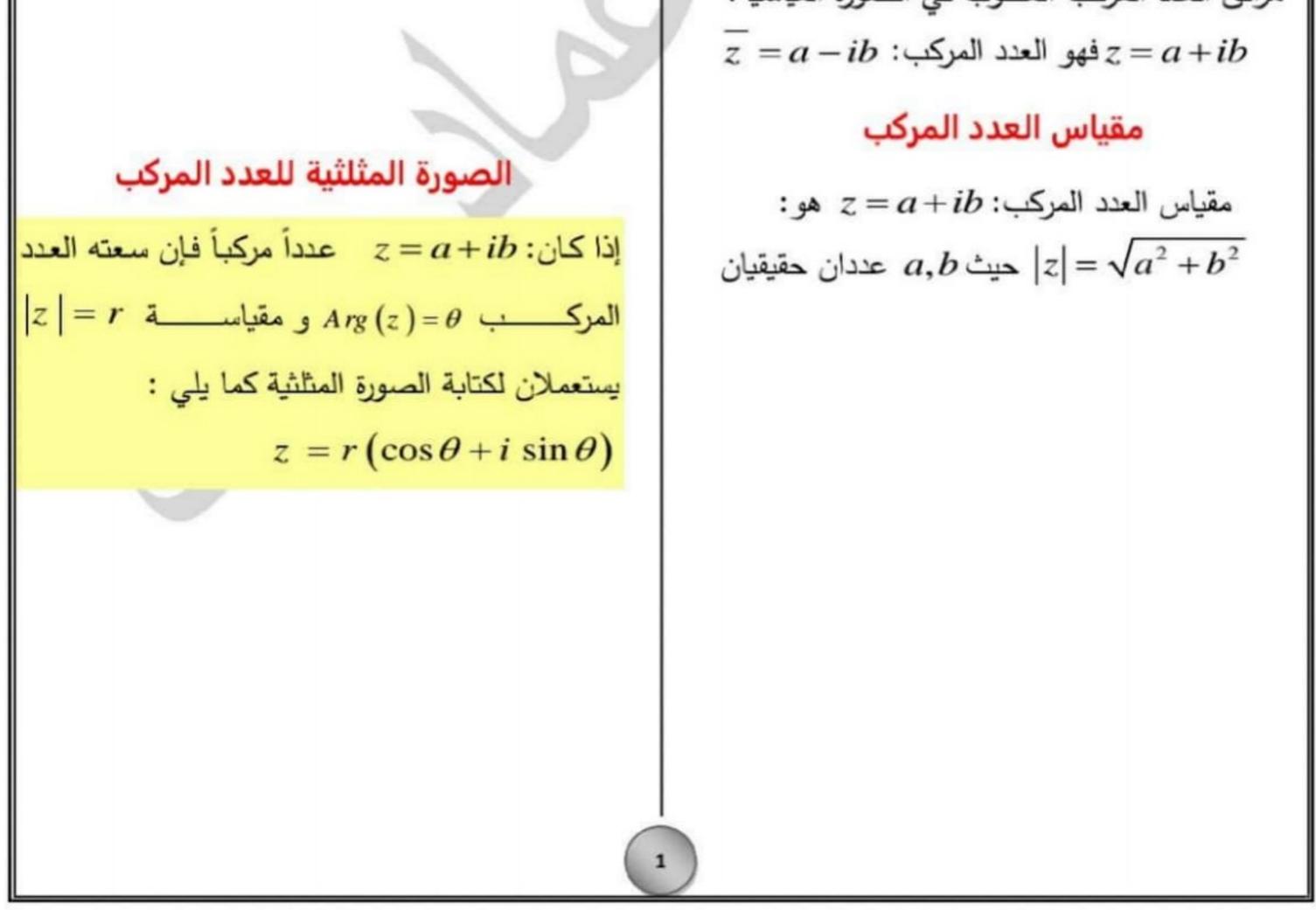


0795153669		لمركبة	الأعداد ا	استاذ : عماد مسك
رکب	العدد الم	سعة	مركبة	مكثف وحدة الأعداد الم
ين فإن:	قيقيين موجب	إذا كان a,b عددين حا		قاعدة:
				$\sqrt{-1} = i$
- 11 - 11	الربع			$i^{2} = -1$
العدد المركب z	الدي يعع فيه z	Arg(z)	ركب	الصورة القياسية للمر
z = a + ib		$\tan^{-1}\left(\frac{b}{a}\right)$		z = x + iy
z = -a + ib	الثاني	$\pi - \tan^{-1}\left(\frac{b}{a}\right)$		الجزء التخيُّلي عدد تخيُّلي الجزء الم
z = -a - ib	الثالث	$-\left(\pi-\tan^{-1}\left(\frac{b}{a}\right)\right)$		ساوي الاعداد الم ساوي العددان المركبان: c + id,
z = a - ib	الرابع	$-\tan^{-1}\left(\frac{b}{a}\right)$		قط إذا كان: a = c, b = d
				حيث a,b,c,d أعداد حقيقية
h تساوي صفر	قاعدة: الة a او ا	ايجاد السعة في ح		<mark>مرافق العدد المركد</mark> مرافق العدد المركب المكتوب في الد



0795153669	لأعداد المركبة	لاستاذ : عماد مسك
	مثال 3 :	مثال 1 :
بأتي العدد المركب z بالصورة	أكتب في كل مما ي	جد قيم كل من x ، و y الحقيقية التي تجعل
	المثلثية :	المعادلة الآتية صحيحة :
1 $r = z = 2, Arg(z) =$	$=\frac{\pi}{2}$ $x^2 - 3$	1 + i(2y - 5) = 8 + 9i
$z = r(\cos\theta + i\sin\theta)$ $= 2(\cos(\frac{\pi}{2}) + i\sin\theta)$	$-i\sin(\frac{\pi}{2})$	
2- $ z = 3$, $Arg(z) = \frac{\pi}{3}$		مثال 2 :
$z = r(\cos\theta + i\sin\theta)$ $= 3(\cos(\frac{\pi}{3}) + i\sin\theta)$	$i\sin(\frac{\pi}{3})$ 1 z	جد سعة كل من الأعداد المركبة الآتية 1 -
3 $r = z = 7, Arg(z) = \frac{5}{6}$		$z) = \tan^{-1}\left(\frac{0}{1}\right) = 0$
$z = r(\cos\theta + i\sin\theta) = 7(\cos\theta)$	$\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)$ 2 z	= 3i
		$\begin{aligned} z) &= \frac{\pi}{2} \\ &= -5 - 5i \end{aligned}$
1 100 100 0000		$(5), 3\pi$

$$Arg(z) = -(\pi - \tan^{-1}\left(\frac{3}{5}\right)) = -\frac{3\pi}{4}$$

$$Arg(z) = -(\pi - \tan^{-1}\left(\frac{3}{5}\right)) = -\frac{3\pi}{4}$$

$$4.... z = 1 - i\sqrt{3}$$

$$Arg(z) = -\tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = -\frac{\pi}{3}$$

$$Arg(z) = -\tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = -\frac{\pi}{3}$$

$$5.... z = 6\sqrt{3} + 6i$$

$$Arg(z) = \tan^{-1}\left(\frac{6}{6\sqrt{3}}\right) = \frac{\pi}{6}$$

$$6.... z = 3 - 4i$$

$$Arg(z) = \tan^{-1}\left(\frac{4}{3}\right) \approx -0.93$$

$$Arg(z) = \tan^{-1}\left(\frac{4}{3}\right) \approx -0.93$$

0795153669	الأعداد المركبة	لاستاذ : عماد مسك
$=\frac{34+i}{13}=\frac{34}{13}+\frac{1}{13}i$		ىثال5:
5) $\frac{3+5i}{2i}$		اذا كان: z = 5 + 3ik الحقيقية فأجد جميع قيم k الحقيقية
$\frac{3+5i}{2i} = \frac{3+5i}{2i} \times \frac{i}{i} = \frac{3i+5i^2}{2i^2}$ $= \frac{3i-5}{-2} = \frac{5}{2} - \frac{3}{2}i$	=	$(3k)^2 = \sqrt{25 + 9k^2}$ 13 = 169 $\rightarrow k = \pm 4$
$z_1 = 10 \left(\cos\left(-\frac{2\pi}{7}\right) + i\sin\left(-\frac{2\pi}{7}\right) \right)$	مثال7: إذا كان: (بالصورة القياسية:	شال6 بد ناتج کل مما يأتي، ثم أکتبه
$z_2 = 2 \left(\cos \frac{6\pi}{7} + i \sin \frac{6\pi}{7} \right)$ زكل مما يأتي بالصورة المثلثية:	$\frac{\pi}{2}$): وكان $\frac{1}{5i(3-7i)}$	
1) $z_1 z_2$ = 2×10 $\left[\cos\left(\frac{-2\pi}{2\pi} + \frac{6\pi}{2\pi}\right) + i \sin\left(\frac{-2\pi}{2\pi} + \frac{6\pi}{2\pi}\right) \right]$		

$$= 2 \times 16 \left(\cos \left(\frac{7}{7} + \frac{7}{7} \right)^{+1} \sin \left(\frac{7}{7} + \frac{7}{7} \right) \right)$$

$$= 20 \left(\cos \left(\frac{4\pi}{7} + i \sin \frac{4\pi}{7} \right) \right)$$

$$= 20 \left(\cos \left(\frac{4\pi}{7} + i \sin \frac{4\pi}{7} \right) \right)$$

$$= 20 \left(\cos \left(\frac{4\pi}{7} + i \sin \frac{4\pi}{7} \right) \right)$$

$$= \frac{10}{2} \left(\cos \left(\frac{-2\pi}{7} - \frac{6\pi}{7} \right) + i \sin \left(\frac{-2\pi}{7} - \frac{6\pi}{7} \right) \right)$$

$$= 5 \left(\cos \left(-\frac{8\pi}{7} \right) + i \sin \left(-\frac{8\pi}{7} \right) \right)$$

$$= 5 \left(\cos \left(-\frac{8\pi}{7} + 2\pi \right) + i \sin \left(-\frac{8\pi}{7} + 2\pi \right) \right)$$

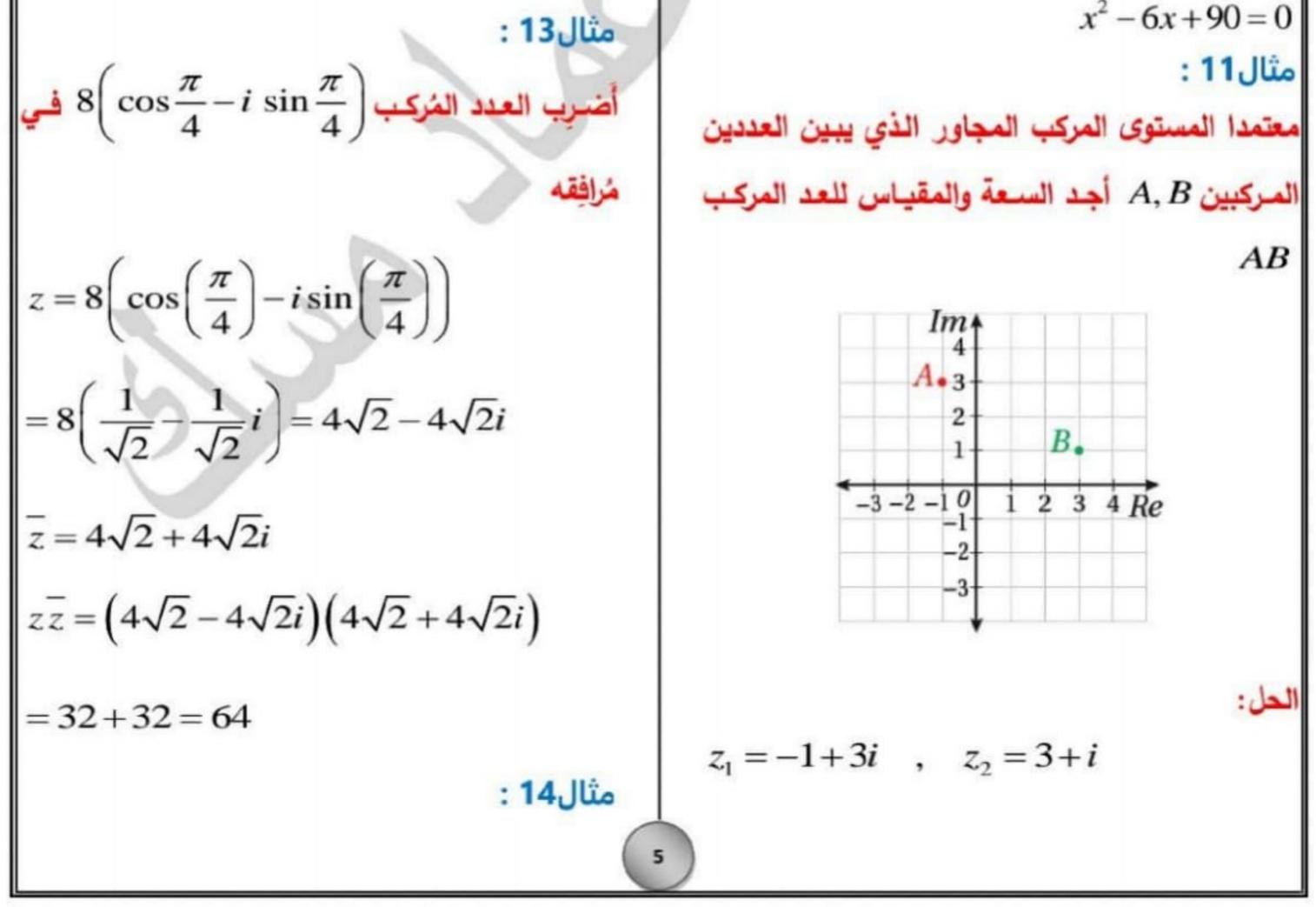
$$= 5 \left(\cos \left(-\frac{8\pi}{7} + 2\pi \right) + i \sin \left(-\frac{8\pi}{7} + 2\pi \right) \right)$$

$$= \frac{24 + 16i - 15i + 10}{9 + 4}$$

مركبة 0795153669	الاستاذ : عماد مسك
$x^2 = 25$ or $x^2 = -4$	$=5\left(\cos\frac{6\pi}{7}+i\sin\frac{6\pi}{7}\right)$
بما أن x عدد حقيقي، فإن: x = ±5	مثال 8:
$x = 5 \Longrightarrow y = -2$	أجد الجذرين التربيعين لأعداد المركبة الآتية:
$x = -5 \Longrightarrow y = 2$	1) $z = 21 - 20i$
إذن الجذران التربيعيان للعدد المركب: 20i – 21 هما: 21 – 5, 2i + 5–	الحل: $\sqrt{z} = x + iy$
مثال 9 : أجد جميع الجذور الحقيقية والجذور المركبة	$z = (x + iy)^{2}$ 21 - 20i = (x + iy)^{2} عوض قيمة z
$z^3 + 4z^2 + z = 26$ للمعادلة: 12 الحل: المعادلة: $z^3 + 4z^2 + z - 26 = 0$	$21-20i = x^2 + 2ixy + i^2 y^2$ بفك الأقواس $21-20i = x^2 - y^2 + 2ixy$
بحسب نظرية الأصفار النسبية فإنه يكون أحد عوامل	$21 = x^2 - y^2$

$$\begin{aligned} \pm 1, \pm 2, \pm 13, \pm 26; \ (26^{-}) \ (e^{2}) \ (26^{-}) \ (26^$$

0795153669	د المركبة	الأعدا	الاستاذ : عماد مسك
$z_1z_2=\bigl(-1+3i\bigr)\bigl(3+i\bigr)$		$z^3 + 4z^2 + z - 26 = (z - z)^2$	$2)(z^2+6z+13)=0$
= -3 - i + 9i - 3 = -6	6+8i	$z^2 + 6z + 13 = 0$ or	z - 2 = 0
$ z_1 z_2 = \sqrt{36 + 64} = 10$		$z = \frac{-6 \pm \sqrt{36 - 52}}{2} = \frac{-6}{2}$	$\frac{5\pm\sqrt{-16}}{2} = -3\pm 2i$
$Arg(z_1z_2)=\pi-\tan-1\bigg($	$\left(\frac{8}{6}\right) \approx 2.21$	، هي:	ذن لهذه المعادلة 3 جذور
	مثال12 :	2, -3+2i, -3-2i	
للثابتين a وb في كلِّ مما يأتي	اجد القيم الحقيقية		مثال 10:
	:	حد جذور المعادلة:	ذا كان: 3+9i هـ أ
1) $(a+6i)+(7-ib) = -$	2+5i الحل:	a,b کل من	فأجد قي $x^2 + ax + b = 0$
a+7+(6-b)i=-2+5i			لحل:
a + 7 = -2, $6 - b = 5$		عية الناتجة بالمعادلة	مقارنة حدود المعادلة التربي
a = -9, $b = 1$		a = -6, b	لمعطاة، أستنتج أن: 90=
u - , v - 1			2



0795153669	مركبة	الاستاذ: عماد مسك الأعداد ال
$Arg\left(\frac{z_2}{z_1}\right) = Arg(1) - Arg(z_2)$		$z_1 = 2\sqrt{3} - 2i$, $z_2 = \sqrt{5} - \sqrt{15}i$: إذا $z_1 = 2\sqrt{3} - 2i$, $z_2 = \sqrt{5} - \sqrt{15}i$
$=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}$		معتا يأتي : 1) <u>Z₂</u>
3) $\frac{z_3}{z_2}$	الحل:	$ z_1 $ $ z_1 = \sqrt{12 + 4} = 4$
$\overline{z_2} = \sqrt{5} + i\sqrt{15}$		$ z_2 = \sqrt{5+15} = 2\sqrt{5}$
$\left \overline{z_2}\right = \left z_2\right = 2\sqrt{5}$		$\left z_{3}\right = \sqrt{4+4} = 2\sqrt{2}$
$Arg\left(\overline{z_2}\right) = -Arg\left(z_2\right) = \frac{\pi}{3}$		$Arg(z_{1}) = -\tan^{-1}\left(\frac{2}{2\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$
$\left \frac{z_3}{z_2}\right = \frac{ z_3 }{ z_2 } = \frac{2\sqrt{2}}{2\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}}$		$Arg(z_2) = -\tan^{-1}\left(\frac{\sqrt{15}}{\sqrt{5}}\right) = -\tan^{-1}\left(\sqrt{3}\right) = -\frac{\pi}{3}$
(z_3)		(2)

$$Arg\left(\frac{z_{3}}{z_{2}}\right) = Arg\left(z_{3}\right) - Arg\left(z_{2}\right)$$

$$= -\frac{\pi}{4} - \frac{\pi}{3} = -\frac{7\pi}{12}$$

$$= -\frac{\pi}{4} - \frac{\pi}{3} = -\frac{7\pi}{12}$$

$$= 15 \text{ Jin}$$

$$= 15 \text{ Jin}$$

$$z = 8\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right) : \text{ Jin}$$

$$z = 8\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)$$

$$z = 8\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)$$

$$z = 8\left(\cos\left(\frac{-2\pi}{3}\right) + i\sin\left(\frac{-2\pi}{3}\right)\right)$$

$$= 4rg\left(z_{3}\right) = -\tan^{-1}\left(\frac{2}{2}\right) = -\tan^{-1}\left(1\right) = -\frac{\pi}{4}$$

$$\left|\frac{z_{2}}{z_{1}}\right| = \left|\frac{z_{2}}{|z_{1}|}\right| = \frac{2\sqrt{5}}{4} = \frac{\sqrt{5}}{2}$$

$$Arg\left(\frac{z_{2}}{z_{1}}\right) = Arg\left(z_{2}\right) - Arg\left(z_{1}\right)$$

$$= -\frac{\pi}{3} - \left(-\frac{\pi}{6}\right) = -\frac{\pi}{6}$$

$$2) \frac{1}{z_{3}}$$

$$\left|\frac{1}{|z_{3}|}\right| = \frac{|1|}{|z_{3}|} = \frac{1}{2\sqrt{2}}$$

0795153669	عداد المركبة	الاستاذ : عماد مسك
1: (a-3i) و (b+ic) هما الجذرين	مثال 6 إذا كان	ذن مقياس x يساوي 8 وسعته 3
ن للعدد المركب: 48i – 55 ، فأجد قيمة	التربيعيير	2) أجد الجذرين التربيعيين للعدد z
لثوابت الحقيقية : a، و d، و c		نحل:
	= z	$8\left(\cos\frac{2\pi}{3}-i\sin\frac{2\pi}{3}\right)$
a-3 جذر للعد المركب 48i – 55 إذن	i بما أن	
- هو ايضا جذر له ومنه:	a+3i =	$8\left(-\frac{1}{2}-\frac{\sqrt{3}}{3}i\right) = -4-4\sqrt{3}i$
مع الجذرين $a-3i$ و $b+ic$ نجد أن:	بالمقارنة	
و $c = 3$ ومنه: b	v = -a $$	$-4 - 4\sqrt{3}i = x + iy$
$\left(a-3i\right)^2=55-48i$		$4 - 4\sqrt{3}i = x^2 + 2ixy + i^2y^2$
$a^2 - 6ia - 9 = 55 - 48i$		$4 - 4\sqrt{3}i = x^2 - y^2 + 2ixy$
$a^2 - 9 = 55, -6a = -48 \Longrightarrow a = 8 \Longrightarrow a$	b = -8	$4 = x^2 - y^2$, $-4\sqrt{3} = 2xy$
مادلة المعطى أحد جذورها في كُلِّ مما يأتي	أحُلُّ المع	$-2\sqrt{3}$

1)
$$x^{3} + x^{2} + 15x = 225, 5$$

 $x^{3} + x^{2} + 15x = 225$
 $x^{3} + x^{2} + 15x - 225 = 0$
 $x^{3} + x^{2} + 15x - 225 = 0$
 $x^{3} + x^{2} + 15x - 225 = 0$
 $x^{3} + x^{2} + 15x - 225 = (x - 5)(x^{2} + 6x + 45) = 0$
 $x = 5$
 $x = \frac{-6 \pm \sqrt{36 - 180}}{2}$
 $y = -\sqrt{6}$
 $y = \sqrt{2} + i\sqrt{6}$
 $y = \sqrt{2} + i\sqrt{6}$

0795153669	مركبة	الأعداد ال	الاستاذ : عماد مسك
	$45 = 45 \times 1 \times 1$ الحالة الأولى: $1 \times 45 = 45$ فإن: $1 \times 45 = q + q$, $p + q = 45$ ومنه: $20 = q = 22$, $p = 23$ m = 2pq = 1012	2	$\overline{\frac{44}{2}} = \frac{-6 \pm 12i}{2} = -3 \pm 6i$ حلول هذه المعادلة هي: -3+6i , $x = -3 - 6i$
p-q	$45 = 15 \times 3$ الحالة الثانية: $8 \times 3 = 3$, $p + q = 15$	ا ، مُبرِّرًا إجابتي	مثال 18 : أجيب عن الأسئلة الثلاثة الآتية تباعًا :
	q = 6 , $p = 9$ ومنه: $p = 9$, $m = 2pq = 108$	p و p عددان	1) أجد ناتج : ² (p+iq) ، حيث حقيقيان
p-4	$45 = 9 \times 5$ الحالة الثالثة: $5 \times 9 = 9$ فإن: $9 = q = 5$, $p + q = 9$ ومنه: $q = 2$, $p = 7$		الحل: $p^2 + 2ipq + i^2q^2$ $p^2 + 2ipq - q^2$
	m = 2pq = 28		$(2 + iq)^2 = 45 + im$

و عددان محيحان موجبان ، و
$$p < q$$
 ، فأجد ثلاث
قيم مُمكنة للعدد الحقيقي m
قيم مُمكنة للعدد الحقيقي m
الحل:
الحل:
 $m = 2pq = -108$
 $p^2 - q^2 = 45 + im = p^2 - q^2 + 2ipq$
 $p^2 - q^2 = 45 + im = 2pq = p^2 - q^2 + 2ipq$
 $p^2 - q^2 = 45 = , m = 2pq$
 $p^2 - q^2 = 45 = , m = 2pq$
 $p^2 - q^2 = 45 = (p+q)(p-q) = 45$
 $p = 108$
 $p = -q = 2pq = -108$
 $p = 108$
 $p = -q = 2pq = -108$
 $p = 108$
 $p = -q = 2pq = -108$
 $p = 108$
 $p = -q = 2pq = -108$
 $p = 108$
 $p = -q = 2pq = -108$
 $p = 108$
 $p = -q = 2pq = -108$
 $p = -q = -108$
 $p = -q = -108$
 $p = -q = -108$
 $p = -109 = (p - q) = (p$

0795153669	لأعداد المركبة	الاستاذ : عماد مسك
$(2y)^2 + y^2 = 125$		الجذران المطلوبان هما: 6i + 9 – 6i , – 9
$y^2 = 25 \Longrightarrow y = 5, x = 10$		مثال19 :
7 -	اذن i0+5 <i>i</i> =10+	أثبت أن: $ z ^2 = z $ لأي عدد مُركب z .
2. –	-10+51 (51	الحل:
$\frac{z}{3+4i} = \frac{10+5i}{3+4i} = \frac{10+5i}{3+4i}$		$\overline{z} = x - iy$ اذن $z = x + iy$
$p + iq = \frac{30 - 40i + 15i + 2}{0 + 16}$	$\underline{0}$ $z\overline{z} =$	(x+iy)(x-iy)
9+10		$x^2 - y^2 i^2$
$=\frac{50-25i}{25}=2-i$		$x^2 + y^2$
p+q=1 ويكون $p=2$	2, $q = -1$ اذن =	$\sqrt{\left(x^2 + y^2\right)^2} = \left z\right ^2$
	مثال21 :	
z = (10 - i) - (2 - 7i)	العدد المُركب:	مثال20 :
جـــــــــــــــــــــــــــــــــــــ	ث: أحصد	إذا كان z عددًا مركبًا ، حي
		(1)

$$\begin{aligned} z^{3} - 20z^{2} + 164z - 400 &= 0 \\ \text{if exerging regions of the set of t$$

0795153669	لأعداد المركبة	الاستاذ : عماد مسك
$h = \frac{3}{k}$	z^2 –	16z + 100 = 0
$h^2 - k^2 = 8$	ى	شم نقسم كثير الح z ³ - 20z ² +164z - 400 عا
$h^2 - \frac{9}{k^2} = 8$		$z^2 - 16z + 100$ فنجد أن:
$h^4 - 8h^2 - 9 = 0$		-16z+100(z-4)=0
$(h^2+1)(h^2-9)=0$		4 , $z = 8 \pm 6i$
$h = \pm 3 \Longrightarrow k = \pm 1$		حلول هذه المعادلة هي:
ن التربيعيان للعدد المركب 6 <i>i –</i> 8 هما:	، z = ۲	4, $z = 8 + 6i$, $z = 8 - 6i$
3+i , $-3-i$		المعادلة الجديدة هي:
د أن الجذرين التـربيعيين للعـدد المركـب	_ x ⁶ بالمثل نج	$-20x^4 + 164x^2 - 400 = 0$
	8-6i	ذا عوضنا $z = x^2$ تتحول هذه المعادلة الى
3-i , $-3+i$	z^3	$-20z^2 + 164z - 400 = 0$

0795153669	الأعداد المركبة	الاستاذ : عماد مسك
$ \omega^3 = \omega \times \omega \times \omega = 1 \times 1 \times 1 = 1$	$1) \operatorname{Arg}(z)$	
$Arg(\omega^{3}) = Arg(\omega) + Arg(\omega) + Arg(\omega) = \frac{\pi}{3}$ $\omega^{3} = 1(\cos \pi + i \sin \pi) = 1$	$\frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{3} = \pi$ Arg(z) = $\pi - 1$	$\tan^{-1}\sqrt{3} = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
$w = i(\cos n + i \sin n) = i$ $\frac{ u-9 }{ u-9 }$ $\frac{ u-9 }{ u-9 }$ $\frac{ u-9 }{ u-9 }$	$\frac{i}{ z } = 5$	لحل:
	$ z = \sqrt{(-3)^2 + 1}$ الحل: 3) Arg(zw)	$\left(3\sqrt{3}\right)^2 = \sqrt{9+27} = 6$
$\left \frac{u-9i}{3+i}\right = 5 \Longrightarrow \frac{\left u-9i\right }{\left 3+i\right } = 5$		لحل:
$\frac{\sqrt{u^2+81}}{\sqrt{9+1}} = 5$	Arg(zw) = Arg $4) zw $	$(z) + Arg(w) = \frac{2\pi}{3} - \frac{\pi}{6} = \frac{\pi}{2}$
$\sqrt{u^2 + 81} = 5\sqrt{10}$		لحل:

$$u^{2} + 81 = 250 \Rightarrow u^{2} = 169 \Rightarrow u = \pm 13$$

$$u = -13 \Rightarrow u = \pm 13$$

$$u = -13 \Rightarrow u = \pm 13$$

$$u = -169 \Rightarrow u = \pm 13$$

$$u^{2} + 81 = 203 \Rightarrow u^{2} = 108$$

$$|zv| = |z| \times |w| = 6 \times 18 = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 108$$

$$|zv| = |z| \times |w| = 6 \times 18 = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 1\left(\frac{\sqrt{3}}{2}\right)^{2} = 1$$

$$|zv| = |z| \times |w| = 6 \times 18 = 108$$

$$|zv| = |z| \times |w| = 6 \times 18 = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 1\left(\frac{\sqrt{3}}{2}\right)^{2} = 1$$

$$|zv| = |z| \times |w| = 6 \times 18 = 108$$

$$|zv| = |z| \times |w| = 6 \times 18 = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 108$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 1\left(\frac{\sqrt{3}}{2} + \frac{1}{3}\right)$$

$$|w| = \sqrt{\left(\frac{1}{2}\right)^{2}} + \left(\frac{\sqrt{3}}{2}\right)^{2} = 1$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 1\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$|zv| = \frac{1}{2} + \frac{\sqrt{3}}{2} i = 1\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

0795153669	أعداد المركبة	الاستاذ : عماد مسك
$(4+3i)^2 = 16 + 24i - 9 = 7$	+ 24i (-1	(5+8i)(1+4i)+5(-15+8i)+a(1+4i)+b=0
جذري (24i + 7) ويكون الجذر الأخر	1- إذن هو فعلاً أحد م	5 + 52i - 32 - 75 + 40i + a + 4ia + b = 0
	هو: 4−3 <i>i</i> 1	22 + a + b + i(4a - 12) = 0
	-1	22+a+b=0, 4a-12=0
(7 + 24 <i>i</i> تس <u>اوي</u> ضعف سعة	<i>u</i> -	3 , <i>b</i> =119
	(4+3i)	المعادلة هي: x ³ + 5x ² + 3x + 119 = 0
24	4	ما أن (1+4i) جذر للمعادلة فإن 1-4 جذر آخر ا
$\theta_1 = Arg\left(7 + 24i\right) = \tan^{-1}\frac{24}{7}$		كون معادلة تربيعية لها هذان الجذران:
$\theta_2 = Arg\left(4+3i\right) = \tan^{-1}\frac{3}{4} \approx$	0.6435 (x-	(1+4i))(x-(1-4i)) = (x-1-4i)(x-1+4i)
		$=x^2-2x+17$
$2 \times \theta_2 = 2(0.6435) = 1.287 =$	$= \theta_1$	نم نقسم كثير الحدود x3 + 5x2 + 3x + 119
$\therefore Arg(7+24i) = Arg(4+3)$	<i>i</i>)	x ² - 2x + 17 ، فنحصل على:

$$\begin{aligned} x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^3 + 5x^2 + 3x + 119 = (x^2 - 2x + 17)(x + 7) \\ x^2 + 1 + 3x^2 + 3$$

0795153669	الأعداد المركبة	الاستاذ : عماد مسك
-7-24i+a(-2+11i)+b(3-4i)-	قيمة كل من	$\frac{a}{3+i} + \frac{b}{1+2i} = 1-i$ فأجد
-7 - 2a + 3b - 20 + 25 + i(-24 + 1)	(1a-4b+10) = 0	لعددين الحقيقيين a,b
-2-2a+3b=0, $-14+11a$	a - 4b = 0	لحل:
a=2, $b=2$	$\frac{a}{3+i}+\frac{1}{1-i}$	$\frac{b}{2i} = 1 - i$
$z^4 + 2z^3 + 2b^2 + 10z + 2$	25 = 0 = 25 = 25 = 25 = 25	$\frac{i}{i} + \frac{b}{1+2i} \times \frac{1-2i}{1-2i} = 1-i$
ذر لهذه المعادلة فإن (i - 2 -)		
معادلة لها هذان الجذران:	10	$\frac{b-2ib}{5} = 1-i$
(z-(-2+i))(z-(-2-i)) = (z+i) = z	(z+2-i)(z+2+i) (z+2+i) (z+4z+5) (z+2+i	$\frac{b}{5} + \frac{b}{5} - i\frac{2b}{5} = 1 - i$
$z^4 + 2z^3 + 2z^2 + 10$	$\frac{3}{10}a + \frac{b}{5} = \frac{3}{10}a + \frac{b}{5}$	$=1$, $\frac{a}{10} + \frac{2b}{5} = 1$
$z^{4} + 2z^{3} + 2z^{2} + 10z + 25 = (z^{2} + 4z)$	3a + 2b =	10, a+4b=10

$$z^{2} - 2z + 5 = 0$$

$$z = \frac{2 \pm \sqrt{-16}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 - i$$

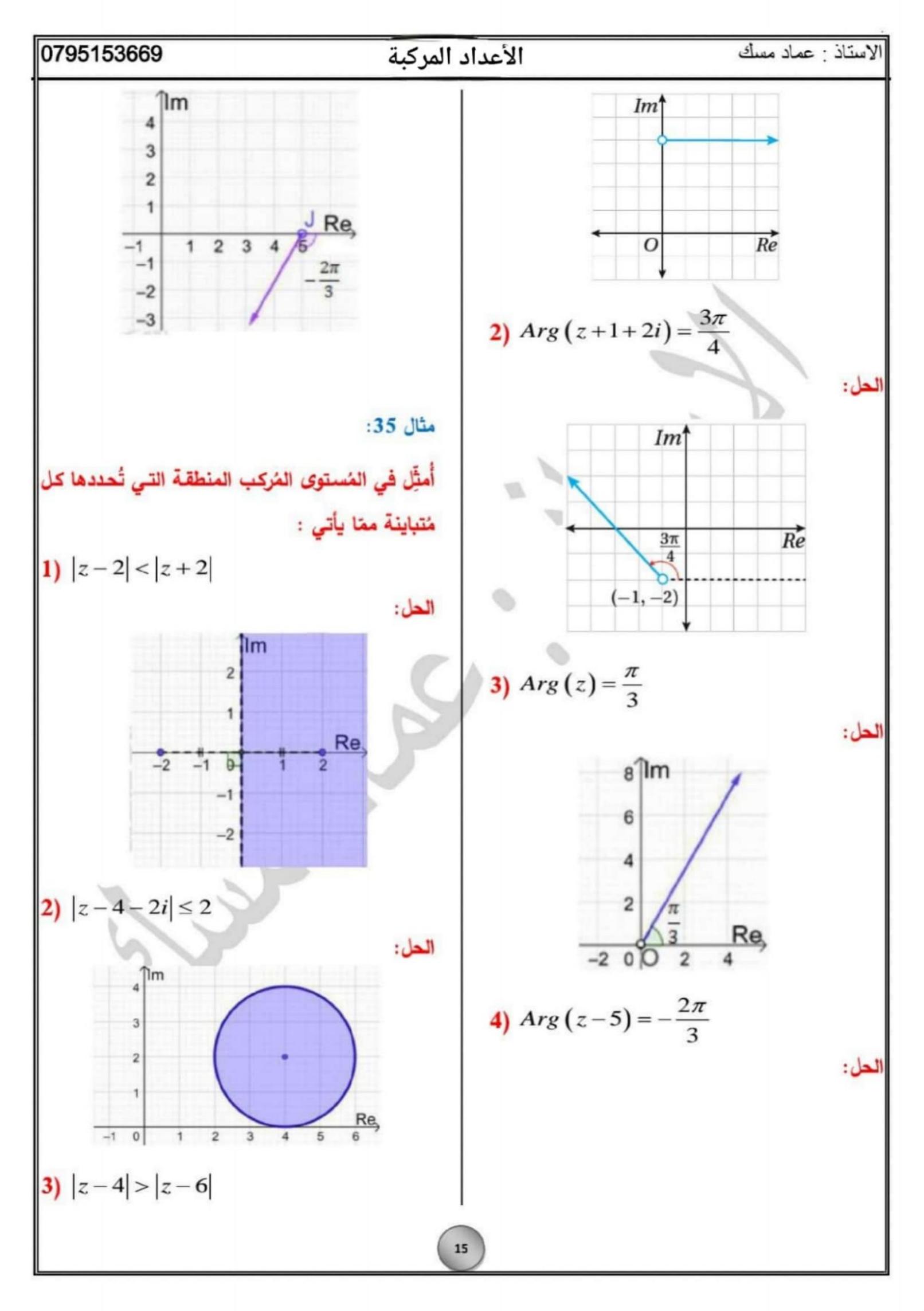
$$x = 1 - 2i, x = 1 + 2i, x = -2 + i, x = -2 +$$

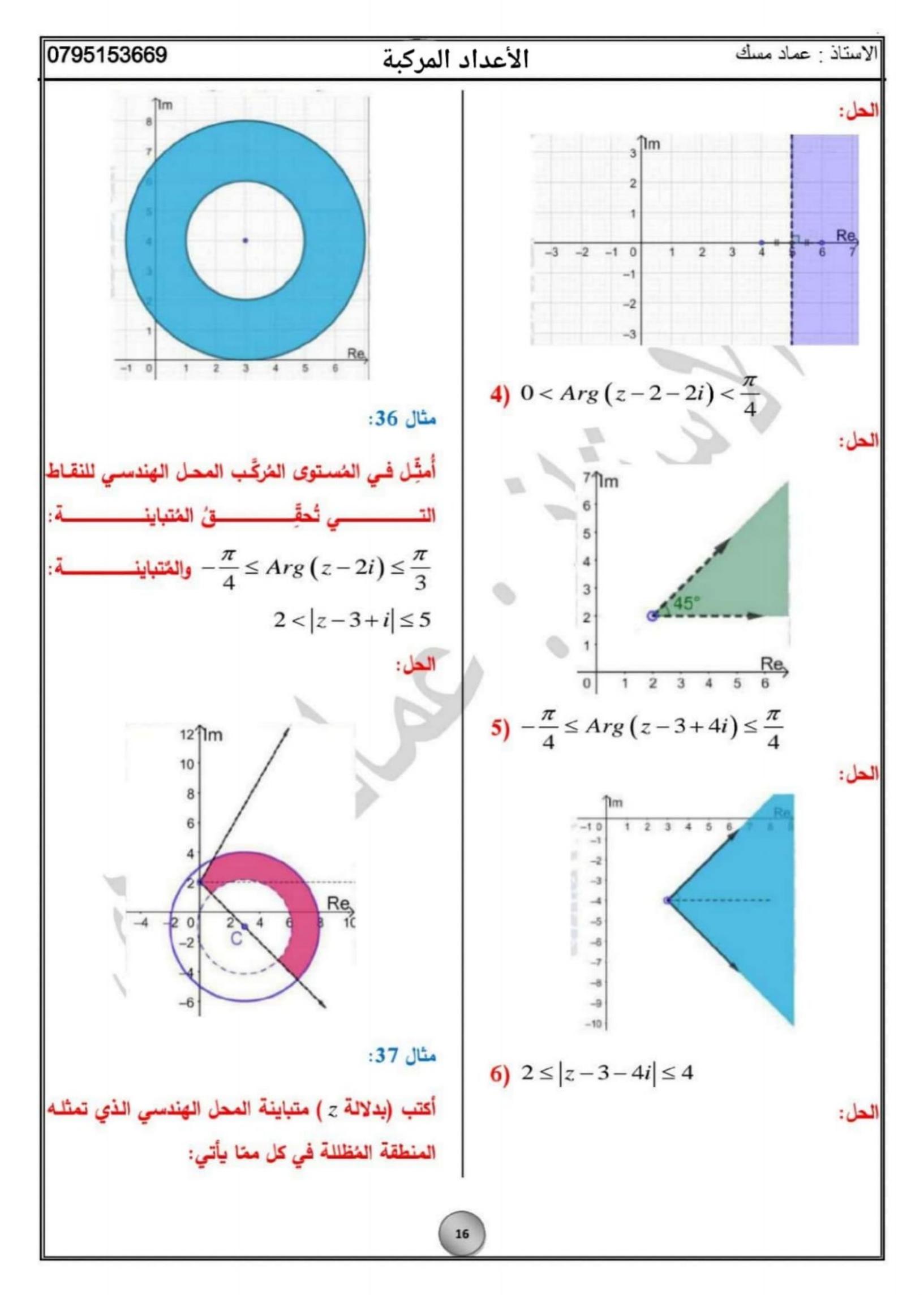
0795153669	لأعداد المركبة	الاستاذ : عماد مسك
ة الاعداد المركبة z التي تحقق	-) القيمة العظمى لسع	وهذه معادلة دائرة في المستوى المركب مركزها (5,4
<u>5</u> π	المعادلة المعطاة هي	يطول نصف قطرها 7
6	(<i>x</i> -	$(-5)^2 + (y-4)^2 = 49$
	مثال 33:	يثال 32:
سي الذي تمثله المعادلة:	أجد المحل الهند	ذا کانے: 4 = $ z+4-4\sqrt{3}i = 4$ ، فأجيب
، شم أكتب المعادلية بالصيغة	z+1 = z-5i	لسؤاليين الآتيين تباعًا:
	الديكارتية	 أرسم المحل الهندسي الذي تمثله المعادل
	الحل:	لمستوى المركب .
العمودي للقطعة المستقيمة الواصلة	هذه معادلة المنصف	لحل:
		وهذه معادلة دائرة في المستوى المركب مرة
$(x+1)^2 + y^2 = x^2 + (y - x^2)^2$		(-4,4√3 وطول نصف قطرها 4
$x^2 + 2x + 1 + y^2 = x^2 + y$	$y^2 - 10y + 25$	f /lm
2x + 10y - 24 = 0		10

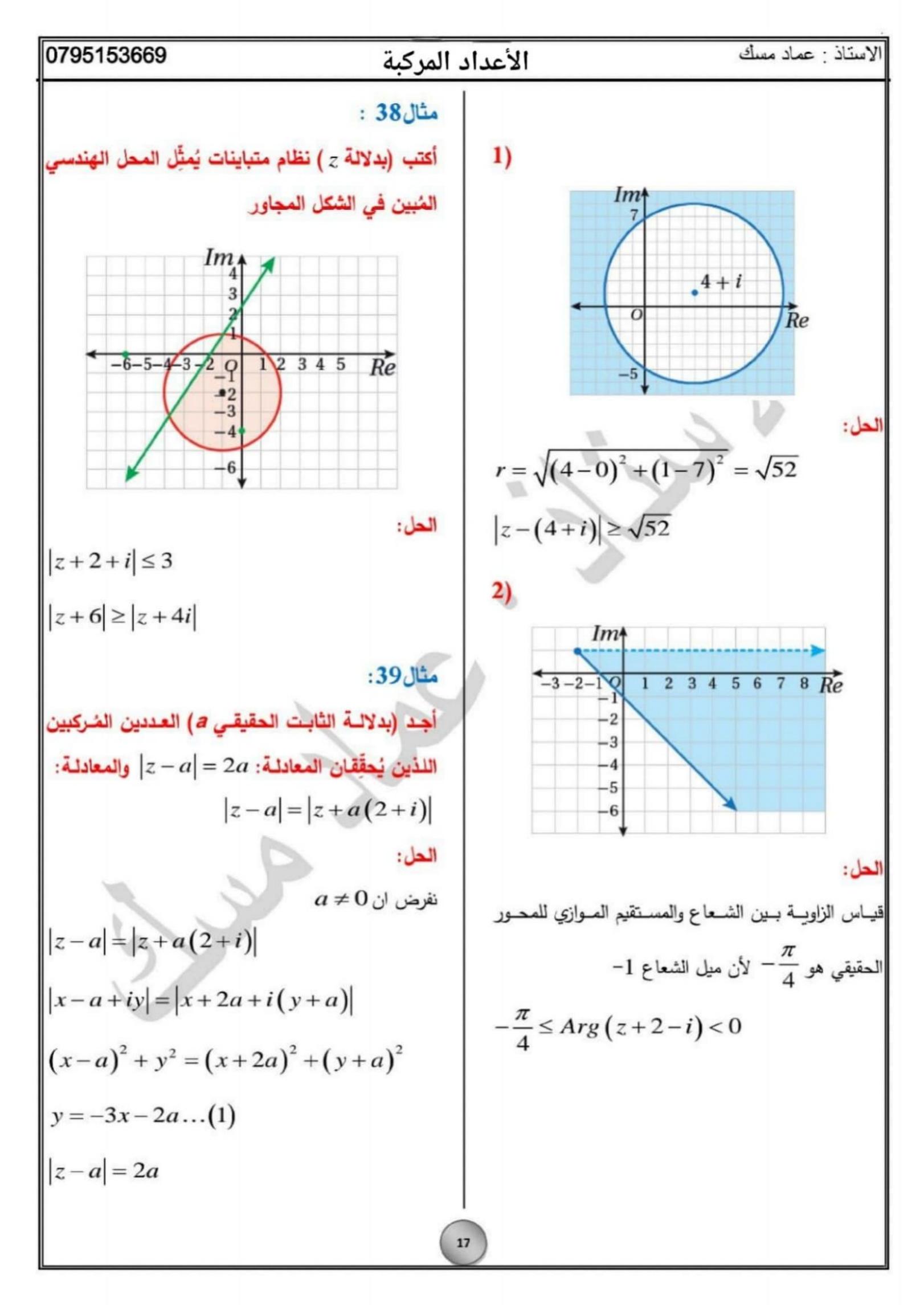
$$\frac{2}{14} + 160$$

$$\frac{2}{10} + \frac{1}{2} + \frac{1}{2} + \frac{\pi}{6} + \frac{\pi}{6} + \frac{5\pi}{6}$$

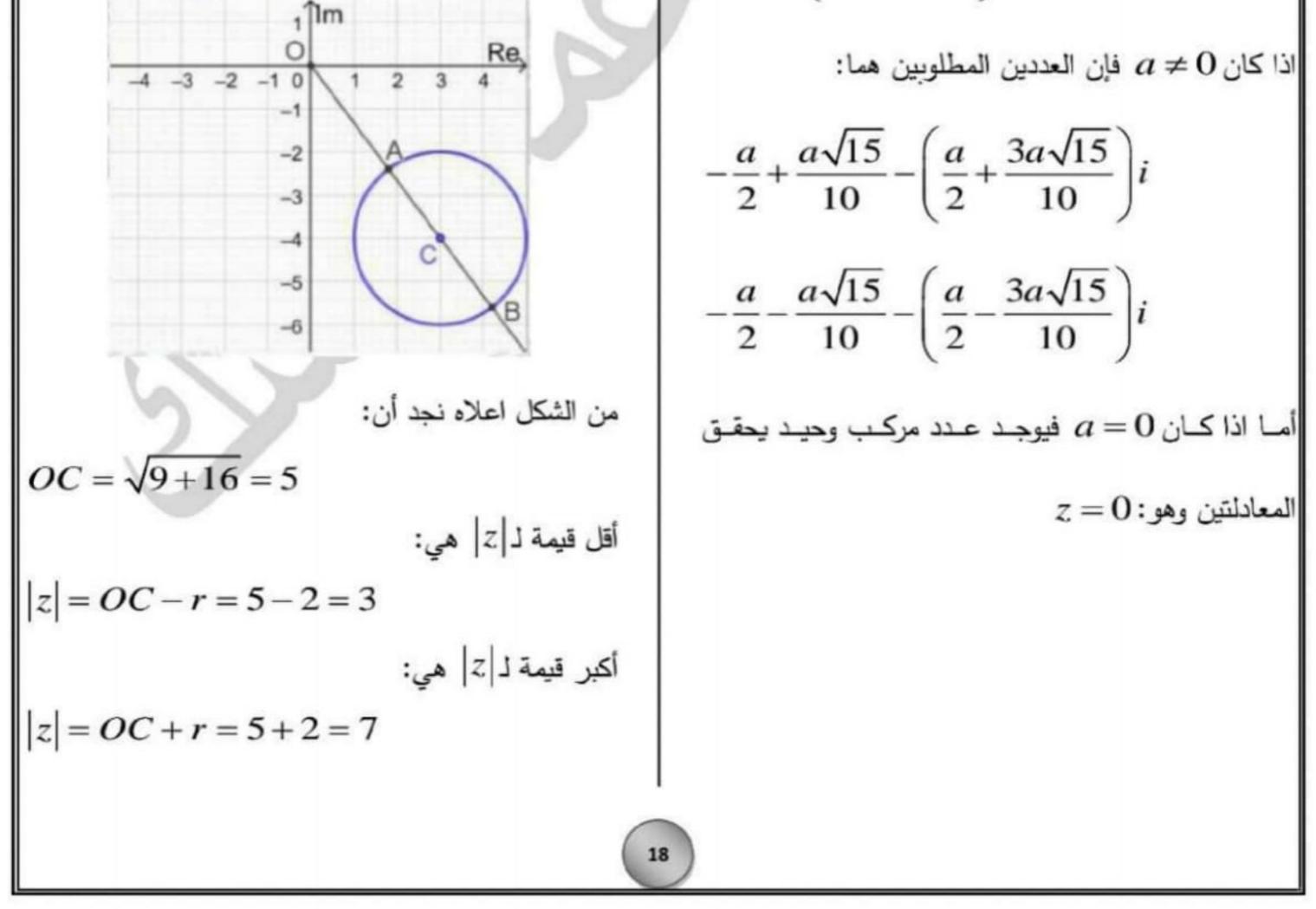
$$\frac{1}{10} + \frac{1}{10} + \frac{1}{10$$







0795153669	الأعداد المركبة	الاستاذ : عماد مسك
	:40 مثال	+iy =2a
ركب تي يُحقِّق المعادلة:	(~ ~	$(x^2)^2 + y^2 = 4a^2(2)$
فأجد أكبر قيمة لـ z وأقل	z-3+4i =2 (x-a) قيمة له، مُبرِزا إجابتي	$(-3x-2a)^2 = 4a^2$
	$x^2 - 2$	$ax + a^2 + 9x^2 + 12ax + 4a^2 = 4a^2$
z-3-4i =2	$10x^2$ -	$+10ax + a^2 = 0$
$\left z-(3-4i)\right =2$	x = -	$10a \pm \sqrt{100a^2 - 40a^2}$
مركزها $(4-,3)$ وطول نصف $\sqrt{x^2 + y^2}$ وطول نصف $\sqrt{x^2 + y^2}$ يساوي $ z $ يساوى أسل في قطة الاصل في	قطرها 2 x = - نف $z = x + iy$ نفرض $x = -$	$\frac{10a \pm \sqrt{60a^2}}{20} = \frac{-10a \pm 2a\sqrt{15}}{20}$ $\frac{a}{2} \pm \frac{a\sqrt{15}}{10}$
		$8\left(\frac{-a}{2} \pm \frac{a\sqrt{15}}{10}\right) - 2a = \frac{a}{2} \pm \frac{3a\sqrt{15}}{10}$



0795153669	الأعداد المركبة	الاستاذ : عماد مسك
$\tan^{-1}\frac{20}{21} = \tan^{-1}\frac{2}{5} - \left(-\tan^{-1}\frac{2}{5}\right)$	2 5)	مثال41: إذا كانت: z = 5 + 2i ، فأجيب عن السؤالير
$\tan^{-1}\frac{20}{21} = 2\tan^{-1}\frac{2}{5}$		ياغا:
	مثال42:	$\frac{z}{\overline{z}} = \frac{1}{29} (21 + 20i)$
عادلة: $ z - 6 = 2 z + 6 - 9i $ تُمثِّل د مركزها وطول نصف قُطرها.	z=5-	$-2i \Rightarrow \overline{z} = 5 - 2i$ $+2i 5 + 2i$
z-6 = 2 z+6-9i	= 2	$\frac{\overline{-2i} \times \overline{5+2i}}{5+20i-4} = \frac{21+20i}{29}$
$ x-6+iy = 2 (x+6)+i(y-9) = (x-6)^2 + (y-9)^2 + (y-6)^2 + (y-6)$		$=\frac{1}{29}(21+20i)$
$x^{2} - 12x + 36 + y^{2} = 4(x^{2} + 12x + 36 + y^{2} - x^{2})$	18y+81)	

$$x^{2} + y^{2} + 20x - 24y + 144 = 0$$

$$(x + 10)^{2} + (y - 12)^{2} = 100$$

$$(x + 10)^{2} + (y - 12)^{2} = 100$$

$$gew_{2} \text{ aslit is clic(a actric(a ctric(a ct$$