{h(-2+h)}{h} = -2$$

$$f'_{-}(-1) = \lim_{h \to 0^{-}} \frac{f(-1+h) - f(-1)}{h}$$

$$=\lim_{h\to 0^-}\frac{(-1+h)+3-2}{h}=1$$

$$x=-1$$
 غير قابل للاشتقاق عند $f(x)$

f مثال 3 ابحث في قابلية اشتقاق

$$f(x) = x^{\frac{2}{5}}$$
 , $x = 0$ عند

x=0 الحل: f متصل عند

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^{\frac{2}{5}}}{h} = \lim_{h \to 0} \frac{1}{h^{\frac{3}{5}}}$$

$$\lim_{h \to 0^{+}} \frac{1}{h^{\frac{3}{5}}} = \infty, \lim_{h \to 0^{-}} \frac{1}{h^{\frac{3}{5}}} = -\infty$$

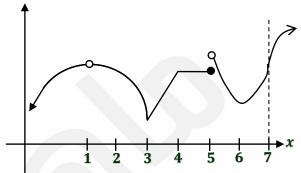
x=0 غير قابل للاشتقاق عند f ::

مثال 1 في الأمثلة (1-3) اختر الإجابة الصحيحة:

(1) إذا علمت أن f'(0) ، فإن $f(x) = x^{\frac{1}{3}}$ تساوي: a) 0 b) $\frac{1}{3}$ c) 1 d) غير موجودة

b)
$$\frac{1}{3}$$

: f(x) من الشكل التالى لمنحنى (2



إن قيم x التي يكون عندها f غير قابل للاشتقاق:

3) إذا علمت أن

$$f(x) = \begin{cases} 3a x^2 + bx + 5, x \ge 1 \\ ax + 2b x^2, x < 1 \end{cases}$$

R التي تجعل f(x) قابل للاشتقاق على b,a

a)
$$a = 15, b = -25$$

b)
$$a = -15, b = 25$$

c)
$$a = -15$$
, $b = -25$

d)
$$a = 15, b = 25$$

الأستاذ ماهر ضمرة

بالتحليل أو المتطابقات في الأسئلة (1-9) اختر الإجابة الصحيحة:

✓ تذكير: في مشتقة القسمة نحاول التبسيط إما

ي الاستله (1-9) احبر الإجابة الصحيحة:
$$f''(8) = \frac{1+x}{1+x}$$
اذا علمت أن $f''(8) = \frac{1+x}{1+x}$

$$f''(8)$$
 فإن ، $f(x) = \frac{1+x}{1+\sqrt[3]{x}}$ فإن (1) أذا علمت أن أداء :

b)
$$\frac{1}{36}$$

b)
$$\frac{1}{36}$$
 c) $\frac{-1}{144}$ d) $\frac{1}{72}$

d)
$$\frac{1}{72}$$

إذا علمت أن
$$f(x)=rac{\ln x}{x^2}$$
 ، فإن (2

تساوي: $x^4f''(x) + 4x^3f'(x) + 2x^2f(x) + 1$

a) 1

b) 0 c)
$$-1$$
 d) 2

$$f'(1)=2$$
 , $g(1)=5$ أذا علمت أن (3

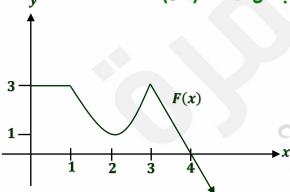
وأن g'(1) نساوي: f(x)g(x)=10 تساوي:

$$-10$$

a) 10 b)
$$-10$$
 c) 5 d) -5

معتمدًا على الشكل التالى لمنحنى F، وأن \diamondsuit $G(x) = x^3 + x^2 - 1$

أجب عن الأسئلة (4-8):



H(x) = F(x). G(x) إذا علمت أن (4

:H'(2) جد

a) 16

b) 32

c) 0

d) 27

تساوي: $\frac{d}{dx}(XF(x))\big|_{x=\frac{1}{2}}$ تساوي:

a) 0

b) 3.5

c) 3

d) 1

1) الضرب:

$$(a, 1 + 1)(1 + 1) + (a, 1 + 1)(1 + 1)$$

2) القسمة:

$$\frac{(a.110)(1000) - (a.1100)(1000)}{(10000)^2}$$

نتيجة (1)

$$f(x) = \frac{a}{\alpha}$$
 \Rightarrow $f'(x) = \frac{-a \times (\alpha + \beta)}{(\alpha + \beta)^2}$

نتيجة (2)

$$f(x) = \frac{y}{a} \Rightarrow f'(x) = \frac{y}{a}$$

✓ تذكير: أي مشتقة يرمز لها

$$f^{(n)}(x) = y^{(n)} = \frac{d^n y}{dx^n}$$

$$f^{\prime\prime}(x)=y^{\prime\prime}=rac{d^2y}{dx^2}$$
مثلًا المشتقة الثانية

f(x) تذكير: المشتقة من منحنى \checkmark

 $f'=0 \leftarrow$ القمة والقاعf'=0

f'م.غ \rightarrow الاتصال \rightarrow غ.م

3) الثابت = صفر

4) الخطى

لعدم وجود زاوية $f' = \frac{\Delta y}{\Delta x}$ نبحث عن نقطتين بوجود زاوية

 $f'(x_1) = \tan \theta_1$

القواعد الأساسية التركيبية.

القاعدة	المشتقة
$e^{g(x)}$	$e^{g(x)}*g'(x)$
$\ln(g(x))$	$\frac{g'(x)}{g(x)}$
g(x) > 0	3 (4)
$a^{g(x)}$	$a^{g(x)}$. $g'(x)$. In a
$\log_b g(x)$	$\frac{g'(x)}{g(x).\ln b}$
$\sin(g(x))$	$\cos\left(g(x)\right).g'(x)$
$\cos(g(x))$	$-\sin\left(g(x)\right).g'(x)$
$\tan(g(x))$	$\sec^2(g(x)).g'(x)$
$\cot (g(x))$	$-\csc^2(g(x)).g'(x)$
$\sec(g(x))$	$\sec(g(x))\tan(g(x)).g'(x)$
$\csc(g(x))$	$-\csc\left(g(x)\right)\cot\left(g(x)\right).g'(x)$
(fog)(x)	f'(g(x)).g'(x)
y = f(u)	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
u = g(x)	un uu un
السلسلة الثنائية	
y = f(u) $u = g(t)$	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dt} \cdot \frac{dt}{dx}$
t = h(x)	
السلسلة المكررة	

تساوي:
$$\frac{d}{dx} (F(x))^2 \Big|_{x=3}$$
 تساوي:

تساوي:
$$H(x) = \frac{1}{F(x)}, H'(5)$$
 (7 a) $-\frac{1}{3}$ b) $\frac{1}{3}$ c) 0 d) غير موجودة

$$\lim_{h \to 0} \frac{f(4) - f(4 + 2h)}{h}$$
 (8 a) 3 b) -3 c) 6 d) -6

(9) إذا علمت أن
$$x\,f(x)+2=x^2f(x)$$
 أن علمت أن $f'(2)$ فإن $f'(2)$ فإن $(3)\frac{3}{2}$ b) $(3)\frac{3}{2}$ d) $(3)\frac{3}{2}$

B <u>قاعدة الأقواس ذات الأس.</u>

$$f(x) = \left(g(x)\right)^n \Rightarrow f'(x) = n\left(g(x)\right)^{n-1} * g'(x)$$

• وعليها تندرج جميع الاقترانات المثلثية.

$$f(x) = \sin^n g(x) \Rightarrow f'(x)$$

= $n \sin^{n-1} g(x) \cdot \cos g(x) \times g'(x)$

• كذلك الجذور تحول أقواس أسية.

$$f(x) = \sqrt[3]{g(x)} = \left(g(x)\right)^{\frac{1}{3}}$$

• قاعدة اشتقاق الجذر التربيعي.

$$f(x) = \sqrt{g(x)}$$

$$f'(x) = \frac{g'(x)}{2\sqrt{g(x)}}$$

 ✓ تنبيه: log, ln نبسط قبل الاشتقاق حسب قوانين اللوغاريتم.

$$1) \log_b(xy) = \log_b x + \log_b y$$

2)
$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$3) \log_b x^p = p \log_b x$$

$$4) \ln e^{g(x)} = g(x)$$

5)
$$\log_b 1 = 0$$
 , $\log_b b = 1$

$$6) \log_b x = \frac{\ln x}{\ln b}$$

مثال 1 في الأسئلة (1-23) اختر الإجابة الصحيحة:

- a) -1
- b) 1
- c) 0
- $f(x) = \log\left(\frac{10}{x^n}\right)$ إذا علمت أن
 - فإن f'(x) تساوي:
- a) $\frac{n}{x}$ b) $\frac{n}{x \ln 10}$ c) $\frac{-n}{x \ln 10}$ d) $\frac{-n}{x}$
- - $f(x) = \frac{e^{2x}-4}{e^{x}-2}$ إذا علمت أن (3 فإن $f'(\ln 2)$ تساوي:
- a) 2 b) -2
- c) e^2 d) $-e^2$
- ، $f(x) = (\ln x)^4$ إذا علمت أن
 - فإن f'(x) تساوي:

- a) $\frac{4}{x}$ b) $\frac{1}{x}$ c) $4(\ln x)^3$ d) $\frac{4(\ln x)^3}{x}$
 - نان $\frac{dy}{dx}$ نان باذا علمت أن $y = \tan 2x$ نان (5)
- a) $2 \sec 2x \tan 2x$ b) $\sec^2 2x$
- c) $\sec 2x \tan 2x$ d) $2 \sec^2 2x$
 - ون y' نساوى: $y = \sec^6 2x$ نان y' تساوى:
- a) $6 \sec^5 2x \tan 2x$ b) $12y \tan 2x$
- c) $6y \tan 2x$
- d) 8*y* tan 2*x*
- يا إذا علمت أن $y=2^{1-x}$ ، فإن ميل المماس $y=2^{1-x}$
 - x=2 لمنحنى العلاقة عندما
- a) $=\frac{1}{2}$ b) $\frac{1}{2}$ c) $\frac{\ln 2}{2}$ d) $\frac{-\ln 2}{2}$

$$f(x) = \frac{1-\cos 2x}{\sin^3 x}$$
اٰذا علمت أن (15)

فإن f'(x) تساوى:

- a) $2 \csc x$
- b) $-2 \csc x \cot x$
- c) $2 \csc x \cot x$
- **d)** 2 sec *x* tan *x*

 $f(x) = \log_3(1 + \ln x)$ إذا علمت أن (16

فإن f'(1) تساوى:

- a) 0

- b) $\frac{2}{\ln 3}$ c) $\frac{1}{\ln 3}$ d) $\frac{1}{2 \ln 3}$

أون أحد العبارات ، $y=e^x\sin x$ أون أحد العبارات التالية صحيحة:

- a) y'' = 2y' 2y b) y'' = 2y' + y
- c) y'' = 2y' + 2y d) y'' = 2y'

 $y = \sqrt{2}\sin x - \sqrt{3}\cos x$ إذا علمت أن (18

- فإن $\left(y'
 ight)^2 + y^2$ تساوي:

- a) 1 b) 5 c) -5 d) $2(\sqrt{3} + \sqrt{2})$

 $f(x) = \sin x - \cos x$ إذا علمت أن

- f''(x)=0 وأن ، $x \in [\pi,2\pi]$ جد x

- a) $\frac{7\pi}{4}$ b) $\frac{3\pi}{4}$ c) $\frac{5\pi}{4}$ d) $\frac{\pi}{4}$

 $f(x-1) = \sin^2\left(\frac{\pi}{8}x\right)$ إذا علمت أن (20

- فإن f'(1) تساوي:
- a) $\frac{\pi^2}{64\sqrt{2}}$ b) 0 c) $\frac{\pi}{8}$ d) $\frac{\pi}{8\sqrt{2}}$

21) إذا علمت أن

 $y=5u^2+6u-1$

 $u=\sin t+\cos t$, $\frac{dt}{dx}=2$

 $\left|\frac{dy}{dx}\right|_{t=\frac{\pi}{2}}$ فإن $\left|\frac{dy}{dx}\right|_{t=\frac{\pi}{2}}$

- a) 32 b) -32 c) 16 d) -16

وكان، وكان b, a عددان موجبان ثابتان، وكان عند $y = \ln(ax + b)$, $a \neq b$ النقطة P مماس ميله 1 ، فإن الاحداثى x للنقطة

- a) 1پساوي
- أكبر من 1 (b
- أقل أو يساوي 1 (d) فقل من 1 أقل من 1

 $f(x) = \frac{3}{2-2\sin^2 x}$ إذا علمت أن

فإن $f'\left(rac{\pi}{4}
ight)$ تساوي:

- a) 6 b) $3\sqrt{2}$ c) $\frac{3}{2}$ d) $\frac{3}{\sqrt{2}}$

 $f(x) = (\csc x + \cot x)^{-1}$ إذا علمت أن (10 فإن f'(0) تساوى:

- a) 1 b) غير موجودة (c) 0 d)-2

 $f(1)=rac{1}{2}$, f'(1)=16 إذا علمت أن

- وکان g'(1) نان $g(x) = \sin^3(\pi f(x))$ تساوی:
- a) 18 b) 18π c) $\frac{9}{8} \pi$ d) $\frac{9}{8}$

 $f(x) = \sqrt[3]{\sin x + \cos x + 7}$ إذا علمت أن فإن f'(0) تساوي:

- a) $\frac{1}{4}$ b) $\frac{1}{7}$ c) $\frac{-1}{12}$ d) $\frac{1}{12}$

(13) إذا علمت أن $f'(x) = \frac{3+5^x}{3-5^x}$ تساوي:

- a) $\frac{11}{2} \ln 5$ b) $\frac{3}{2} \ln 5$
- c) $\frac{11}{4} \ln 5$ d) $\frac{-1}{4} \ln 5$

 $f(x) = 2^x * 8^{x^2}$ إذا علمت أن (14 فإن f'(0) تساوى:

- a) 12 ln 2
- b) 7 ln 2

c) ln 2

d) 14 ln 2

$$f(x)=\log\csc x$$
 إذا علمت أن $f'(x)=1$ $\sin x=a$ حيث $f'(x)$ بدلالة $a\neq 0$ بالربع الثاني، x

الحل:

$$f'(x) = \frac{-\csc x \cot x}{\csc x \ln 10}$$

$$f'(x) = \frac{-\cos x}{\ln 10 \sin x}$$

$$\therefore \sin x = a \to \cos x = -\sqrt{1 - \sin^2 x}$$

(الربع الثاني)

$$\cos x = -\sqrt{1-a^2}$$

$$f'(x) = \frac{\sqrt{1-a^2}}{a\ln 10}$$

$$y = e^x \sin^2 x \cos x$$
 للاقتران $\frac{dy}{dx}$ جد

الحل: (الضرب الثلاثي)

$$\frac{dy}{dx} = e^x \sin^2 x \cos x + 2e^x \sin x \cos^2 x + -e^x \sin^3 x$$

$$y=3\cos t$$
 , $x=2\sin t$ إذا علمت أن $\left. rac{dy}{dx}
ight|_{x=\sqrt{2}}$ جد $\left. t \in \left(0,rac{\pi}{2}
ight)
ight.$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3\sin t}{2\cos t} = \frac{-3}{2}\tan t$$

$$\sqrt{2} = 2 \sin t \rightarrow \sin t = \frac{1}{\sqrt{2}}$$
 لكن

$$t = \frac{\pi}{4}$$

$$dy -3 = \pi$$

$$\therefore \frac{dy}{dx} = \frac{-3}{2} \tan \frac{\pi}{4} = \frac{-3}{2}$$

22) إذا علمت أن

$$f(1)=3, f'(1)=2, g(1)=1, g'(1)=-1$$
 فإن $rac{d}{dx}\Big(f^2ig(x^2ig)+ig(fogig)(x)\Big)$ فإن $x=1$ تساوي:

a) 10

b) 22

c) 20 d) 6

وأن n عدد صحيح (23) إذا علمت أن $f(x)=2x^n$ موجب، وأن $f^{(3)}(x) = 120 x^{n-3}$ ،فإن n تساوي: a) 6 b) 5 c) 7

جد
$$f(x) = \sqrt{\ln(x) + 4}$$
 أذا علمت أن $f'(1)$

 $f'(x) = \frac{\frac{1}{x}}{2\sqrt{\ln x + 4}}$

$$f'(1) = \frac{1}{2\sqrt{0+4}} = \frac{1}{4}$$

$$f(x) = \sin\left(an\left(\sqrt{3x^2+4}
ight)
ight)$$
 جد $f'(x)$:

$$f'(x) = \cos\left(\tan\sqrt{3x^2 + 4}\right)\sec^2\sqrt{3x^2 + 4} \cdot \frac{6x}{2\sqrt{3x^2 + 1}}$$

$$= \cos\left(\tan\sqrt{3x^2+4}\right)\sec^2\sqrt{3x^2+4} \cdot \frac{3x}{\sqrt{3x^2+1}}$$

$$0 \leq heta \leq 2\pi$$
 حيث $heta \leq 0$ جد قيمة $heta$

$$rac{dy}{dx} = \sqrt{2}$$
 التي يكون عندها

$$x = \sin^2 \theta$$
 , $y = 2\cos \theta$

الحل:

$$\frac{dy}{dx} = \frac{-2\sin\theta}{2\sin\theta\cos\theta} = -\sec\theta$$

$$-\sec\theta = \sqrt{2} \to \cos\theta = \frac{-1}{\sqrt{2}}$$

بالربع الثاني والثالث heta

$$\theta = 135^{\circ}, 225^{\circ}$$
$$= \frac{3\pi}{4}, \frac{5\pi}{4}$$

الاشتقاق الضمني

يستخدم الاشتقاق الضمني إذا لم يكن y موضع قانون عندها نشتق اعتيادي وأينما y نشتق نضرب ب $\frac{dy}{dx}$ وللسهولة y'.

حالات تحل على الضمني:

- 1) إذا كانت العلاقة معقدة، صعب اشتقاقها، نأخذ ln للطرفين.
 - متغیر) متغیر مثلًا (متغیر) متغیر مثلًا (متغیر) متغیر $x^{\ln x}$, $(\sin x)^x$
 - 3) المشتقة الثانية للمعادلات الوسطية

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

$$\sin(x+y) = y^2 \cos x$$
 مثال 1 جد $\frac{dy}{dx}$ جد الحل: (نشتق طرفی العلاقة)

$$\cos(x+y)(1+y') = -y^2\sin x + 2yy'\cos x$$

$$\cos(x+y)y' - 2yy'\cos x$$

= $-y^2\sin x - \cos(x+y)$

$$y' = \frac{-y^2 \sin x - \cos(x+y)}{\cos(x+y) - 2y \cos x}$$

با يا
$$xy+y^2=2x+3$$
 للعلاقة $\frac{d^2y}{dx^2}$ لعال 2 مثال 2

الحل: (نجد المشتقة الأولى)

$$xy'+y+2yy'=2$$

$$y'(x+2y)=2-y$$

$$y' = \frac{2-y}{x+2y}$$

نشتق مرة أخرى

$$y'' = \frac{(x+2y)(-y') - (2-y)(1+2y')}{(x+2y)^2}$$

y' نعوض

$$y'' = \frac{\left(x+2y\right)\left(-\frac{2-y}{x+2y}\right) - \left(2-y\right)\left(1+2\frac{2-y}{x+2y}\right)}{\left(x+2y\right)^2}$$

نرتب المسألة

$$y'' = \frac{2xy - 4x + 2y^2 - 8}{(x + 2y)^3}$$

$$y=(1+x)^x$$
 للعلاقة $rac{dy}{dx}$ جد $rac{dy}{dx}$ عند النقطة $(2,9)$ ؟

الحل: (نأخذ In للطرفين)

$$\ln y = x \, \ln(1+x)$$

نشتق الطرفين

$$\frac{y'}{y} = \frac{x}{1+x} + \ln(1+x)$$

$$y' = y \left[\frac{x}{1+x} + \ln(1+x) \right]$$

عندما y=9 , x=2 نعوض

$$y' = 9\left[\frac{2}{3} + \ln 3\right] = 6 + 9\ln 3$$

لعلاقة
$$rac{d^2y}{dx^2}$$
 لعلاقة $x=3t^5+1$, $y=t^3+t$

لحل:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2 + 1}{15t^4} = \frac{1}{5}t^{-2} + \frac{1}{15}t^{-4}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{-2}{5}t^{-3} - \frac{4}{15}t^{-5}}{15t^{4}}$$

$$\frac{d^2y}{dx^2} = \frac{-2}{75}t^{-7} - \frac{4}{225}t^{-9}$$

$$x=\sqrt{y^2+8y}$$
 للعلاقة $rac{dy}{dx}$ جد $x=3$ عندما $x=3$

الحل: (نربع الطرفين)

$$x^2 = y^2 + 8y$$

$$2x = 2yy' + 8y' \in \omega$$
نشتق

$$3 = \sqrt{y^2 + 8y} \qquad \Leftarrow x = 3$$
 لكن عندما

$$9 = y^2 + 8y$$
 \leftarrow نربع

$$y^2 + 8y - 9 = 0 \Rightarrow (y + 9)(y - 1) = 0$$

$$(3,1),(3,-9)$$

أولًا: نعوض (3,1) ⇒

$$6 = 2y' + 8y' \Rightarrow y' = \frac{6}{10} = \frac{3}{5}$$

$$\Leftarrow$$
 (3, -9) ثانيًا: نعوض

$$6 = -18y' + 8y' \Rightarrow y' = \frac{-3}{5}$$

$$x^2 = \tan y + x$$
 إذا علمت أن $x = 2$ عندما $\frac{dy}{dx}$ عندما

الحل: (نشتق طرفي العلاقة)

$$2x = \sec^2 y \, y' + 1$$

$$x=2$$
 نعوض في العلاقة

$$4 = \tan y + 2 \Rightarrow \tan y = 2$$

$$\sec^2 y = 1 + \tan^2 y = 5$$

$$\mathbf{4}=\mathbf{5}y'+\mathbf{1}\Rightarrow y'=rac{3}{5}$$
 خعوض في الاشتقاق

الأستاذ ماهر ضمرة

5 التطبيقات الهندسية

معادلة المماس والعمودي على المماس

ميل المماس عند نقطة = ميل المنحى عند نفس النقطة
$$\frac{dy}{dx}$$
 .

$$m$$
ميل العمودي على المماس عند نقطة $m_{
m ball} = -1$ حيث $m_{
m ball} = -1$

ر (
$$x,y_1$$
) معادلة المماس لمنحنى f عند النقطة ($y-y_1=m_{_{||_{
m Laal_{U}}}}(x-x_1)$ كذلك معادلة العمودي

$$y-y_1=m_{_{ ext{ULL}}}(x-x_1)$$
العمودي (4) مفاتيح حل المسائل الهندسية:

معادلة المماس (العمودي) المرسوم من نقطة، أو المار بنقطة
$$(a,b)$$
 نتأكد أنها نقطة تماس.

$$y=\mathbf{0}\leftarrow x$$
 المماس أو المنحنى يقطع محور $x=\mathbf{0}\leftarrow y$

√ إذاكان منحنيين متقاطعين

اقترانات
$$f=g$$
 علاقات حذف أو تعويض

إذا كان المنحنيين f ومماس) متماسين \checkmark

الصور متساوية المشتقات متساوية
$$f'(a)=g'(a)$$
 $f(a)=g(a)$

$$m_1 = m_2 \leftarrow \infty$$
مصطلح متوازیین

$$m_1*m_2=-1 \leftarrow$$
مصطلح متعامدین

$$m=0\leftarrow x$$
المماس الأفقى $m=0$ يوازي محور

$rac{dy}{dx} = \sin t + \cos t$ إذا علمت أن $rac{d^2y}{dx^2}$ ، جد $rac{d^2y}{dx^2}$ ، جد

الحل:

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\cos t - \sin t}{2}$$
$$= \frac{1}{2}\cos t - \frac{1}{2}\sin t$$

أثبت أن
$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = 1$$
 أثبت أن $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = 1$ أثبت أن $\sqrt{\frac{dy}{dx}} = \frac{y}{x}$

الحل: (إما نربع الطرفين أو نرتب المسألة)

$$\left(\frac{x}{y}\right)^{\frac{1}{2}} + \left(\frac{x}{y}\right)^{\frac{-1}{2}} = 1$$

نشتق الطرفين

$$\left(\frac{1}{2}\left(\frac{x}{y}\right)^{\frac{-1}{2}} - \frac{1}{2}\left(\frac{x}{y}\right)^{\frac{-3}{2}}\right)\left(\frac{y - xy'}{y^2}\right) = 0$$

$$\frac{y-xy'}{y^2} = \mathbf{0} \Rightarrow y' = \frac{y}{x}$$

$$\frac{1}{2} \left(\frac{x}{y} \right)^{\frac{-1}{2}} - \frac{1}{2} \left(\frac{x}{y} \right)^{\frac{-3}{2}} = \mathbf{0} \to x = y$$

وهذا يناقض المعطى.

- غجد: $y = \frac{1 e^{-x}}{1 + e^{-x}}$ اِذَا علمت أَن
 - a) جد ميل المماس عند نقطة الأصل.
 - $oldsymbol{y}$ بين عدم وجود مماس أفقي للاقتران (b

الحل:

(a

$$f'(x) = \frac{(1+e^{-x})(e^{-x}) - (1-e^{-x})(-e^{-x})}{(1+e^{-x})^2}$$

$$f'(0) = \frac{2-0}{4} = \frac{1}{2}$$

$$m=0\leftarrow$$
ا إذا كان هنالك مماس أفقي (b $e^{-x}+e^{-2x}+e^{-x}-e^{-2x}=0$

$$2e^{-x}=0\Rightarrow e^{-x}=0$$
 هذا غير ممكن m هذا غير ممكن m . لا يوجد أصفار

 $y = \ln(ax + b)$ اذا کان $y = \ln(ax + b)$ عددان موجبان وعند النقطة P يكون $a \cdot b$

ميل المماس 1:

- 1) أثبت أن الاحداثى x للنقطة P أقل من (a
 - b) جد نقطة التماس التي يكون عندها
 - P ميل المماس $\frac{1}{2}$ علمًا بأن

a)
$$y' = \frac{a}{ax + b} = 1$$

$$ax + b = a \rightarrow x = \frac{a - b}{a} = 1 - \frac{b}{a}$$

ا قيمة أقل من 1
$$x \leftarrow 0 < \frac{b}{a}$$

- ✓ خطوات إيجاد نقطة تماس لمماس مرسوم من نقطة خارجية:
 - (x,y) نفرض التماس (1
- f نجد ميل المماس من $m=rac{\Delta y}{\Delta x}$ ونبدل y من (2
 - أما العلاقات الضمنية لا نبدل.
 - 3) نجد المشتقة.
 - x نساوي المشتقة $m=rac{\Delta y}{\Delta x}$ ونجد (4
 - 5) نجد y ونجد المعادلة المطلوبة.

مثال $oldsymbol{1}$ جد قيم $oldsymbol{x}$ التي يكون عندها المماس أفقيًا $f(x) = e^x - 2x$ لمنحنى m=0 الحل: المطلوب قيم x التي تجعل $f'(x) = e^x - 2 = 0 \rightarrow e^x = 2$

$$x = \ln 2$$
 $\Leftrightarrow \ln 3$

x أثبت أن المقطع $f(x)=\ln x$ أثبت أن المقطع أ للعمودي على المماس لمنحنى الاقتران عند $e + \frac{1}{e}$ هو (e, 1)

الحل:

$$f'(x) = rac{1}{x}
ightarrow m_{ ext{mann}} = rac{1}{e}$$

$$m_{ ext{Nune}} = -e$$
 معادلة العمودي $y-1 = -e(x-e)$ معادلة العمودي $-1 = -e(x-e) \leftrightarrow y = 0 \leftrightarrow x$ مقطع $x = rac{1}{e} + e$

$$y = 0 \leftarrow x$$
تقاطع المماس مع محور B

$$x = 0$$

$$\therefore x = 2 \to C(2,0)$$

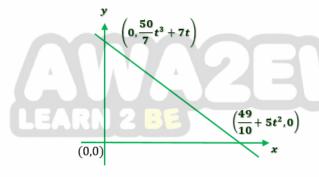
$$Area = \frac{1}{2}(2-0)(1) = 1$$

مثال 6 جد مساحة المثلث المكون من العمودي على المماس لمنحنى العلاقة x=t عندما x=t عندما $x=5t^2, y=7t$ والمحورين (t>0) بدلالة

 $rac{dy}{dx}=rac{7}{10~t} \Rightarrow m_{
m panel}=rac{-10t}{7} \ y-7t=rac{-10}{7}t(x-5t^2)$ معادلة العمودي

يقطع المحور

$$x = 0$$
 $y = 0$
 $y = \frac{50}{7}t^3 + 7t$ $y = \frac{49}{10} + 5t^2$



$$A = \frac{1}{2} \left(\frac{49}{10} + 5t^2 \right) \left(\frac{50}{7} t^3 + 7t \right)$$

b)
$$f(0)=2\Rightarrow \ln b=2 \rightarrow b=e^2$$

 $f'(0)=1\Rightarrow \frac{a}{b}=1 \rightarrow a=b$

$$\therefore a = e^2$$

$$y = \ln(e^2x + e^2)$$

$$y' = \frac{e^2}{e^2x + e^2} = \frac{1}{x+1} = \frac{1}{2}$$

$$x + 1 = 2 \Rightarrow x = 1 (1, \ln 2e^2)$$

$$= (1, 2 + \ln 2)$$

مثال 5 احسب مساحة المثلث المكون من المماس والعمودي على المماس من نفس المماس والعمودي على المماس من نفس نقطة التماس $\left(t=\frac{\pi}{2}\right)$ لمنحنى العلاقة $y=\sin t+\cos t$, $x=\cos t+1$ ومحور x.

الحل: أولًا: نجد معادلة المماس والعمودي

$$x_1 = 1 \quad , \quad y_1 = 1$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t - \sin t}{-\sin t}$$

$$m_{ ext{modol}} = 1
ightarrow m_{ ext{capec}} = -1$$

$$y-1=-1(x-1)$$

$$y = -x + 2$$
 , $y - 1 = 1(x - 1)$

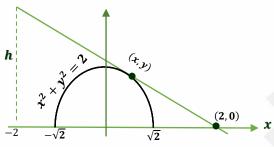
المماس y = x العمودي على المماس

الأستاذ ماهر ضمرة

$$x_1 = 1$$
 , $y_1 = \frac{-\sqrt{27}}{2}$

$$m = \frac{\frac{-\sqrt{27}}{2}}{-3} = \frac{\sqrt{27}}{6}$$
$$y + \frac{\sqrt{27}}{2} = \frac{\sqrt{27}}{6}(x - 1)$$

مثال 8 من الشكل التالي جد:



(x,y) الحل: نجد نقطة التماس

$$m = \frac{\Delta y}{\Delta x} = \frac{y}{x - y}$$

والمشتقة

$$2x + 2yy' = 0$$

$$y' = \frac{-x}{y} = \frac{y}{x-2}$$

$$y^2 = -x^2 + 2x$$

$$y^2 + x^2 = 2x \Rightarrow 2 = 2x \Rightarrow x = 1$$

$$\therefore y^2 = 1 \rightarrow y = 1$$

اللذان يمران بالنقطة (4,0) الحل: (4,0) ليست نقطة تماس لا تحقق المنحني

(x,y) نفرض التماس

$$\frac{\Delta y}{\Delta x} = \frac{y}{x - 4}$$

نجد المشتقة

$$\frac{2x}{4} + \frac{2yy'}{9} = 0 \to y' = \frac{-1}{2}x \cdot \frac{9}{2y}$$

$$y' = \frac{-9x}{4y} = \frac{y}{x-4} \rightarrow 4y^2 = -9x^2 + 36x$$

$$y^2 = \frac{-9}{4}x^2 + 9x$$

نعوض في العلاقة

$$\frac{x^2}{4} + \frac{\frac{-9}{4}x^2 + 9x}{9} = 1 \rightarrow x = 1$$

$$y^2 = \frac{27}{4} \rightarrow y = \pm \frac{\sqrt{27}}{2}$$

المعادلة الأولى:

$$x_1 = 1$$
 , $y_1 = \frac{\sqrt{27}}{2}$

$$m = \frac{y}{x-4} = \frac{\frac{\sqrt{27}}{2}}{-3} = \frac{-\sqrt{27}}{6}$$

$$y - \frac{\sqrt{27}}{2} = \frac{-\sqrt{27}}{6}(x - 1)$$

التماس(1,1)

$$m_{ ext{man}}=rac{1}{1-2}=-1$$

$$y-1=-1(x-1)\Rightarrow y=2-x$$

$$h = y = 4 \iff x = -2$$
 نعوض

(تدريب منزلي)

اختر الإجابة الصحيحة:

$$e^{\sin x}+e^{\cos y}=e+1$$
 ميل المماس لمنحنى (1 $\left(rac{\pi}{2},rac{\pi}{2}
ight)$ يساوي:

a) 0 b) 1 c)
$$-1$$
 d) $\frac{\pi}{2}$

a)
$$(1,-3)$$
 فقط b) $(-1,3)$

c)
$$(1,-3), (-1,3)$$
 d) $(1,-3), (-1,-3)$

 $x+y^2=1$ إن إحداثي النقطة التي تقع على (3 بحيث يكون عندها مماس المنحني موازيًا للمستقيم اهی: x + 2y = 0

- a) (1, 1)
- b) (0, 1)
- c) (1,0)
- d) (0,-1)

- $y=\chi^{rac{1}{x}}$ ان إحداثى النقطة الواقعة على منحني (4 حيث x>0 ،التي يكون عندها ميل المماس صفرًا هي:
- a) (*e*, *e*)
- b) $\left(e,e^{\frac{1}{e}}\right)$
- c) (e, e^2)
- d) (e, 1)
- ية $x^3 + y^3 = 6xy$ إن معادلة المماس للعلاقة x > 0 حيث y = x تقاطعه مع منحنى المعادلة
- a) y = x b) y = 6 + x
- c) y = 6 x d) y = -6 x

التطبيقات الفيزيائية

موقع الجسم S(t)

نشتق
$$s' = \frac{ds}{dt}$$

السرعة المتجه V(t)

نشتق
$$v' = rac{dv}{dt} = rac{d^2s}{dt^2}$$

التسارع a(t)

- |V(t)| السرعة المتجهة V(t) ، السرعة المتجهة (1
 - $v=0 \leftarrow كالة السكون اللحظي عالم 2$
 - ا إذا كان

V < 0

V > 0

الجسم يتحرك عكس اتجاه الحركة

الجسم يتحرك مع اتجاه الحركة مثال 2 يتحرك جسم حسب العلاقة $S(t)=4-\sin t$

- a) حدد موقع الجسم عندما كان في حالة السكون اللحظى أول مرة بعد انطلاقه.
- b) حدد موقع الجسم عندما يصل إلى أقصى سرعة. الحل:

a)
$$V(t) = -\cos t = 0$$

$$t = \frac{\pi}{2}$$
, $\frac{3\pi}{2\chi}$ \rightarrow $S\left(\frac{\pi}{2}\right) = (3)m$

$$\mathsf{b)}\,V(t)=|\!\cos t|\qquad,\quad 0\leq |\!\cos t|\leq 1$$

$$1) \left| \cos t \right| = 0 \rightarrow \sin t = \pm 1$$

إذا كان

$$\therefore S(t) = (3)m$$

 $\sin t = 1$

$$\sin t = 1 \quad \to \quad S(t) = (5)m$$

$$2) \left| \cos t \right| = 1 \rightarrow \sin t = 0$$

$$\therefore S(t) = (4)m$$

مثال 3 يتحرك جسم وفق العلاقة

$$S(t)=t^{\frac{1}{t}} , \quad t>0$$

جد تسارع الجسم عندما تكون سرعته المتجهة صفرًا.

الحل: نأخذ ln للطرفين

$$\ln S = \frac{1}{t} \ln t \Rightarrow \frac{v}{s} = \frac{1}{t^2} + \frac{-\ln t}{t^2}$$

$$0 = \frac{1}{t^2}(1 - \ln t)$$

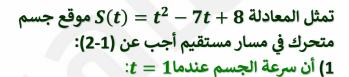
4) إذا طلب السؤال بأي اتجاه يتحرك الجسم نعوض الزمن بالسرعة

عكس اتجاه الحركة

مع اتجاه الحركة

5) عندما يسأل متى يعود الجسم للموقع الابتدائي S(t) = S(0) نعوض S(0) ، ثمّ نساوي

مثال 1 اختر الإجابة الصحيحة لما يلي:



d)-2

2) متى يعود الجسم للموقع الابتدائي:

d) 7

پحدد موقع جسم $S(t)=e^t-4t$ إذا علمت أن يتحرك في مسار مستقيم. جد تسارع الجسم عندما تكون سرعته صفرًا:

a)
$$e^4$$

d) -3

 $S(t) = \ln(t^2 - 2t + 1.9)$ يمثل الاقتران (4 موقع جسم يتحرك في مسار مستقيم، متي يعود الجسم لموقعه الابتدائي؟

a)
$$t = 2$$
 b) $t = 1$ c) $t = 1.9$

$$\sin^2 t = 1 - \cos^2 t \leftarrow$$
موقع أعلى سرعة

$$\sin^2 t = 0$$

أي أعلى سرعة عن موقع الاتزان والأدنى عند الأطراف.

$$3) a(t) = -7 \sin t$$

بالاعتماد على الخصائص الجبرية لاقتران التسارع.

قيمة التسارع = معكوس قيمة الموقع

4) قيمة التسارع = صفر عند موقع الاتزان، لأن قوة الجاذبية وقوة الزنبرك تلغي إحداهما الأخرى.

مسائل النمذجة

هنالك فكرة واحدة لمسائل النمذجة

معدل التغير = المشتقة

مثال 1 تحسب قيمة بدل الخدمة لأحد المنتجات

$$U(t)=80\,\sqrt{rac{2x+1}{3x+4}}$$
 بالدينار باستعمال عدد القطع المبيعة.

a) جد معدل تغير قيمة بدل الخدمة بالنسبة إلى عدد القطع المبيعة.

b) جد (20).*u*

لحل:

a)
$$u'(x) = 40 \left(\frac{2x+1}{3x+4}\right)^{\frac{-1}{2}} \cdot \frac{(3x+4)(2)-(2x+1)(3)}{(3x+4)^2}$$

b)
$$u'(20) = 40 \left(\frac{41}{64}\right)^{\frac{-1}{2}} \frac{128-122}{(64)^2} \simeq 0.061$$

$$\ln t = 1 \rightarrow \frac{t = e}{t}$$
 , $\frac{1}{t^2} = 0$ غير ممكن

$$V(t) = S(t) = \frac{1 - \ln t}{t^2}$$

$$a(t) = S(t) \frac{t^2 * \frac{-1}{t} - 2t(1 - \ln t)}{t^4} + V(t) \frac{1 - \ln t}{t^2}$$

$$a(e) = e^{\frac{1}{e}} \cdot \frac{e}{e^4} + 0 = e^{\left(\frac{1}{e} - 3\right)}$$

مثال 4 الحركة التوافقية

يتحرك جسم معلق بزنبرك إلى الأعلى والأسفل حيث $S(t)=7\sin t$

a) جد اقتران يمثل سرعة الجسم المتجهة وتسارعه.

b) صف حركة الجسم.

الحل:

a)
$$V(t) = 7\cos t$$
 , $a(t) = -7\sin t$

b) يتم وصف الحركة:

1) تحديد أعلى وأقل موقع يتحرك من الجسم.

2) تحديد موقع أكبر سرعة وأصغر سرعة.

3) الربط بين التسارع والازاحة.

2) تحديد أكبر وأصغر قيمة للتسارع.

1)
$$S(t) = 7 \cos t$$
 , $-7 \le S(t) \le 7$

$$-1 \le \sin t \le 1$$
 لأن

$$2) V(t) = 7 \cos t$$

أعلى وأدنى قيمة للسرعة عندما

$$\cos t = \pm 1$$
 الأعلى

$$\cos t = 0$$
 الأدنى

إجابة سؤال الدوائر ص14

5	4	3	2	1	رقم الدائرة
С	В	b	С	а	الإجابة

إجابة سؤال الدوائر ص15

4	3	2	1	رقم الدائرة
а	b	d	С	الإجابة

إجابة سؤال الدوائر ص2

3	2	1	رقم الدائرة
С	С	d	الإجابة

إجابة سؤال الدوائر ص(4+3)

9	8	7	6	5	4	3	2	1	رقم الدائرة
С	С	b	d	С	Α	d	b	С	الإجابة

إجابة سؤال الدوائر ص7+6

9	8	7	6	5	4	3	2	1	رقم الدائرة
а	С	d	b	d	d	а	С	b	الإجابة

18	17	16	15	14	13	12	11	10	رقم الدائرة
b	а	С	b	С	b	d	b	b	الإجابة

23	22	21	20	19	رقم الدائرة
b	b	b	С	С	الإجابة

AMAZEL LEARN 2 BE